1
|
Graef IA, Mermelstein PG, Stankunas K, Neilson JR, Deisseroth K, Tsien RW, Crabtree GR. L-type calcium channels and GSK-3 regulate the activity of NF-ATc4 in hippocampal neurons. Nature 1999; 401:703-8. [PMID: 10537109 DOI: 10.1038/44378] [Citation(s) in RCA: 427] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The molecular basis of learning and memory has been the object of several recent advances, which have focused attention on calcium-regulated pathways controlling transcription. One of the molecules implicated by pharmacological, biochemical and genetic approaches is the calcium/calmodulin-regulated phosphatase, calcineurin. In lymphocytes, calcineurin responds to specific calcium signals and regulates expression of several immediate early genes by controlling the nuclear import of the NF-ATc family of transcription factors. Here we show that NF-ATc4/NF-AT3 in hippocampal neurons can rapidly translocate from cytoplasm to nucleus and activate NF-AT-dependent transcription in response to electrical activity or potassium depolarization. The calcineurin-mediated translocation is critically dependent on calcium entry through L-type voltage-gated calcium channels. GSK-3 can phosphorylate NF-ATc4, promoting its export from the nucleus and antagonizing NF-ATc4-dependent transcription. Furthermore, we show that induction of the inositol 1,4,5-trisphosphate receptor type 1 is controlled by the calcium/calcineurin/NF-ATc pathway. This provides a new perspective on the function of calcineurin in the central nervous system and indicates that NF-AT-mediated gene expression may be involved in the induction of hippocampal synaptic plasticity and memory formation.
Collapse
|
|
26 |
427 |
2
|
Fienberg AA, Hiroi N, Mermelstein PG, Song W, Snyder GL, Nishi A, Cheramy A, O'Callaghan JP, Miller DB, Cole DG, Corbett R, Haile CN, Cooper DC, Onn SP, Grace AA, Ouimet CC, White FJ, Hyman SE, Surmeier DJ, Girault J, Nestler EJ, Greengard P. DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science 1998; 281:838-42. [PMID: 9694658 DOI: 10.1126/science.281.5378.838] [Citation(s) in RCA: 356] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Dopaminergic neurons exert a major modulatory effect on the forebrain. Dopamine and adenosine 3',5'-monophosphate-regulated phosphoprotein (32 kilodaltons) (DARPP-32), which is enriched in all neurons that receive a dopaminergic input, is converted in response to dopamine into a potent protein phosphatase inhibitor. Mice generated to contain a targeted disruption of the DARPP-32 gene showed profound deficits in their molecular, electrophysiological, and behavioral responses to dopamine, drugs of abuse, and antipsychotic medication. The results show that DARPP-32 plays a central role in regulating the efficacy of dopaminergic neurotransmission.
Collapse
|
|
27 |
356 |
3
|
Mermelstein PG, Becker JB. Increased extracellular dopamine in the nucleus accumbens and striatum of the female rat during paced copulatory behavior. Behav Neurosci 1995; 109:354-65. [PMID: 7619325 DOI: 10.1037/0735-7044.109.2.354] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Five groups of ovariectomized rats were tested during in vivo microdialysis, and concentrations of dopamine (DA) and its metabolites were determined in dialysate. In striatum, DA increased more in hormone-primed ovariectomized female rats pacing copulation than in those engaging in sex that could not pace, those that were hormone primed but tested without a male present, or oil-treated groups (p < .02). Administration of estrogen before microdialysis resulted in enhanced striatal DA in response to a male rat relative to the animals tested without a male (p < .06). Female rats that were pacing sexual behavior also exhibited a greater increase in accumbens DA than did the no-male, estrogen-primed, or oil-treated groups (p < .015). Nonpacing animals displayed a significant decrease in DA from accumbens 30 min after introduction of the male rat (p < .05) but otherwise were not different from pacing animals. Estrogen-treated animals also had an enhanced increase in accumbens DA compared with oil-treated rats (p < .05). These data suggest that DA release in the striatum and accumbens is dependent on the context in which sexual behavior occurs and that estrogen may in part modulate these dopaminergic responses.
Collapse
|
|
30 |
148 |
4
|
Surmeier DJ, Mermelstein PG, Goldowitz D. The weaver mutation of GIRK2 results in a loss of inwardly rectifying K+ current in cerebellar granule cells. Proc Natl Acad Sci U S A 1996; 93:11191-5. [PMID: 8855331 PMCID: PMC38306 DOI: 10.1073/pnas.93.20.11191] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The weaver mutation in mice results in a severe ataxia that is attributable to the degeneration of cerebellar granule cells and dopaminergic neurons in the substantia nigra. Recent genetic studies indicate that the GIRK2 gene is altered in weaver. This gene codes for a G-protein-activated, inwardly rectifying K+ channel protein (8). The mutation results in a single amino acid substitution (glycine-->serine) in the pore-forming H5 region of the channel. The functional consequences of this mutation appear to depend upon the co-expression of other GIRK subunits--leading to either a gain or loss of function. Here, we show that G-protein-activated inwardly rectifying K+ currents are significantly reduced in cerebellar granule cells from animals carrying the mutant allele. The reduction is most pronounced in homozygous neurons. These findings suggest that the death of neurons in weaver is attributable to the loss of GIRK2-mediated currents, not to the expression of a nonspecific cation current.
Collapse
|
research-article |
29 |
89 |
5
|
Kurschner C, Mermelstein PG, Holden WT, Surmeier DJ. CIPP, a novel multivalent PDZ domain protein, selectively interacts with Kir4.0 family members, NMDA receptor subunits, neurexins, and neuroligins. Mol Cell Neurosci 1998; 11:161-72. [PMID: 9647694 DOI: 10.1006/mcne.1998.0679] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We report a novel multivalent PDZ domain protein, CIPP (for channel-interacting PDZ domain protein), which is expressed exclusively in brain and kidney. Within the brain, the highest CIPP mRNA levels were found in neurons of the cerebellum, inferior colliculus, vestibular nucleus, facial nucleus, and thalamus. Furthermore, we identified the inward rectifier K+ (Kir) channel, Kir4.1 (also called "Kir1.2"), as a cellular CIPP ligand. Among several other Kir channels tested, only the closely related Kir4.2 (or "Kir1.3") also interacted with CIPP. In addition, specific PDZ domains within CIPP associated selectively with the C-termini of N-methyl-D-aspartate subtypes of glutamate receptors, as well as neurexins and neuroligins, cell surface molecules enriched in synaptic membranes. Thus, CIPP may serve as a scaffold that brings structurally diverse but functionally connected proteins into close proximity at the synapse. The functional consequences of CIPP expression on Kir4.1 channels were studied using whole-cell voltage clamp techniques in Kir4.1 transfected COS-7 cells. On average, Kir4.1 current densities were doubled by cotransfection with CIPP.
Collapse
|
|
27 |
85 |
6
|
Mermelstein PG, Deisseroth K, Dasgupta N, Isaksen AL, Tsien RW. Calmodulin priming: nuclear translocation of a calmodulin complex and the memory of prior neuronal activity. Proc Natl Acad Sci U S A 2001; 98:15342-7. [PMID: 11742070 PMCID: PMC65031 DOI: 10.1073/pnas.211563998] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neuronal nucleus plays a vital role in information processing, but whether it supports computational functions such as paired-pulse facilitation, comparable to synapses, is unclear. Ca(2+)-dependent movement of calmodulin (CaM) to the nucleus is highly responsive to Ca(2+) entry through L-type channels and promotes activation of the transcription factor CREB (cAMP-responsive element binding protein) through phosphorylation by CaM-sensitive kinases. We characterized key features of this CaM translocation and its possible role in facilitation of nuclear signaling. Nuclear CaM was elevated within 15 s of stimulus onset, preceding the first signs of CREB phosphorylation in hippocampal pyramidal neurons. Depolarization-induced elevation of nuclear CaM also was observed in cerebellar granule cells, neocortical neurons, and dentate gyrus granule cells. Nuclear translocation of CaM was not blocked by disruption of actin filaments or microtubules, or by emptying endoplasmic reticulum Ca(2+) stores with thapsigargin. Translocation of fluorescently tagged CaM was prevented by fusing it with the Ca(2+)/CaM binding peptide M13, suggesting that nuclear CaM accumulation depends on association with endogenous Ca(2+)/CaM binding proteins. To determine whether increased nuclear [CaM] might influence subsequent nuclear signal processing, we compared responses to two consecutive depolarizing stimuli. After a weak "priming" stimulus that caused CaM translocation, CREB phosphorylation caused by a subsequent stimulus was significantly faster, more sensitive to Ca(2+) elevation, and less specifically dependent on Ca(2+) influx through L-type channels. CaM translocation not only supports rapid signaling to the nucleus, but also could provide a "memory" for facilitatory effects of repeated neural activity, seen in altered phosphorylated CREB dynamics and Ca(2+) channel dependence.
Collapse
|
research-article |
24 |
78 |
7
|
Mermelstein PG. Membrane-localised oestrogen receptor alpha and beta influence neuronal activity through activation of metabotropic glutamate receptors. J Neuroendocrinol 2009; 21:257-62. [PMID: 19207809 PMCID: PMC2805164 DOI: 10.1111/j.1365-2826.2009.01838.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Until recently, the idea that oestradiol could affect cellular processes independent of nuclear oestrogen receptors (ERs) was controversial. This was despite the large number of carefully controlled studies performed both within and outside the nervous system demonstrating that oestrogens regulate various intracellular signalling pathways by acting at the membrane surface of cells and/or at biological rates incompatible with the time course of genomic-initiated events. At present, it is far less controversial that oestradiol acts at surface membrane receptors to regulate nervous system function. Recent studies have demonstrated that the classical intracellular ERs, ERalpha and ERbeta, are major players in mediating the actions of oestradiol on the membrane surface. This review focuses on one potential mechanism by which surface-localised ERalpha and ERbeta stimulate intracellular signalling events in cells of the nervous system. After oestradiol treatment, both ERalpha and ERbeta are capable of activating different classes of metabotropic glutamate receptors (mGluRs). Oestradiol activation of mGluRs is independent of glutamate, but requires expression of several different caveolin proteins to compartmentalise the different ERs with mGluRs into functional signalling microdomains. ER/mGluR signalling is a potential means by which oestrogens can both rapidly and for extended periods, influence a variety of intracellular signalling processes and behaviours.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
64 |
8
|
Frye CA, Mermelstein PG, DeBold JF. Evidence for a non-genomic action of progestins on sexual receptivity in hamster ventral tegmental area but not hypothalamus. Brain Res 1992; 578:87-93. [PMID: 1511293 DOI: 10.1016/0006-8993(92)90233-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Progestogenic stimulation of both the ventromedial nucleus of the hypothalamus (VMH) and the ventral tegmental area (VTA) is critical for normal receptivity in estrogen-primed hamsters. However, anatomical and biochemical studies have identified very few estrogen-induced progestin receptors in the rodent ventral midbrain. To determine whether progesterone might be working on the membrane of neurons in the VTA, progesterone 3-CMO BSA (P-3-BSA) was applied intracranially. The size of P-3-BSA makes it relatively impermeable to the cell membrane. Ovariectomized hamsters were implanted with 2 chronic cannulae, one aimed at the VMH and the other at the contralateral VTA. These animals were then estrogen-primed and tested for sexual receptivity after progesterone-containing tubes were inserted just dorsal to the VMH and P-3-BSA inserts were applied above the VTA. The following week, the hamsters were tested again with the contents of the inserts reversed. Animals with progestogenic stimulation to the VMH and P-3-BSA to the VTA were receptive yet those with P-3-BSA to the hypothalamus and progesterone to the VTA were not receptive. These data suggest that progesterone is capable of facilitating sexual receptivity within the VTA by actions on the cell membrane. The non-genomic effects in the VTA require concurrent genomic activation by progesterone within the hypothalamus.
Collapse
|
Comparative Study |
33 |
61 |
9
|
Foehring RC, Mermelstein PG, Song WJ, Ulrich S, Surmeier DJ. Unique properties of R-type calcium currents in neocortical and neostriatal neurons. J Neurophysiol 2000; 84:2225-36. [PMID: 11067968 DOI: 10.1152/jn.2000.84.5.2225] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whole cell recordings from acutely dissociated neocortical pyramidal neurons and striatal medium spiny neurons exhibited a calcium-channel current resistant to known blockers of L-, N-, and P/Q-type Ca(2+) channels. These R-type currents were characterized as high-voltage-activated (HVA) by their rapid deactivation kinetics, half-activation and half-inactivation voltages, and sensitivity to depolarized holding potentials. In both cell types, the R-type current activated at potentials relatively negative to other HVA currents in the same cell type and inactivated rapidly compared with the other HVA currents. The main difference between cell types was that R-type currents in neocortical pyramidal neurons inactivated at more negative potentials than R-type currents in medium spiny neurons. Ni(2+) sensitivity was not diagnostic for R-type currents in either cell type. Single-cell RT-PCR revealed that both cell types expressed the alpha1E mRNA, consistent with this subunit being associated with the R-type current.
Collapse
|
|
25 |
60 |
10
|
Frye CA, Mermelstein PG, DeBold JF. Bicuculline infused into the hamster ventral tegmentum inhibits, while sodium valproate facilitates, sexual receptivity. Pharmacol Biochem Behav 1993; 46:1-8. [PMID: 8255899 DOI: 10.1016/0091-3057(93)90308-g] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Progesterone's (P) actions on both the ventral medial nucleus of the hypothalamus (VMH) and the ventral tegmental area (VTA) are essential for sexual receptivity in female hamsters. Evidence suggests that progesterone's actions in the hamster VMH may be genomic while those in the VTA may be mediated nongenomically, via GABAA. Ovariectomized female hamsters were bilaterally implanted with cannulae aimed toward the VTA. One week after surgery, animals were SC injected with 10 micrograms estradiol benzoate (EB) and 40 h later with 200 or 500 micrograms P. At hour 43.5, 50 ng bicuculline, a GABAA antagonist, was infused into each available cannula. Control animals received 0.5 microliter sterile saline vehicle, or no infusion. At hour 44, animals were tested for sexual receptivity in an observation arena with a sexually experienced male. Histology revealed that only animals with bicuculline infused into the VTA had reduced lordosis durations compared to controls. Other animals, primed with EB and 200 micrograms progesterone, showed a facilitation of sexual receptivity after infusion into the VTA of 50 micrograms sodium valproate, a GABAA transaminase inhibitor. These results suggest that GABAA plays a necessary role in the mechanism of progesterone's actions on sexual receptivity in hamster VTA.
Collapse
|
|
32 |
44 |
11
|
Mermelstein PG, Becker JB. Increased extracellular dopamine in the nucleus accumbens and striatum of the female rat during paced copulatory behavior. Behav Neurosci 1995. [PMID: 7619325 DOI: 10.1037//0735-7044.109.2.354] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Five groups of ovariectomized rats were tested during in vivo microdialysis, and concentrations of dopamine (DA) and its metabolites were determined in dialysate. In striatum, DA increased more in hormone-primed ovariectomized female rats pacing copulation than in those engaging in sex that could not pace, those that were hormone primed but tested without a male present, or oil-treated groups (p < .02). Administration of estrogen before microdialysis resulted in enhanced striatal DA in response to a male rat relative to the animals tested without a male (p < .06). Female rats that were pacing sexual behavior also exhibited a greater increase in accumbens DA than did the no-male, estrogen-primed, or oil-treated groups (p < .015). Nonpacing animals displayed a significant decrease in DA from accumbens 30 min after introduction of the male rat (p < .05) but otherwise were not different from pacing animals. Estrogen-treated animals also had an enhanced increase in accumbens DA compared with oil-treated rats (p < .05). These data suggest that DA release in the striatum and accumbens is dependent on the context in which sexual behavior occurs and that estrogen may in part modulate these dopaminergic responses.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
30 |
43 |
12
|
Mermelstein P. Articulatory model for the study of speech production. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 1973; 53:1070-1082. [PMID: 4697807 DOI: 10.1121/1.1913427] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
|
52 |
38 |
13
|
Mermelstein P. Automatic segmentation of speech into syllabic units. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 1975; 58:880-883. [PMID: 1194547 DOI: 10.1121/1.380738] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
|
50 |
38 |
14
|
Abstract
Steroid hormones modulate a wide array of physiological processes including development, metabolism, and reproduction in various species. It is generally believed that these biological effects are predominantly mediated by their binding to specific intracellular receptors resulting in conformational change, dimerization, and recruitment of coregulators for transcription-dependent genomic actions (classical mechanism). In addition, to their cognate ligands, intracellular steroid receptors can also be activated in a "ligand-independent" manner by other factors including neurotransmitters. Recent studies indicate that rapid, nonclassical steroid effects involve extranuclear steroid receptors located at the membrane, which interact with cytoplasmic kinase signaling molecules and G-proteins. The current review deals with various mechanisms that function together in an integrated manner to promote hormone-dependent actions on the central and sympathetic nervous systems.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
36 |
15
|
Mermelstein P. On the relationship between vowel and consonant identification when cued by the same acoustic information. PERCEPTION & PSYCHOPHYSICS 1978; 23:331-6. [PMID: 748856 DOI: 10.3758/bf03199717] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
|
47 |
36 |
16
|
Nisenbaum ES, Mermelstein PG, Wilson CJ, Surmeier DJ. Selective blockade of a slowly inactivating potassium current in striatal neurons by (+/-) 6-chloro-APB hydrobromide (SKF82958). Synapse 1998; 29:213-24. [PMID: 9635891 DOI: 10.1002/(sici)1098-2396(199807)29:3<213::aid-syn3>3.0.co;2-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ion channels of rat striatal neurons are known to be modulated by stimulation of D1 dopamine receptors. The susceptibility of depolarization-activated K+ currents to be modulated by the D1 agonist, 6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetra-hydro-1H-3-benzaze pine (APB) was investigated using whole-cell voltage-clamp recording techniques from acutely isolated neurons. APB (0.01-100 microM) produced a concentration-dependent reduction in the total K+ current. At intermediate concentrations (ca. 10 microM), APB selectively depressed the slowly inactivating A-current (I(As)). A similar effect was produced by application of the D1 agonist, 7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1-H-2-benzazepine (SKF38393, 10 microM). APB reduced I(As) rapidly, having onset and recovery time constants of 1.2 sec and 1.6 sec, respectively. Unexpectedly, the effect of APB could not be mimicked by application of Sp-adenosine 3',5'-cyclic monophosphothioate triethylamine (Sp-cAMPS, 100-200 microM), a membrane-permeable analog of cyclic AMP (cAMP), or by pretreatment with forskolin (25 microM), an activator of adenylyl cyclase. The reduction in I(As) also was not blocked by pretreatment with the D1 receptor antagonist, R(+)-SCH23390 hydrochloride (SCH23390, 10-20 microM). In addition, intracellular dialysis with guanosine-5'-O-(2-thiodiphosphate (GDP-beta-S, 200 microM) did not preclude the APB-induced inhibition of I(As), nor did dialysis with guanosine-5'-O-(3-thiotriphosphate (GTP-gamma-S, 400 microM) prevent reversal of the effect. The effect of APB was produced by a reduction in the maximal conductance of I(As) without changing the voltage-dependence of the current. Collectively, these results argue that APB does not inhibit I(As) through D1 receptors coupled to stimulation of adenylyl cyclase, but rather by allosterically regulating or blocking the channels giving rise to this current.
Collapse
|
|
27 |
33 |
17
|
Bradley KC, Boulware MB, Jiang H, Doerge RW, Meisel RL, Mermelstein PG. Changes in gene expression within the nucleus accumbens and striatum following sexual experience. GENES BRAIN AND BEHAVIOR 2005; 4:31-44. [PMID: 15660666 DOI: 10.1111/j.1601-183x.2004.00093.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Sexual experience, like repeated drug use, produces long-term changes including sensitization in the nucleus accumbens and dorsal striatum. To better understand the molecular mechanisms underlying the neuroadaptations following sexual experience, we employed a DNA microarray approach to identify genes differentially expressed between sexually experienced and sexually naive female hamsters within the nucleus accumbens and dorsal striatum. For 6 weeks, a stimulus male was placed in the home cage of one-half of the hormonally primed, ovariectomized female hamsters. On the seventh week, the two experimental groups were subdivided, with one half paired with a stimulus male. In comparison with sexually naive animals, sexually experienced hamsters receiving a stimulus male on week 7 exhibited an increase in a large number of genes. Conversely, sexually experienced female hamsters not receiving a stimulus male on week 7 exhibited a reduction in the expression of many genes. For directional changes and the categories of genes regulated by the experimental conditions, data were consistent across the nucleus accumbens and dorsal striatum. However, the specific genes exhibiting changes in expression were disparate. These experiments, among the first to profile genes regulated by female sexual behavior, will provide insight into the mechanisms by which both motivated behaviors and drugs of abuse induce long-term changes in the mesolimbic and nigrostriatal dopamine pathways.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
31 |
18
|
Seybold VS, Coicou LG, Groth RD, Mermelstein PG. Substance P initiates NFAT-dependent gene expression in spinal neurons. J Neurochem 2006; 97:397-407. [PMID: 16539671 DOI: 10.1111/j.1471-4159.2006.03744.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Persistent hyperalgesia is associated with increased expression of proteins that contribute to enhanced excitability of spinal neurons, however, little is known about how expression of these proteins is regulated. We tested the hypothesis that Substance P stimulation of neurokinin receptors on spinal neurons activates the transcription factor nuclear factor of activated T cells isoform 4 (NFATc4). The occurrence of NFATc4 in spinal cord was demonstrated with RT-PCR and immunocytochemistry. Substance P activated NFAT-dependent gene transcription in primary cultures of neonatal rat spinal cord transiently transfected with a luciferase DNA reporter construct. The effect of Substance P was mediated by neuronal neurokinin-1 receptors that coupled to activation of protein kinase C, l-type voltage-dependent calcium channels, and calcineurin. Interestingly, Substance P had no effect on cyclic AMP response element (CRE)-dependent gene expression. Conversely, calcitonin gene-related peptide, which activated CRE-dependent gene expression, did not activate NFAT signaling. These data provide evidence that peptides released from primary afferent neurons regulate discrete patterns of gene expression in spinal neurons. Because the release of Substance P and calcitonin gene-related peptide from primary afferent neurons is increased following peripheral injury, these peptides may differentially regulate the expression of proteins that underlie persistent hyperalgesia.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Calcitonin Gene-Related Peptide/pharmacology
- Calcium Channel Blockers/pharmacology
- Cells, Cultured
- Dose-Response Relationship, Drug
- Drug Interactions
- Enzyme Inhibitors/pharmacology
- Gene Expression/drug effects
- Hippocampus/drug effects
- Indoles/pharmacology
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/metabolism
- NFATC Transcription Factors/physiology
- Neurokinin A/pharmacology
- Neurons, Afferent/metabolism
- Nimodipine/pharmacology
- Phorbol 12,13-Dibutyrate/pharmacology
- Quinuclidines/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Neurokinin-1/genetics
- Receptors, Neurokinin-1/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Spinal Cord/cytology
- Spleen/drug effects
- Substance P/agonists
- Substance P/analogs & derivatives
- Substance P/pharmacology
- Tacrolimus/pharmacology
Collapse
|
|
19 |
26 |
19
|
Mermelstein P. Determination of the vocal-tract shape from measured formant frequencies. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 1967; 41:1283-1294. [PMID: 6074791 DOI: 10.1121/1.1910470] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
|
58 |
18 |
20
|
Mermelstein PG, Surmeier DJ. A calcium channel reversibly blocked by omega-conotoxin GVIA lacking the class D alpha 1 subunit. Neuroreport 1997; 8:485-9. [PMID: 9080434 DOI: 10.1097/00001756-199701200-00022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In acutely dissociated rat medium-spiny neostriatal neurons, a substantial fraction (approximately 40%) of the calcium current block by omega-conotoxin-GVIA (CgTx) reverses rapidly with washing. The reversibly blocked current differed in voltage dependence from the current irreversibly blocked by CgTx. To test the hypothesis that the reversibly blocked current was attributable to calcium channels with a class D alpha 1 subunit, acutely isolated neurons were subjected to combined patch clamp/reverse transcription-polymerase chain reaction analysis. These studies revealed no correlation between the reversibility of the CgTx block and the expression of class D alpha 1 subunit mRNA.
Collapse
|
|
28 |
5 |
21
|
Mermelstein P. On the piriform recesses and their acoustic effects. FOLIA PHONIATRICA 1967; 19:388-9. [PMID: 5613635 DOI: 10.1159/000263165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
|
58 |
2 |
22
|
Nakatsui M, Mermelstein P. Subjective speech-to-noise ratio as a measure of speech quality for digital waveform coders. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 1982; 72:1136-1144. [PMID: 7142579 DOI: 10.1121/1.388323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
|
43 |
1 |
23
|
Mermelstein P, Maclean DJ. Computer-assisted measurement system for x-ray films of the vocal tract. JOURNAL OF SPEECH AND HEARING RESEARCH 1973; 16:282-5. [PMID: 4723985 DOI: 10.1044/jshr.1602.282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Measurements on sagittal X rays of the vocal tract may be made directly in terms of the variables of an articulatory model by superimposing a computer-generated vocal-tract outline onto the x-ray image. Previous methods require an operator to trace a pen or pointer coupled to a recording device along the outlines or the projected image. The new system uses two video signals, one derived from a television camera scanning the projected x-ray image, the second from data in a computer display buffer. The computer display is modified through adjustment of control potentiometers assigned to the model variables. Convergence to a match between the two images is found to be a substantially quicker and easier task than manually tracing the image outline.
Collapse
|
|
52 |
1 |
24
|
Mermelstein P. Threshold of degradation for frequency-distributed band-limited noise in continuous speech. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 1982; 72:1368-1373. [PMID: 7175020 DOI: 10.1121/1.388440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Two series of perceptual experiments have been conducted to investigate the level of noise that acts as a threshold of degradation (TOD) when band-limited noise is added to speech such that the noise is either constrained to lie in one subband of the entire speech band or separately introduced into all subbands. In all cases the within-band signal-to-noise ratio is maintained invariant with time to model the encoding of subbands with the aid of adaptive quantizers. Below 1000 Hz, the TOD for 500 Hz wide bands is found to drop with frequency at roughly half the rate of the speech drop. Above 1000 Hz, the TOD for noise in individual subbands in only 10 dB and does not vary significantly with frequency. When noise is introduced simultaneously into all bands, the TOD is some 5 dB lower than when the noise is introduced into one band alone. Additional subdivision of the frequency bands for independent encoding, so as to increase the noise at TOD and thereby reduce the required SNR, is particularly effective at the lower speech frequencies, because it allows one to take advantage of both the rapidly dropping speech spectrum as well as the time incoherence of the speech energy variations within the various bands. The perceptual tolerance appears guided by the extent to which the noise can be masked by the speech energy present. Encoding techniques that take better advantage of this factor are likely to lead to transmission efficiencies while maintaining excellent speech quality.
Collapse
|
|
43 |
|
25
|
Mermelstein PG, Becker JB, Surmeier DJ. Estradiol reduces calcium currents in rat neostriatal neurons via a membrane receptor. J Neurosci 1996; 16:595-604. [PMID: 8551343 PMCID: PMC6578633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Until recently, steroid hormones were believed to act only on cells containing intracellular receptors. However, recent evidence suggests that steroids have specific and rapid effects at the cellular membrane. Using whole-cell patch-clamp techniques, 17 beta-estradiol was found to reduce Ba2+ entry reversibly via Ca2+ channels in acutely dissociated and cultured neostriatal neurons. The effects were sex-specific, i.e., the reduction of Ba2+ currents was greater in neurons taken from female rats. 17 beta-Estradiol primarily targeted L-type currents, and their inhibition was detected reliably within seconds of administration. The maximum reduction by 17 beta-estradiol occurred at picomolar concentrations. 17 beta-Estradiol conjugated to bovine serum albumin also reduced Ba2+ currents, suggesting that the effect occurs at the membrane surface. Dialysis with GTP gamma S prevented reversal of the modulation, suggesting that 17 beta-estradiol acts via G-protein activation. 17 alpha-Estradiol also reduced Ba2+ currents but was significantly less effective than 17 beta-estradiol. Estriol and 4-hydroxyestradiol were found to reduce Ba2+ currents with similar efficacy to 17 beta-estradiol, whereas estrone and 2-methoxyestriol were less effective. Tamoxifen also reduced Ba2+ currents but did not occlude the effect of 17 beta-estradiol. These results suggest that at physiological concentrations, 17 beta-estradiol can have immediate actions on neostriatal neurons via nongenomic signaling pathways.
Collapse
|
other |
29 |
|