1
|
Szabadkai G, Bianchi K, Várnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzuto R. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. ACTA ACUST UNITED AC 2007; 175:901-11. [PMID: 17178908 PMCID: PMC2064700 DOI: 10.1083/jcb.200608073] [Citation(s) in RCA: 1087] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane mediates metabolic flow, Ca(2+), and cell death signaling between the endoplasmic reticulum (ER) and mitochondrial networks. We demonstrate that VDAC1 is physically linked to the endoplasmic reticulum Ca(2+)-release channel inositol 1,4,5-trisphosphate receptor (IP(3)R) through the molecular chaperone glucose-regulated protein 75 (grp75). Functional interaction between the channels was shown by the recombinant expression of the ligand-binding domain of the IP(3)R on the ER or mitochondrial surface, which directly enhanced Ca(2+) accumulation in mitochondria. Knockdown of grp75 abolished the stimulatory effect, highlighting chaperone-mediated conformational coupling between the IP(3)R and the mitochondrial Ca(2+) uptake machinery. Because organelle Ca(2+) homeostasis influences fundamentally cellular functions and death signaling, the central location of grp75 may represent an important control point of cell fate and pathogenesis.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
1087 |
2
|
Csordás G, Renken C, Várnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajnóczky G. Structural and functional features and significance of the physical linkage between ER and mitochondria. ACTA ACUST UNITED AC 2006; 174:915-21. [PMID: 16982799 PMCID: PMC2064383 DOI: 10.1083/jcb.200604016] [Citation(s) in RCA: 1066] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of mitochondria in cell metabolism and survival is controlled by calcium signals that are commonly transmitted at the close associations between mitochondria and endoplasmic reticulum (ER). However, the physical linkage of the ER-mitochondria interface and its relevance for cell function remains elusive. We show by electron tomography that ER and mitochondria are adjoined by tethers that are approximately 10 nm at the smooth ER and approximately 25 nm at the rough ER. Limited proteolysis separates ER from mitochondria, whereas expression of a short "synthetic linker" (<5 nm) leads to tightening of the associations. Although normal connections are necessary and sufficient for proper propagation of ER-derived calcium signals to the mitochondria, tightened connections, synthetic or naturally observed under apoptosis-inducing conditions, make mitochondria prone to Ca2+ overloading and ensuing permeability transition. These results reveal an unexpected dependence of cell function and survival on the maintenance of proper spacing between the ER and mitochondria.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
19 |
1066 |
3
|
Várnai P, Balla T. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J Biophys Biochem Cytol 1998; 143:501-10. [PMID: 9786958 PMCID: PMC2132833 DOI: 10.1083/jcb.143.2.501] [Citation(s) in RCA: 860] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P2) pools that bind pleckstrin homology (PH) domains were visualized by cellular expression of a phospholipase C (PLC)delta PH domain-green fluorescent protein fusion construct and analysis of confocal images in living cells. Plasma membrane localization of the fluorescent probe required the presence of three basic residues within the PLCdelta PH domain known to form critical contacts with PtdIns(4, 5)P2. Activation of endogenous PLCs by ionophores or by receptor stimulation produced rapid redistribution of the fluorescent signal from the membrane to cytosol, which was reversed after Ca2+ chelation. In both ionomycin- and agonist-stimulated cells, fluorescent probe distribution closely correlated with changes in absolute mass of PtdIns(4,5)P2. Inhibition of PtdIns(4,5)P2 synthesis by quercetin or phenylarsine oxide prevented the relocalization of the fluorescent probe to the membranes after Ca2+ chelation in ionomycin-treated cells or during agonist stimulation. In contrast, the synthesis of the PtdIns(4,5)P2 imaged by the PH domain was not sensitive to concentrations of wortmannin that had been found inhibitory of the synthesis of myo-[3H]inositol- labeled PtdIns(4,5)P2. Identification and dynamic imaging of phosphoinositides that interact with PH domains will further our understanding of the regulation of such proteins by inositol phospholipids.
Collapse
|
research-article |
27 |
860 |
4
|
Geiszt M, Kopp JB, Várnai P, Leto TL. Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci U S A 2000; 97:8010-4. [PMID: 10869423 PMCID: PMC16661 DOI: 10.1073/pnas.130135897] [Citation(s) in RCA: 651] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oxygen sensing is essential for homeostasis in all aerobic organisms, but its mechanism is poorly understood. Data suggest that a phagocytic-like NAD(P)H oxidase producing reactive oxygen species serves as a primary sensor for oxygen. We have characterized a source of superoxide anions in the kidney that we refer to as a renal NAD(P)H oxidase or Renox. Renox is homologous to gp91(phox) (91-kDa subunit of the phagocyte oxidase), the electron-transporting subunit of phagocytic NADPH oxidase, and contains all of the structural motifs considered essential for binding of heme, flavin, and nucleotide. In situ RNA hybridization revealed that renox is highly expressed at the site of erythropoietin production in the renal cortex, showing the greatest accumulation of renox mRNA in proximal convoluted tubule epithelial cells. NIH 3T3 fibroblasts overexpressing transfected Renox show increased production of superoxide and develop signs of cellular senescence. Our data suggest that Renox, as a renal source of reactive oxygen species, is a likely candidate for the oxygen sensor function regulating oxygen-dependent gene expression and may also have a role in the development of inflammatory processes in the kidney.
Collapse
|
research-article |
25 |
651 |
5
|
Csordás G, Várnai P, Golenár T, Roy S, Purkins G, Schneider TG, Balla T, Hajnóczky G. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol Cell 2010; 39:121-32. [PMID: 20603080 DOI: 10.1016/j.molcel.2010.06.029] [Citation(s) in RCA: 579] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 04/09/2010] [Accepted: 06/14/2010] [Indexed: 12/11/2022]
Abstract
The ER-mitochondrial junction provides a local calcium signaling domain that is critical for both matching energy production with demand and the control of apoptosis. Here, we visualize ER-mitochondrial contact sites and monitor the localized [Ca(2+)] changes ([Ca(2+)](ER-mt)) using drug-inducible fluorescent interorganelle linkers. We show that all mitochondria have contacts with the ER, but plasma membrane (PM)-mitochondrial contacts are less frequent because of interleaving ER stacks in both RBL-2H3 and H9c2 cells. Single mitochondria display discrete patches of ER contacts and show heterogeneity in the ER-mitochondrial Ca(2+) transfer. Pericam-tagged linkers revealed IP(3)-induced [Ca(2+)](ER-mt) signals that exceeded 9 microM and endured buffering bulk cytoplasmic [Ca(2+)] increases. Altering linker length to modify the space available for the Ca(2+) transfer machinery had a biphasic effect on [Ca(2+)](ER-mt) signals. These studies provide direct evidence for the existence of high-Ca(2+) microdomains between the ER and mitochondria and suggest an optimal gap width for efficient Ca(2+) transfer.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
579 |
6
|
Várnai P, Rother KI, Balla T. Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton's tyrosine kinase pleckstrin homology domain visualized in single living cells. J Biol Chem 1999; 274:10983-9. [PMID: 10196179 DOI: 10.1074/jbc.274.16.10983] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) has been proposed to act as a second messenger to recruit regulatory proteins to the plasma membrane via their pleckstrin homology (PH) domains. The PH domain of Bruton's tyrosine kinase (Btk), which is mutated in the human disease X-linked agammaglobulinemia, has been shown to interact with PI(3,4,5)P3 in vitro. In this study, a fusion protein containing the PH domain of Btk and the enhanced green fluorescent protein (BtkPH-GFP) was constructed and utilized to study the ability of this PH domain to interact with membrane inositol phospholipids inside living cells. The localization of expressed BtkPH-GFP in quiescent NIH 3T3 cells was indistinguishable from that of GFP alone, both being cytosolic as assessed by confocal microscopy. In NIH 3T3 cells coexpressing BtkPH-GFP and the epidermal growth factor receptor, activation of epidermal growth factor or endogenous platelet-derived growth factor receptors caused a rapid (<3 min) translocation of the cytosolic fluorescence to ruffle-like membrane structures. This response was not observed in cells expressing GFP only and was completely inhibited by treatment with the PI 3-kinase inhibitors wortmannin and LY 292004. Membrane-targeted PI 3-kinase also caused membrane localization of BtkPH-GFP that was slowly reversed by wortmannin. When the R28C mutation of the Btk PH domain, which causes X-linked agammaglobulinemia, was introduced into the fluorescent construct, no translocation was observed after stimulation. In contrast, the E41K mutation, which confers transforming activity to native Btk, caused significant membrane localization of BtkPH-GFP with characteristics indicating its possible binding to PI(4,5)P2. This mutant, but not wild-type BtkPH-GFP, interfered with agonist-induced PI(4,5)P2 hydrolysis in COS-7 cells. These results show in intact cells that the PH domain of Btk binds selectively to 3-phosphorylated lipids after activation of PI 3-kinase enzymes and that losing such binding ability or specificity results in gross abnormalities in the function of the enzyme. Therefore, the interaction with PI(3,4,5)P3 is likely to be an important determinant of the physiological regulation of Btk and can be utilized to visualize the dynamics and spatiotemporal organization of changes in this phospholipid in living cells.
Collapse
|
|
26 |
237 |
7
|
van der Wal J, Habets R, Várnai P, Balla T, Jalink K. Monitoring agonist-induced phospholipase C activation in live cells by fluorescence resonance energy transfer. J Biol Chem 2001; 276:15337-44. [PMID: 11152673 DOI: 10.1074/jbc.m007194200] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Agonist-induced intracellular Ca(2+) signals following phospholipase C (PLC) activation display a variety of patterns, including transient, sustained, and oscillatory behavior. These Ca(2+) changes have been well characterized, but detailed kinetic analyses of PLC activation in single living cells is lacking, due to the absence of suitable indicators for use in vivo. Recently, green fluorescent protein-tagged pleckstrin homology domains have been employed to monitor PLC activation in single cells, based on (confocal) imaging of their fluorescence translocation from the membrane to the cytosol that occurs upon hydrolysis of phosphatidylinositol bisphosphate. Here we describe fluorescence resonance energy transfer between pleckstrin homology domains of PLCdelta1 tagged with cyan and yellow fluorescent proteins as a sensitive readout of phosphatidylinositol bisphosphate metabolism for use both in cell populations and in single cells. Fluorescence resonance energy transfer requires significantly less excitation intensity, enabling prolonged and fast data acquisition without the cell damage that limits confocal experiments. It also allows experiments on motile or extremely flat cells, and can be scaled to record from cell populations as well as single neurites. Characterization of responses to various agonists by this method reveals that stimuli that elicit very similar Ca(2+) mobilization responses can exhibit widely different kinetics of PLC activation, and that the latter appears to follow receptor activation more faithfully than the cytosolic Ca(2+) transient.
Collapse
|
|
24 |
207 |
8
|
Balla A, Tuymetova G, Tsiomenko A, Várnai P, Balla T. A plasma membrane pool of phosphatidylinositol 4-phosphate is generated by phosphatidylinositol 4-kinase type-III alpha: studies with the PH domains of the oxysterol binding protein and FAPP1. Mol Biol Cell 2005; 16:1282-95. [PMID: 15635101 PMCID: PMC551492 DOI: 10.1091/mbc.e04-07-0578] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The PH domains of OSBP and FAPP1 fused to GFP were used to monitor PI(4)P distribution in COS-7 cells during manipulations of PI 4-kinase (PI4K) activities. Both domains were associated with the Golgi and small cytoplasmic vesicles, and a small fraction of OSBP-PH was found at the plasma membrane (PM). Inhibition of type-III PI4Ks with 10 microM wortmannin (Wm) significantly reduced but did not abolish Golgi localization of either PH domains. Downregulation of PI4KIIalpha or PI4KIIIbeta by siRNA reduced the localization of the PH domains to the Golgi and in the former case any remaining Golgi localization was eliminated by Wm treatment. PLC activation by Ca2+ ionophores dissociated the domains from all membranes, but after Ca2+ chelation, they rapidly reassociated with the Golgi, the intracellular vesicles and with the PM. PM association of the domains was significantly higher after the Ca2+ transient and was abolished by Wm pretreatment. PM relocalization was not affected by down-regulation of PI4KIIIbeta or -IIalpha, but was inhibited by down-regulation of PI4KIIIalpha, or by 10 microM PAO, which also inhibits PI4KIIIalpha. Our data suggest that these PH domains detect PI(4)P formation in extra-Golgi compartments under dynamic conditions and that various PI4Ks regulate PI(4)P synthesis in distinct cellular compartments.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
206 |
9
|
Abstract
The behaviour of mobile counterions, Na+ and K+, was analysed around a B-DNA double helix with the sequence CCATGCGCTGAC in aqueous solution during two 50 ns long molecular dynamics trajectories. The movement of both monovalent ions remains diffusive in the presence of DNA. Ions sample the complete space available during the simulation time, although individual ions sample only about one-third of the simulation box. Ions preferentially sample electronegative sites around DNA, but direct binding to DNA bases remains a rather rare event, with highest site occupancy values of <13%. The location of direct binding sites depends greatly on the nature of the counterion. While Na+ binding in both grooves is strongly sequence-dependent with the preferred binding site in the minor groove, K+ mainly visits the major groove and binds close to the centre of the oligomer. The electrostatic potential of an average DNA structure therefore cannot account for the ability of a site to bind a given cation; other factors must also play a role. An extensive analysis of the influence of counterions on DNA conformation showed no evidence of minor groove narrowing upon ion binding. A significant difference between the conformations of the double helix in the different simulations can be attributed to extensive alpha/gamma transitions in the phosphate backbone during the simulation with Na+. These transitions, with lifetimes over tens of nanoseconds, however, appear to be correlated with ion binding to phosphates. The ion-specific conformational properties of DNA, hitherto largely overlooked, may play an important role in DNA recognition and binding.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
203 |
10
|
Várnai P, Tóth B, Tóth DJ, Hunyady L, Balla T. Visualization and manipulation of plasma membrane-endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIM1-Orai1 Complex. J Biol Chem 2007; 282:29678-90. [PMID: 17684017 DOI: 10.1074/jbc.m704339200] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
STIM1, a recently identified endoplasmic reticulum (ER) protein, rapidly translocates to a plasma membrane-adjacent ER compartment upon depletion of the ER Ca(2+) stores. Here we use a novel means, namely a chemically inducible bridge formation between the plasma and ER membranes, to highlight the plasma membrane-adjacent ER compartment and show that this is the site where STIM1 and its Ca(2+) channel partner, Orai1, form a productive interaction upon store depletion. By changing the length of the linkers connecting the plasma and ER membranes, we show that Orai1 requires a larger space than STIM1 between the two membranes. This finding suggests that Orai1 is part of a larger macromolecular cluster with an estimated 11-14-nm protrusion to the cytoplasm, whereas the cytoplasmic domain of STIM1 fits in a space calculated to be less than 6 nm. We finally show that agonist-induced translocation of STIM1 is rapidly reversible and only partially affects STIM1 in the juxtanuclear ER compartment. These studies are the first to detect juxtaposed areas between the ER and the plasma membrane in live cells, revealing novel details of STIM1-Orai1 interactions.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
202 |
11
|
Lamport DTA, Várnai P. Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development. THE NEW PHYTOLOGIST 2013; 197:58-64. [PMID: 23106282 DOI: 10.1111/nph.12005] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/15/2012] [Indexed: 05/18/2023]
Abstract
Arabinogalactan glycoproteins (AGPs) are implicated in virtually all aspects of plant growth and development, yet their precise role remains unknown. Classical AGPs cover the plasma membrane and are highly glycosylated by numerous acidic arabinogalactan polysaccharides O-linked to hydroxyproline. Their heterogeneity and complexity hindered a structural approach until the recent determination of a highly conserved repetitive consensus structure for a 15-sugar residue arabinogalactan subunit with paired glucuronic carboxyls. Based on NMR data and molecular dynamics simulations, we identify these carboxyls as potential intramolecular Ca(2+)-binding sites. Using rapid ultrafiltration assays and mass spectrometry, we verified that AGPs bind Ca(2+) tightly (K(d) ~ 6.5 μM) and stoichiometrically at pH 5. Ca(2+) binding is reversible in a pH-dependent manner. As typical AGPs contain c. 30 Ca(2+)-binding subunits and are bulk components of the periplasm, they represent a Ca(2+) capacitor discharged at low pH by stretch-activated plasma membrane H(+)-ATPases, hence a substantial source of cytosolic Ca(2+). We propose that these Ca(2+) waves prime the 'calcium oscillator', a signal generator essential to the global Ca(2+) signalling pathway of green plants.
Collapse
|
|
12 |
149 |
12
|
Várnai P, Hunyady L, Balla T. STIM and Orai: the long-awaited constituents of store-operated calcium entry. Trends Pharmacol Sci 2009; 30:118-28. [PMID: 19187978 PMCID: PMC3125588 DOI: 10.1016/j.tips.2008.11.005] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 11/19/2008] [Accepted: 11/20/2008] [Indexed: 11/21/2022]
Abstract
Rapid changes in cytosolic Ca(2+) concentrations [Ca(2+)](i) are the most commonly used signals in biology to regulate a whole host of cellular functions including contraction, secretion and gene activation. A widely utilized form of Ca(2+) influx is termed store-operated Ca(2+) entry (SOCE) owing to its control by the Ca(2+) content of the endoplasmic reticulum (ER). The underlying molecular mechanism of SOCE has eluded identification until recently when two groups of proteins, the ER Ca(2+) sensors stromal interaction molecule (STIM)1 and STIM2 and the plasma-membrane channels Orai1, Orai2 and Orai3, have been identified. These landmark discoveries have enabled impressive progress in clarifying how these proteins work in concert and what developmental and cellular processes require their participation most. As we begin to better understand the biology of the STIM and Orai proteins, the attention to the pharmacological tools to influence their functions quickly follow suit. Here, we briefly summarize recent developments in this exciting area of Ca(2+) signaling.
Collapse
|
Research Support, N.I.H., Intramural |
16 |
142 |
13
|
Zhao X, Várnai P, Tuymetova G, Balla A, Tóth ZE, Oker-Blom C, Roder J, Jeromin A, Balla T. Interaction of neuronal calcium sensor-1 (NCS-1) with phosphatidylinositol 4-kinase beta stimulates lipid kinase activity and affects membrane trafficking in COS-7 cells. J Biol Chem 2001; 276:40183-9. [PMID: 11526106 DOI: 10.1074/jbc.m104048200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol 4-kinases (PI4K) catalyze the first step in the synthesis of phosphatidylinositol 4,5-bisphosphate, an important lipid regulator of several cellular functions. Here we show that the Ca(2+)-binding protein, neuronal calcium sensor-1 (NCS-1), can physically associate with the type III PI4Kbeta with functional consequences affecting the kinase. Recombinant PI4Kbeta, but not its glutathione S-transferase-fused form, showed enhanced PI kinase activity when incubated with recombinant NCS-1, but only if the latter was myristoylated. Similarly, in vitro translated NCS-1, but not its myristoylation-defective mutant, was found associated with recombinant- or in vitro translated PI4Kbeta in PI4Kbeta-immunoprecipitates. When expressed in COS-7 cells, PI4Kbeta and NCS-1 formed a complex that could be immunoprecipitated with antibodies against either proteins, and PI 4-kinase activity was present in anti-NCS-1 immunoprecipitates. Expressed NCS-1-YFP showed co-localization with endogenous PI4Kbeta primarily in the Golgi, but it was also present in the walls of numerous large perinuclear vesicles. Co-expression of a catalytically inactive PI4Kbeta inhibited the development of this vesicular phenotype. Transfection of PI4Kbeta and NCS-1 had no effect on basal PIP synthesis in permeabilized COS-7 cells, but it increased the wortmannin-sensitive [(32)P]phosphate incorporation into phosphatidylinositol 4-phosphate during Ca(2+)-induced phospholipase C activation. These results together indicate that NCS-1 is able to interact with PI4Kbeta also in mammalian cells and may play a role in the regulation of this enzyme in specific cellular compartments affecting vesicular trafficking.
Collapse
|
|
24 |
126 |
14
|
Giudice E, Várnai P, Lavery R. Base pair opening within B-DNA: free energy pathways for GC and AT pairs from umbrella sampling simulations. Nucleic Acids Res 2003; 31:1434-43. [PMID: 12595551 PMCID: PMC149832 DOI: 10.1093/nar/gkg239] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The conformational pathways and the free energy variations for base opening into the major and minor grooves of a B-DNA duplex are studied using umbrella sampling molecular dynamics simulations. We compare both GC and AT base pair opening within a double-stranded d(GAGAGAGAGAGAG)* d(CTCTCTCTCTCTC) oligomer, and we are also able to study the impact of opening on the conformational and dynamic properties of DNA and on the surrounding solvent. The results indicate a two-stage opening process with an initial coupling of the movements of the bases within the perturbed base pair. Major and minor groove pathways are energetically comparable in the case of the pyrimidine bases, but the major groove pathway is favored for the larger purine bases. Base opening is coupled to changes in specific backbone dihedrals and certain helical distortions, including untwisting and bending, although all these effects are dependent on the particular base involved. Partial opening also leads to well defined water bridging sites, which may play a role in stabilizing the perturbed base pairs.
Collapse
|
research-article |
22 |
125 |
15
|
Várnai P, Balla T. Live cell imaging of phosphoinositide dynamics with fluorescent protein domains. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:957-67. [PMID: 16702024 DOI: 10.1016/j.bbalip.2006.03.019] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 03/24/2006] [Accepted: 03/25/2006] [Indexed: 11/28/2022]
Abstract
Phosphoinositides make up only a small fraction of membrane phospholipids yet they are of outmost significance in regulating membrane-associated signaling processes. A large number of inositol lipid kinases and phosphatases have evolved to control the rapid production and elimination of these lipids at specific cellular membrane compartments. For a long period of time, the only information about the spatial aspect of inositol lipid metabolism relied upon the immunostaining of enzymes or cell fractionation of the enzyme activities that acted upon these lipids. Recent advances in the understanding of the nature of protein-inositol lipid interactions permitted the design of fluorescent molecular probes that can interact with inositol lipids in a specific manner allowing imaging of phosphoinositide dynamics in live cells. This approach has rapidly gained high popularity, but also provoked criticisms and debate about its limitations. In this review, we will summarize our experience with using these molecular tools and address some issues that most often come up in discussions concerning the usefulness and drawbacks of this technique. The most important value of these debates is that they also challenge our preconceived views of how phosphoinositides regulate cellular functions.
Collapse
|
Review |
19 |
122 |
16
|
Várnai P, Bondeva T, Tamás P, Tóth B, Buday L, Hunyady L, Balla T. Selective cellular effects of overexpressed pleckstrin-homology domains that recognize PtdIns(3,4,5)P3 suggest their interaction with protein binding partners. J Cell Sci 2005; 118:4879-88. [PMID: 16219693 DOI: 10.1242/jcs.02606] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Several pleckstrin-homology (PH) domains with the ability to bind phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3, PIP3] were expressed as green fluorescent protein (GFP) fusion proteins to determine their effects on various cellular responses known to be activated by PIP3. These proteins comprised the PH domains of Akt, ARNO, Btk or GRP1, and were found to show growth-factor-stimulated and wortmannin-sensitive translocation from the cytosol to the plasma membrane in several cell types, indicating their ability to recognize PIP3. Remarkably, although overexpressed Akt-PH–GFP and Btk-PH–GFP were quite potent in antagonizing the PIP3-mediated activation of the Akt protein kinase, such inhibition was not observed with the other PH domains. By contrast, expression of the PH domains of GRP1 and ARNO, but not of Akt or Btk, inhibited the attachment and spreading of freshly seeded cells to culture dishes. Activation of PLCγ by epidermal growth factor (EGF) was attenuated by the PH domains of GRP1, ARNO and Akt, but was significantly enhanced by the Btk PH domain. By following the kinetics of expression of the various GFP-fused PH domains for several days, only the PH domain of Akt showed a lipid-binding-dependent self-elimination, consistent with its interference with the anti-apoptotic Akt signaling pathway. Mutations of selective residues that do not directly participate in PIP3 binding in the GRP1-PH and Akt-PH domain were able to reduce the dominant-negative effects of these constructs yet retain their lipid binding. These data suggest that interaction with and sequestration of PIP3 may not be the sole mechanism by which PH domains interfere with cellular responses and that their interaction with other membrane components, most probably with proteins, allows a more specific participation in the regulation of specific signaling pathways.
Collapse
|
|
20 |
118 |
17
|
Várnai P, Djuranovic D, Lavery R, Hartmann B. Alpha/gamma transitions in the B-DNA backbone. Nucleic Acids Res 2002; 30:5398-406. [PMID: 12490708 PMCID: PMC140057 DOI: 10.1093/nar/gkf680] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2002] [Revised: 10/17/2002] [Accepted: 10/17/2002] [Indexed: 11/13/2022] Open
Abstract
In the crystal structures of protein complexes with B-DNA, alpha and gamma DNA backbone torsion angles often exhibit non-canonical values. It is not known if these alternative backbone conformations are easily accessible in solution and can contribute to the specific recognition of DNA by proteins. We have analysed the coupled transition of the alpha and gamma torsion angles within the central GpC step of a B-DNA dodecamer by computer simulations. Five stable or metastable non-canonical alpha/gamma sub-states are found. The most favourable pathway from the canonical alpha/gamma structure to any unusual form involves a counter-rotation of alpha and gamma, via the trans conformation. However, the corresponding free energy indicates that spontaneous flipping of the torsions is improbable in free B-DNA. This is supported by an analysis of the available high resolution crystallographic structures showing that unusual alpha/gamma states are only encountered in B-DNA complexed to proteins. An analysis of the structural consequences of alpha/gamma transitions shows that the non-canonical backbone geometry influences essentially the roll and twist values and reduces the equilibrium dispersion of structural parameters. Our results support the hypothesis that unusual alpha/gamma backbones arise during protein-DNA complexation, assisting the fine structural adjustments between the two partners and playing a role in the overall complexation free energy.
Collapse
|
research-article |
23 |
111 |
18
|
Enyedi B, Várnai P, Geiszt M. Redox state of the endoplasmic reticulum is controlled by Ero1L-alpha and intraluminal calcium. Antioxid Redox Signal 2010; 13:721-9. [PMID: 20095866 DOI: 10.1089/ars.2009.2880] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Formation of intra- and intermolecular disulfide bonds is an essential step in the synthesis of secretory proteins. In eukaryotic cells, this process occurs in the endoplasmic reticulum (ER) and requires an oxidative environment with the action of several chaperones and folding catalysts. During protein folding, Ero1p oxidizes protein disulfide isomerase (PDI), which then directly catalyzes the formation of disulfide bonds in folding proteins. Recent cell-free studies suggest that the terminal electron acceptor in the pathway is molecular oxygen, with the resulting formation of hydrogen peroxide (H(2)O(2)). We report for the first time the measurement of ER H(2)O(2) level in live cells. By targeting a fluorescent protein-based H(2)O(2) sensor to various intracellular compartments, we show that the ER has the highest level of H(2)O(2), and this high concentration is well confined to the lumen of the organelle. Manipulation of the Ero1-Lalpha level--either by overexpression or by siRNA-mediated inhibition--caused parallel changes in luminal H(2)O(2), proving that the activity of Ero1-Lalpha results in H(2)O(2) formation in the ER. We also found that calcium mobilization from intracellular stores induces a decrease in ER H(2)O(2) level, suggesting a complex interplay between redox and calcium signaling in the mammalian ER.
Collapse
|
|
15 |
109 |
19
|
Balla T, Bondeva T, Várnai P. How accurately can we image inositol lipids in living cells? Trends Pharmacol Sci 2000; 21:238-41. [PMID: 10871889 DOI: 10.1016/s0165-6147(00)01500-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
Review |
25 |
109 |
20
|
Várnai P, Lin X, Lee SB, Tuymetova G, Bondeva T, Spät A, Rhee SG, Hajnóczky G, Balla T. Inositol lipid binding and membrane localization of isolated pleckstrin homology (PH) domains. Studies on the PH domains of phospholipase C delta 1 and p130. J Biol Chem 2002; 277:27412-22. [PMID: 12019260 DOI: 10.1074/jbc.m109672200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The relationship between the ability of isolated pleckstrin homology (PH) domains to bind inositol lipids or soluble inositol phosphates in vitro and to localize to cellular membranes in live cells was examined by comparing the PH domains of phospholipase Cdelta(1) (PLCdelta(1)) and the recently cloned PLC-like protein p130 fused to the green fluorescent protein (GFP). The prominent membrane localization of PLCdelta(1)PH-GFP was paralleled with high affinity binding to inositol 1,4,5-trisphosphate (InsP(3)) as well as to phosphatidylinositol 4,5-bisphosphate-containing lipid vesicles or nitrocellulose membrane strips. In contrast, no membrane localization was observed with p130PH-GFP despite its InsP(3) and phosphatidylinositol 4,5-bisphosphate-binding properties being comparable with those of PLCdelta(1)PH-GFP. The N-terminal ligand binding domain of the type I InsP(3) receptor also failed to localize to the plasma membrane despite its 5-fold higher affinity to InsP(3) than the PH domains. By using a chimeric approach and cassette mutagenesis, the C-terminal alpha-helix and the short loop between the beta6-beta7 sheets of the PLCdelta(1)PH domain, in addition to its InsP(3)-binding region, were identified as critical components for membrane localization in intact cells. These data indicate that binding to the inositol phosphate head group is necessary but may not be sufficient for membrane localization of the PLCdelta(1)PH-GFP fusion protein, and motifs located within the C-terminal half of the PH domain provide auxiliary contacts with additional membrane components.
Collapse
|
|
23 |
101 |
21
|
Richter B, Gsponer J, Várnai P, Salvatella X, Vendruscolo M. The MUMO (minimal under-restraining minimal over-restraining) method for the determination of native state ensembles of proteins. JOURNAL OF BIOMOLECULAR NMR 2007; 37:117-35. [PMID: 17225069 DOI: 10.1007/s10858-006-9117-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 11/03/2006] [Indexed: 05/13/2023]
Abstract
While reliable procedures for determining the conformations of proteins are available, methods for generating ensembles of structures that also reflect their flexibility are much less well established. Here we present a systematic assessment of the ability of ensemble-averaged molecular dynamics simulations with ensemble-averaged NMR restraints to simultaneously reproduce the average structure of proteins and their associated dynamics. We discuss the effects that under-restraining (overfitting) and over-restraining (underfitting) have on the structures generated in ensemble-averaged molecular simulations. We then introduce the MUMO (minimal under-restraining minimal over-restraining) method, a procedure in which different observables are averaged over a different number of molecules. As both over-restraining and under-restraining are significantly reduced in the MUMO method, it is possible to generate ensembles of conformations that accurately characterize both the structure and the dynamics of native states of proteins. The application of the MUMO method to the protein ubiquitin yields a high-resolution structural ensemble with an RDC Q-factor of 0.19.
Collapse
|
|
18 |
94 |
22
|
Balla T, Várnai P. Visualizing cellular phosphoinositide pools with GFP-fused protein-modules. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:pl3. [PMID: 11917154 DOI: 10.1126/stke.2002.125.pl3] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Inositol phospholipids are well known for their pivotal role in calcium signaling as precursors of important second messengers generated in response to various stimuli. However, over the last 10 years, inositides have also emerged as universal signaling components present in virtually every membrane of eukaryotic cells. These lipids are locally produced and degraded by the numerous inositide kinase and phosphatase enzymes, to control the recruitment and activity of protein signaling complexes in specific membrane compartments. The spatial and temporal constraints imposed on changes in cellular inositides pose new challenges in finding experimental techniques through which such changes can be examined. Taking advantage of the protein domains selected by evolution to recognize cellular phosphoinositides, we have created fluorescent molecules by fusing these domains to the improved version of green fluorescent protein (EGFP); the distribution of these fusion proteins can be followed within live cells, thereby reporting on changes in phosphoinositides. Although this technique is one of the few that provide information on phosphoinositide dynamics in live cells with subcellular resolution and has rapidly gained popularity, it also has limitations that need to be taken into account when interpreting the data. Here, we summarize our experience in designing and using these constructs and review our position concerning the interpretation of the data obtained by this technique.
Collapse
|
|
23 |
91 |
23
|
Pralong WF, Hunyady L, Várnai P, Wollheim CB, Spät A. Pyridine nucleotide redox state parallels production of aldosterone in potassium-stimulated adrenal glomerulosa cells. Proc Natl Acad Sci U S A 1992; 89:132-6. [PMID: 1729679 PMCID: PMC48190 DOI: 10.1073/pnas.89.1.132] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Extracellular potassium ions (K+) raise the intracellular concentration of free Ca2+ ([Ca2+]i) by gating voltage-dependent Ca2+ channels and stimulate aldosterone production in adrenal glomerulosa cells. The pathway leading from calcium influx to increased steroid synthesis has not been completely elucidated. In the present study we demonstrate that the reduction of pyridine nucleotides known to be required for steroid hydroxylation is enhanced by K+ (4.1-8.4 mM) in single rat glomerulosa cells. The action of K+ was strictly dependent on the presence of extracellular Ca2+. Amytal, a blocker of site I of the mitochondrial respiratory chain, abolished the K+ effect, indicating a mitochondrial origin for the recorded changes. Supraphysiological K+ concentration (18 mM) resulted in a further increase in [Ca2+]i, while steroidogenesis was decreased as measured in cell suspensions. However, a possible explanation for this dichotomy is provided by the finding that the level of reduced pyridine nucleotides also decreased at supraphysiological K+ concentration.
Collapse
|
research-article |
33 |
87 |
24
|
Nyulászi L, Várnai P, Veszprémi T. About the aromaticity of five-membered heterocycles. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0166-1280(95)04338-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
|
30 |
83 |
25
|
Várnai P, Lavery R. Base flipping in DNA: pathways and energetics studied with molecular dynamic simulations. J Am Chem Soc 2002; 124:7272-3. [PMID: 12071727 DOI: 10.1021/ja025980x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Carrying out chemistry on the bases of DNA, necessary for biological processes such as methylation or repair, requires flipping the base into an accessible position. In this work, molecular dynamics simulations are used to generate a free energy profile for flipping a cytosine base out of its helical stack in double-stranded DNA. The results shed light on the mechanics of this process by comparing routes for base flipping via the minor and major grooves.
Collapse
|
|
23 |
80 |