1
|
Haynam CA, Wegner PJ, Auerbach JM, Bowers MW, Dixit SN, Erbert GV, Heestand GM, Henesian MA, Hermann MR, Jancaitis KS, Manes KR, Marshall CD, Mehta NC, Menapace J, Moses E, Murray JR, Nostrand MC, Orth CD, Patterson R, Sacks RA, Shaw MJ, Spaeth M, Sutton SB, Williams WH, Widmayer CC, White RK, Yang ST, Van Wonterghem BM. National Ignition Facility laser performance status. APPLIED OPTICS 2007; 46:3276-303. [PMID: 17514286 DOI: 10.1364/ao.46.003276] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The National Ignition Facility (NIF) is the world's largest laser system. It contains a 192 beam neodymium glass laser that is designed to deliver 1.8 MJ at 500 TW at 351 nm in order to achieve energy gain (ignition) in a deuterium-tritium nuclear fusion target. To meet this goal, laser design criteria include the ability to generate pulses of up to 1.8 MJ total energy, with peak power of 500 TW and temporal pulse shapes spanning 2 orders of magnitude at the third harmonic (351 nm or 3omega) of the laser wavelength. The focal-spot fluence distribution of these pulses is carefully controlled, through a combination of special optics in the 1omega (1053 nm) portion of the laser (continuous phase plates), smoothing by spectral dispersion, and the overlapping of multiple beams with orthogonal polarization (polarization smoothing). We report performance qualification tests of the first eight beams of the NIF laser. Measurements are reported at both 1omega and 3omega, both with and without focal-spot conditioning. When scaled to full 192 beam operation, these results demonstrate, to the best of our knowledge for the first time, that the NIF will meet its laser performance design criteria, and that the NIF can simultaneously meet the temporal pulse shaping, focal-spot conditioning, and peak power requirements for two candidate indirect drive ignition designs.
Collapse
|
|
18 |
162 |
2
|
Spaeth ML, Manes KR, Kalantar DH, Miller PE, Heebner JE, Bliss ES, Spec DR, Parham TG, Whitman PK, Wegner PJ, Baisden PA, Menapace JA, Bowers MW, Cohen SJ, Suratwala TI, Di Nicola JM, Newton MA, Adams JJ, Trenholme JB, Finucane RG, Bonanno RE, Rardin DC, Arnold PA, Dixit SN, Erbert GV, Erlandson AC, Fair JE, Feigenbaum E, Gourdin WH, Hawley RA, Honig J, House RK, Jancaitis KS, LaFortune KN, Larson DW, Le Galloudec BJ, Lindl JD, MacGowan BJ, Marshall CD, McCandless KP, McCracken RW, Montesanti RC, Moses EI, Nostrand MC, Pryatel JA, Roberts VS, Rodriguez SB, Rowe AW, Sacks RA, Salmon JT, Shaw MJ, Sommer S, Stolz CJ, Tietbohl GL, Widmayer CC, Zacharias R. Description of the NIF Laser. FUSION SCIENCE AND TECHNOLOGY 2017. [DOI: 10.13182/fst15-144] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
8 |
136 |
3
|
Baisden PA, Atherton LJ, Hawley RA, Land TA, Menapace JA, Miller PE, Runkel MJ, Spaeth ML, Stolz CJ, Suratwala TI, Wegner PJ, Wong LL. Large Optics for the National Ignition Facility. FUSION SCIENCE AND TECHNOLOGY 2017. [DOI: 10.13182/fst15-143] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
8 |
109 |
4
|
Manes KR, Spaeth ML, Adams JJ, Bowers MW, Bude JD, Carr CW, Conder AD, Cross DA, Demos SG, Nicola JMGD, Dixit SN, Feigenbaum E, Finucane RG, Guss GM, Henesian MA, Honig J, Kalantar DH, Kegelmeyer LM, Liao ZM, MacGowan BJ, Matthews MJ, McCandless KP, Mehta NC, Miller PE, Negres RA, Norton MA, Nostrand MC, Orth CD, Sacks RA, Shaw MJ, Siegel LR, Stolz CJ, Suratwala TI, Trenholme JB, Wegner PJ, Whitman PK, Widmayer CC, Yang ST. Damage Mechanisms Avoided or Managed for NIF Large Optics. FUSION SCIENCE AND TECHNOLOGY 2017. [DOI: 10.13182/fst15-139] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
8 |
92 |
5
|
Spaeth ML, Wegner PJ, Suratwala TI, Nostrand MC, Bude JD, Conder AD, Folta JA, Heebner JE, Kegelmeyer LM, MacGowan BJ, Mason DC, Matthews MJ, Whitman PK. Optics Recycle Loop Strategy for NIF Operations above UV Laser-Induced Damage Threshold. FUSION SCIENCE AND TECHNOLOGY 2017. [DOI: 10.13182/fst15-119] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
8 |
87 |
6
|
Moses EI, Lindl JD, Spaeth ML, Patterson RW, Sawicki RH, Atherton LJ, Baisden PA, Lagin LJ, Larson DW, MacGowan BJ, Miller GH, Rardin DC, Roberts VS, Wonterghem BMV, Wegner PJ. Overview: Development of the National Ignition Facility and the Transition to a User Facility for the Ignition Campaign and High Energy Density Scientific Research. FUSION SCIENCE AND TECHNOLOGY 2017. [DOI: 10.13182/fst15-128] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
8 |
61 |
7
|
Dixit SN, Thomas IM, Woods BW, Morgan AJ, Henesian MA, Wegner PJ, Powell HT. Random phase plates for beam smoothing on the Nova laser. APPLIED OPTICS 1993; 32:2543-2554. [PMID: 20820416 DOI: 10.1364/ao.32.002543] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We discuss the design and fabrication of 80-cm-diameter random phase plates for target-plane beam smoothing on the Nova laser. Random phase plates have been used in a variety of inertial confinement fusion target experiments, such as studying direct-drive hydrodynamic stability and producing spatially smooth x-ray backlighting sources. These phase plates were produced by using a novel sol-gel dip-coating technique developed by us. The sol-gel phase plates have a high optical damage threshold at the second- and third-harmonic wavelengths of the Nd:glass laser and have excellent optical performance.
Collapse
|
|
32 |
23 |
8
|
Dixit SN, Munro D, Murray JR, Nostrand M, Wegner PJ, Froula D, Haynam CA, MacGowan BJ. Polarization smoothing on the national ignition facility. ACTA ACUST UNITED AC 2006. [DOI: 10.1051/jp4:2006133145] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
|
19 |
16 |
9
|
Montesanti RC, Alger ET, Atherton LJ, Bhandarkar SD, Castro C, Dzenitis EG, Edwards GJ, Hamza AV, Klingmann JL, Lord DM, Nikroo A, Parham TG, Reynolds JL, Seugling RM, Stadermann M, Swisher MF, Taylor JS, Wegner PJ. Lessons from Building Laser-Driven Fusion Ignition Targets with the Precision Robotic Assembly Machine. FUSION SCIENCE AND TECHNOLOGY 2017. [DOI: 10.13182/fst10-3713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
8 |
11 |
10
|
Haynam CA, Sacks RA, Wegner PJ, Bowers MW, Dixit SN, Erbert GV, Heestand GM, Henesian MA, Hermann MR, Jancaitis KS, Manes KR, Marshall CD, Mehta NC, Menapace J, Nostrand MC, Orth CD, Shaw MJ, Sutton SB, Williams WH, Widmayer CC, White RK, Yang ST, Wonterghem BMV. The National Ignition Facility 2007 laser performance status. ACTA ACUST UNITED AC 2008. [DOI: 10.1088/1742-6596/112/3/032004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
17 |
11 |
11
|
Auerbach JM, Wegner PJ, Couture SA, Eimerl D, Hibbard RL, Milam D, Norton MA, Whitman PK, Hackel LA. Modeling of frequency doubling and tripling with measured crystal spatial refractive-index nonuniformities. APPLIED OPTICS 2001; 40:1404-1411. [PMID: 18357129 DOI: 10.1364/ao.40.001404] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Efficient frequency doubling and tripling are critical to the successful operation of inertial confinement fusion laser systems such as the National Ignition Facility currently being constructed at the Lawrence Livermore National Laboratory and the Omega laser at the Laboratory for Laser Energetics. High-frequency conversion efficiency is strongly dependent on attainment of the phase-matching condition. In an ideal converter crystal, one can obtain the phase-matching condition throughout by angle tuning or temperature tuning of the crystal as a whole. In real crystals, imperfections in the crystal structure prohibit the attainment of phase matching at all locations in the crystal. We have modeled frequency doubling and tripling with a quantitative measure of this departure from phase matching in real crystals. This measure is obtained from interferometry of KDP and KD*P crystals at two orthogonal light polarizations.
Collapse
|
|
24 |
11 |
12
|
Glenzer SH, MacGowan BJ, Meezan NB, Adams PA, Alfonso JB, Alger ET, Alherz Z, Alvarez LF, Alvarez SS, Amick PV, Andersson KS, Andrews SD, Antonini GJ, Arnold PA, Atkinson DP, Auyang L, Azevedo SG, Balaoing BNM, Baltz JA, Barbosa F, Bardsley GW, Barker DA, Barnes AI, Baron A, Beeler RG, Beeman BV, Belk LR, Bell JC, Bell PM, Berger RL, Bergonia MA, Bernardez LJ, Berzins LV, Bettenhausen RC, Bezerides L, Bhandarkar SD, Bishop CL, Bond EJ, Bopp DR, Borgman JA, Bower JR, Bowers GA, Bowers MW, Boyle DT, Bradley DK, Bragg JL, Braucht J, Brinkerhoff DL, Browning DF, Brunton GK, Burkhart SC, Burns SR, Burns KE, Burr B, Burrows LM, Butlin RK, Cahayag NJ, Callahan DA, Cardinale PS, Carey RW, Carlson JW, Casey AD, Castro C, Celeste JR, Chakicherla AY, Chambers FW, Chan C, Chandrasekaran H, Chang C, Chapman RF, Charron K, Chen Y, Christensen MJ, Churby AJ, Clancy TJ, Cline BD, Clowdus LC, Cocherell DG, Coffield FE, Cohen SJ, Costa RL, Cox JR, Curnow GM, Dailey MJ, Danforth PM, Darbee R, Datte PS, Davis JA, Deis GA, Demaret RD, Dewald EL, Di Nicola P, Di Nicola JM, Divol L, Dixit S, Dobson DB, Doppner T, Driscoll JD, Dugorepec J, Duncan JJ, et alGlenzer SH, MacGowan BJ, Meezan NB, Adams PA, Alfonso JB, Alger ET, Alherz Z, Alvarez LF, Alvarez SS, Amick PV, Andersson KS, Andrews SD, Antonini GJ, Arnold PA, Atkinson DP, Auyang L, Azevedo SG, Balaoing BNM, Baltz JA, Barbosa F, Bardsley GW, Barker DA, Barnes AI, Baron A, Beeler RG, Beeman BV, Belk LR, Bell JC, Bell PM, Berger RL, Bergonia MA, Bernardez LJ, Berzins LV, Bettenhausen RC, Bezerides L, Bhandarkar SD, Bishop CL, Bond EJ, Bopp DR, Borgman JA, Bower JR, Bowers GA, Bowers MW, Boyle DT, Bradley DK, Bragg JL, Braucht J, Brinkerhoff DL, Browning DF, Brunton GK, Burkhart SC, Burns SR, Burns KE, Burr B, Burrows LM, Butlin RK, Cahayag NJ, Callahan DA, Cardinale PS, Carey RW, Carlson JW, Casey AD, Castro C, Celeste JR, Chakicherla AY, Chambers FW, Chan C, Chandrasekaran H, Chang C, Chapman RF, Charron K, Chen Y, Christensen MJ, Churby AJ, Clancy TJ, Cline BD, Clowdus LC, Cocherell DG, Coffield FE, Cohen SJ, Costa RL, Cox JR, Curnow GM, Dailey MJ, Danforth PM, Darbee R, Datte PS, Davis JA, Deis GA, Demaret RD, Dewald EL, Di Nicola P, Di Nicola JM, Divol L, Dixit S, Dobson DB, Doppner T, Driscoll JD, Dugorepec J, Duncan JJ, Dupuy PC, Dzenitis EG, Eckart MJ, Edson SL, Edwards GJ, Edwards MJ, Edwards OD, Edwards PW, Ellefson JC, Ellerbee CH, Erbert GV, Estes CM, Fabyan WJ, Fallejo RN, Fedorov M, Felker B, Fink JT, Finney MD, Finnie LF, Fischer MJ, Fisher JM, Fishler BT, Florio JW, Forsman A, Foxworthy CB, Franks RM, Frazier T, Frieder G, Fung T, Gawinski GN, Gibson CR, Giraldez E, Glenn SM, Golick BP, Gonzales H, Gonzales SA, Gonzalez MJ, Griffin KL, Grippen J, Gross SM, Gschweng PH, Gururangan G, Gu K, Haan SW, Hahn SR, Haid BJ, Hamblen JE, Hammel BA, Hamza AV, Hardy DL, Hart DR, Hartley RG, Haynam CA, Heestand GM, Hermann MR, Hermes GL, Hey DS, Hibbard RL, Hicks DG, Hinkel DE, Hipple DL, Hitchcock JD, Hodtwalker DL, Holder JP, Hollis JD, Holtmeier GM, Huber SR, Huey AW, Hulsey DN, Hunter SL, Huppler TR, Hutton MS, Izumi N, Jackson JL, Jackson MA, Jancaitis KS, Jedlovec DR, Johnson B, Johnson MC, Johnson T, Johnston MP, Jones OS, Kalantar DH, Kamperschroer JH, Kauffman RL, Keating GA, Kegelmeyer LM, Kenitzer SL, Kimbrough JR, King K, Kirkwood RK, Klingmann JL, Knittel KM, Kohut TR, Koka KG, Kramer SW, Krammen JE, Krauter KG, Krauter GW, Krieger EK, Kroll JJ, La Fortune KN, Lagin LJ, Lakamsani VK, Landen OL, Lane SW, Langdon AB, Langer SH, Lao N, Larson DW, Latray D, Lau GT, Le Pape S, Lechleiter BL, Lee Y, Lee TL, Li J, Liebman JA, Lindl JD, Locke SF, Loey HK, London RA, Lopez FJ, Lord DM, Lowe-Webb RR, Lown JG, Ludwigsen AP, Lum NW, Lyons RR, Ma T, MacKinnon AJ, Magat MD, Maloy DT, Malsbury TN, Markham G, Marquez RM, Marsh AA, Marshall CD, Marshall SR, Maslennikov IL, Mathisen DG, Mauger GJ, Mauvais MY, McBride JA, McCarville T, McCloud JB, McGrew A, McHale B, MacPhee AG, Meeker JF, Merill JS, Mertens EP, Michel PA, Miller MG, Mills T, Milovich JL, Miramontes R, Montesanti RC, Montoya MM, Moody J, Moody JD, Moreno KA, Morris J, Morriston KM, Nelson JR, Neto M, Neumann JD, Ng E, Ngo QM, Olejniczak BL, Olson RE, Orsi NL, Owens MW, Padilla EH, Pannell TM, Parham TG, Patterson RW, Pavel G, Prasad RR, Pendlton D, Penko FA, Pepmeier BL, Petersen DE, Phillips TW, Pigg D, Piston KW, Pletcher KD, Powell CL, Radousky HB, Raimondi BS, Ralph JE, Rampke RL, Reed RK, Reid WA, Rekow VV, Reynolds JL, Rhodes JJ, Richardson MJ, Rinnert RJ, Riordan BP, Rivenes AS, Rivera AT, Roberts CJ, Robinson JA, Robinson RB, Robison SR, Rodriguez OR, Rogers SP, Rosen MD, Ross GF, Runkel M, Runtal AS, Sacks RA, Sailors SF, Salmon JT, Salmonson JD, Saunders RL, Schaffer JR, Schindler TM, Schmitt MJ, Schneider MB, Segraves KS, Shaw MJ, Sheldrick ME, Shelton RT, Shiflett MK, Shiromizu SJ, Shor M, Silva LL, Silva SA, Skulina KM, Smauley DA, Smith BE, Smith LK, Solomon AL, Sommer S, Soto JG, Spafford NI, Speck DE, Springer PT, Stadermann M, Stanley F, Stone TG, Stout EA, Stratton PL, Strausser RJ, Suter LJ, Sweet W, Swisher MF, Tappero JD, Tassano JB, Taylor JS, Tekle EA, Thai C, Thomas CA, Thomas A, Throop AL, Tietbohl GL, Tillman JM, Town RPJ, Townsend SL, Tribbey KL, Trummer D, Truong J, Vaher J, Valadez M, Van Arsdall P, Van Prooyen AJ, Vergel de Dios EO, Vergino MD, Vernon SP, Vickers JL, Villanueva GT, Vitalich MA, Vonhof SA, Wade FE, Wallace RJ, Warren CT, Warrick AL, Watkins J, Weaver S, Wegner PJ, Weingart MA, Wen J, White KS, Whitman PK, Widmann K, Widmayer CC, Wilhelmsen K, Williams EA, Williams WH, Willis L, Wilson EF, Wilson BA, Witte MC, Work K, Yang PS, Young BK, Youngblood KP, Zacharias RA, Zaleski T, Zapata PG, Zhang H, Zielinski JS, Kline JL, Kyrala GA, Niemann C, Kilkenny JD, Nikroo A, Van Wonterghem BM, Atherton LJ, Moses EI. Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums. PHYSICAL REVIEW LETTERS 2011; 106:085004. [PMID: 21405580 DOI: 10.1103/physrevlett.106.085004] [Show More Authors] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Indexed: 05/30/2023]
Abstract
We demonstrate the hohlraum radiation temperature and symmetry required for ignition-scale inertial confinement fusion capsule implosions. Cryogenic gas-filled hohlraums with 2.2 mm-diameter capsules are heated with unprecedented laser energies of 1.2 MJ delivered by 192 ultraviolet laser beams on the National Ignition Facility. Laser backscatter measurements show that these hohlraums absorb 87% to 91% of the incident laser power resulting in peak radiation temperatures of T(RAD)=300 eV and a symmetric implosion to a 100 μm diameter hot core.
Collapse
|
|
14 |
9 |
13
|
Wegner PJ, Henesian MA, Speck DR, Bibeau C, Ehrlich RB, Laumann CW, Lawson JK, Weiland TL. Harmonic conversion of large-aperture 1.05-microm laser beams for inertial-confinement fusion research. APPLIED OPTICS 1992; 31:6414-6426. [PMID: 20733856 DOI: 10.1364/ao.31.006414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
To provide high-energy, high-power beams at short wavelengths for inertial-confinement fusion experiments, we routinely convert the 1.05-microm output of the Nova, Nd:phosphate-glass, laser system to its second- or third-harmonic wavelength. We describe the design and performance of the 3 x 3 arrays of potassium dihydrogen phosphate crystal plates used for type-II-type-II phase-matched harmonic conversion of the Nova 0.74-m diameter beams. We also describe an alternate type-I-type-II phasematching configuration that improves third-harmonic conversion efficiency. These arrays provide conversion of a Nova beam of up to 75% to the second harmonic and of up to 70% to the third harmonic.
Collapse
|
|
33 |
6 |
14
|
Bibeau C, Speck DR, Ehrlich RB, Laumann CW, Kyrazis DT, Henesian MA, Lawson JK, Perry MD, Wegner PJ, Weiland TL. Power, energy, and temporal performance of the Nova laser facility with recent improvements to the amplifier system. APPLIED OPTICS 1992; 31:5799-5809. [PMID: 20733769 DOI: 10.1364/ao.31.005799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
High-powered glass-laser systems with multiple beams, frequency-conversion capabilities, and pulseshaping flexibility have made numerous contributions to the understanding of inertial confinement fusion and related laser-plasma interactions. The Nova laser at Lawrence Livermore National Laboratory is the largest such laser facility. We have made improvements to the Nova amplifier system that permit increased power and energy output. We summarize the nonlinear effects that now limit Nova's performance and discuss power and energy produced at 1.05-, 0.53-, and 0.35-microm wavelengths, including the results with pulses temporally shaped to improve inertial confinement fusion target performance.
Collapse
|
|
33 |
3 |
15
|
Mackinnon AJ, Kline JL, Dixit SN, Glenzer SH, Edwards MJ, Callahan DA, Meezan NB, Haan SW, Kilkenny JD, Döppner T, Farley DR, Moody JD, Ralph JE, MacGowan BJ, Landen OL, Robey HF, Boehly TR, Celliers PM, Eggert JH, Krauter K, Frieders G, Ross GF, Hicks DG, Olson RE, Weber SV, Spears BK, Salmonsen JD, Michel P, Divol L, Hammel B, Thomas CA, Clark DS, Jones OS, Springer PT, Cerjan CJ, Collins GW, Glebov VY, Knauer JP, Sangster C, Stoeckl C, McKenty P, McNaney JM, Leeper RJ, Ruiz CL, Cooper GW, Nelson AG, Chandler GGA, Hahn KD, Moran MJ, Schneider MB, Palmer NE, Bionta RM, Hartouni EP, LePape S, Patel PK, Izumi N, Tommasini R, Bond EJ, Caggiano JA, Hatarik R, Grim GP, Merrill FE, Fittinghoff DN, Guler N, Drury O, Wilson DC, Herrmann HW, Stoeffl W, Casey DT, Johnson MG, Frenje JA, Petrasso RD, Zylestra A, Rinderknecht H, Kalantar DH, Dzenitis JM, Di Nicola P, Eder DC, Courdin WH, Gururangan G, Burkhart SC, Friedrich S, Blueuel DL, Bernstein LA, Eckart MJ, Munro DH, Hatchett SP, Macphee AG, Edgell DH, Bradley DK, Bell PM, Glenn SM, Simanovskaia N, Barrios MA, Benedetti R, Kyrala GA, Town RPJ, Dewald EL, Milovich JL, Widmann K, et alMackinnon AJ, Kline JL, Dixit SN, Glenzer SH, Edwards MJ, Callahan DA, Meezan NB, Haan SW, Kilkenny JD, Döppner T, Farley DR, Moody JD, Ralph JE, MacGowan BJ, Landen OL, Robey HF, Boehly TR, Celliers PM, Eggert JH, Krauter K, Frieders G, Ross GF, Hicks DG, Olson RE, Weber SV, Spears BK, Salmonsen JD, Michel P, Divol L, Hammel B, Thomas CA, Clark DS, Jones OS, Springer PT, Cerjan CJ, Collins GW, Glebov VY, Knauer JP, Sangster C, Stoeckl C, McKenty P, McNaney JM, Leeper RJ, Ruiz CL, Cooper GW, Nelson AG, Chandler GGA, Hahn KD, Moran MJ, Schneider MB, Palmer NE, Bionta RM, Hartouni EP, LePape S, Patel PK, Izumi N, Tommasini R, Bond EJ, Caggiano JA, Hatarik R, Grim GP, Merrill FE, Fittinghoff DN, Guler N, Drury O, Wilson DC, Herrmann HW, Stoeffl W, Casey DT, Johnson MG, Frenje JA, Petrasso RD, Zylestra A, Rinderknecht H, Kalantar DH, Dzenitis JM, Di Nicola P, Eder DC, Courdin WH, Gururangan G, Burkhart SC, Friedrich S, Blueuel DL, Bernstein LA, Eckart MJ, Munro DH, Hatchett SP, Macphee AG, Edgell DH, Bradley DK, Bell PM, Glenn SM, Simanovskaia N, Barrios MA, Benedetti R, Kyrala GA, Town RPJ, Dewald EL, Milovich JL, Widmann K, Moore AS, LaCaille G, Regan SP, Suter LJ, Felker B, Ashabranner RC, Jackson MC, Prasad R, Richardson MJ, Kohut TR, Datte PS, Krauter GW, Klingman JJ, Burr RF, Land TA, Hermann MR, Latray DA, Saunders RL, Weaver S, Cohen SJ, Berzins L, Brass SG, Palma ES, Lowe-Webb RR, McHalle GN, Arnold PA, Lagin LJ, Marshall CD, Brunton GK, Mathisen DG, Wood RD, Cox JR, Ehrlich RB, Knittel KM, Bowers MW, Zacharias RA, Young BK, Holder JP, Kimbrough JR, Ma T, La Fortune KN, Widmayer CC, Shaw MJ, Erbert GV, Jancaitis KS, DiNicola JM, Orth C, Heestand G, Kirkwood R, Haynam C, Wegner PJ, Whitman PK, Hamza A, Dzenitis EG, Wallace RJ, Bhandarkar SD, Parham TG, Dylla-Spears R, Mapoles ER, Kozioziemski BJ, Sater JD, Walters CF, Haid BJ, Fair J, Nikroo A, Giraldez E, Moreno K, Vanwonterghem B, Kauffman RL, Batha S, Larson DW, Fortner RJ, Schneider DH, Lindl JD, Patterson RW, Atherton LJ, Moses EI. Assembly of high-areal-density deuterium-tritium fuel from indirectly driven cryogenic implosions. PHYSICAL REVIEW LETTERS 2012; 108:215005. [PMID: 23003274 DOI: 10.1103/physrevlett.108.215005] [Show More Authors] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Indexed: 06/01/2023]
Abstract
The National Ignition Facility has been used to compress deuterium-tritium to an average areal density of ~1.0±0.1 g cm(-2), which is 67% of the ignition requirement. These conditions were obtained using 192 laser beams with total energy of 1-1.6 MJ and peak power up to 420 TW to create a hohlraum drive with a shaped power profile, peaking at a soft x-ray radiation temperature of 275-300 eV. This pulse delivered a series of shocks that compressed a capsule containing cryogenic deuterium-tritium to a radius of 25-35 μm. Neutron images of the implosion were used to estimate a fuel density of 500-800 g cm(-3).
Collapse
|
|
13 |
3 |
16
|
Glendinning SG, Weber SV, Bell P, DaSilva LB, Dixit SN, Henesian MA, Kania DR, Kilkenny JD, Powell HT, Wallace RJ, Wegner PJ, Knauer JP, Verdon CP. Laser-driven planar Rayleigh-Taylor instability experiments. PHYSICAL REVIEW LETTERS 1992; 69:1201-1204. [PMID: 10047153 DOI: 10.1103/physrevlett.69.1201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
|
33 |
3 |
17
|
Dewald EL, Suter LJ, Landen OL, Holder JP, Schein J, Lee FD, Campbell KM, Weber FA, Pellinen DG, Schneider MB, Celeste JR, McDonald JW, Foster JM, Niemann C, Mackinnon AJ, Glenzer SH, Young BK, Haynam CA, Shaw MJ, Turner RE, Froula D, Kauffman RL, Thomas BR, Atherton LJ, Bonanno RE, Dixit SN, Eder DC, Holtmeier G, Kalantar DH, Koniges AE, Macgowan BJ, Manes KR, Munro DH, Murray JR, Parham TG, Piston K, Van Wonterghem BM, Wallace RJ, Wegner PJ, Whitman PK, Hammel BA, Moses EI. Radiation-driven hydrodynamics of high- hohlraums on the national ignition facility. PHYSICAL REVIEW LETTERS 2005; 95:215004. [PMID: 16384150 DOI: 10.1103/physrevlett.95.215004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Indexed: 05/05/2023]
Abstract
The first hohlraum experiments on the National Ignition Facility (NIF) using the initial four laser beams tested radiation temperature limits imposed by plasma filling. For a variety of hohlraum sizes and pulse lengths, the measured x-ray flux shows signatures of filling that coincide with hard x-ray emission from plasma streaming out of the hohlraum. These observations agree with hydrodynamic simulations and with an analytical model that includes hydrodynamic and coronal radiative losses. The modeling predicts radiation temperature limits with full NIF (1.8 MJ), greater, and of longer duration than required for ignition hohlraums.
Collapse
|
|
20 |
1 |
18
|
Heestand GM, Haynam CA, Wegner PJ, Bowers MW, Dixit SN, Erbert GV, Henesian MA, Hermann MR, Jancaitis KS, Knittel K, Kohut T, Lindl JD, Manes KR, Marshall CD, Mehta NC, Menapace J, Moses E, Murray JR, Nostrand MC, Orth CD, Patterson R, Sacks RA, Saunders R, Shaw MJ, Spaeth M, Sutton SB, Williams WH, Widmayer CC, White RK, Whitman PK, Yang ST, Van Wonterghem BM. Demonstration of high-energy 2 omega (526.5 nm) operation on the National Ignition Facility Laser System. APPLIED OPTICS 2008; 47:3494-3499. [PMID: 18594596 DOI: 10.1364/ao.47.003494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A single beamline of the National Ignition Facility (NIF) has been operated at a wavelength of 526.5 nm (2 omega) by frequency converting the fundamental 1053 nm (1 omega) wavelength with an 18.2 mm thick type-I potassium dihydrogen phosphate (KDP) second-harmonic generator (SHG) crystal. Second-harmonic energies of up to 17.9 kJ were measured at the final optics focal plane with a conversion efficiency of 82%. For a similarly configured 192-beam NIF, this scales to a total 2 omega energy of 3.4 MJ full NIF equivalent (FNE).
Collapse
|
|
17 |
1 |
19
|
Wegner PJ, Feit MD. High-power narrow-band pulses with wavelengths tunable about 1.053 µm from a synchronously pumped optical parametric oscillator. APPLIED OPTICS 1996; 35:890-902. [PMID: 21069085 DOI: 10.1364/ao.35.000890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We have constructed an optical parametric oscillator to generate 75-ps near-transform-limited pulses with wavelengths tunable about 1.053 µm for use in pump-probe studies of self-focusing. The singly resonant oscillator uses a Brewster-cut LiB(3)O(5) crystal that is oriented for type-II phase matching and synchronously pumped by the amplified and frequency-tripled pulse trains from a mode-locked and Q-switched Nd:YLP laser. An intracavity Pockels cell is used to switch out single 0.5-MW pulses at rates of 1 to 10 Hz. The design, construction, and performance of the oscillator are discussed. Measured performance is compared with design predictions and with detailed numerical simulations.
Collapse
|
|
29 |
|