1
|
Molla A, Korneyeva M, Gao Q, Vasavanonda S, Schipper PJ, Mo HM, Markowitz M, Chernyavskiy T, Niu P, Lyons N, Hsu A, Granneman GR, Ho DD, Boucher CA, Leonard JM, Norbeck DW, Kempf DJ. Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. Nat Med 1996; 2:760-6. [PMID: 8673921 DOI: 10.1038/nm0796-760] [Citation(s) in RCA: 537] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Analysis of the HIV protease gene from the plasma of HIV-infected patients revealed substitutions at nine different codons selected in response to monotherapy with the protease inhibitor ritonavir. Mutants at valine-82, although insufficient to confer resistance, appeared first in most patients. Significant phenotypic resistance required multiple mutations in HIV protease, which emerged subsequently in an ordered, stepwise fashion. The appearance of resistance mutations was delayed in patients with higher plasma levels of ritonavir. Early mutants retained susceptibility to structurally diverse protease inhibitors, suggesting that dual protease inhibitor therapy might increase the duration of viral suppression.
Collapse
|
|
29 |
537 |
2
|
Sham HL, Kempf DJ, Molla A, Marsh KC, Kumar GN, Chen CM, Kati W, Stewart K, Lal R, Hsu A, Betebenner D, Korneyeva M, Vasavanonda S, McDonald E, Saldivar A, Wideburg N, Chen X, Niu P, Park C, Jayanti V, Grabowski B, Granneman GR, Sun E, Japour AJ, Leonard JM, Plattner JJ, Norbeck DW. ABT-378, a highly potent inhibitor of the human immunodeficiency virus protease. Antimicrob Agents Chemother 1998; 42:3218-24. [PMID: 9835517 PMCID: PMC106025 DOI: 10.1128/aac.42.12.3218] [Citation(s) in RCA: 334] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/1998] [Accepted: 09/11/1998] [Indexed: 11/20/2022] Open
Abstract
The valine at position 82 (Val 82) in the active site of the human immunodeficiency virus (HIV) protease mutates in response to therapy with the protease inhibitor ritonavir. By using the X-ray crystal structure of the complex of HIV protease and ritonavir, the potent protease inhibitor ABT-378, which has a diminished interaction with Val 82, was designed. ABT-378 potently inhibited wild-type and mutant HIV protease (Ki = 1.3 to 3.6 pM), blocked the replication of laboratory and clinical strains of HIV type 1 (50% effective concentration [EC50], 0.006 to 0.017 microM), and maintained high potency against mutant HIV selected by ritonavir in vivo (EC50, 50-fold after 8 h. In healthy human volunteers, coadministration of a single 400-mg dose of ABT-378 with 50 mg of ritonavir enhanced the area under the concentration curve of ABT-378 in plasma by 77-fold over that observed after dosing with ABT-378 alone, and mean concentrations of ABT-378 exceeded the EC50 for >24 h. These results demonstrate the potential utility of ABT-378 as a therapeutic intervention against AIDS.
Collapse
|
Clinical Trial |
27 |
334 |
3
|
Bookstein C, DePaoli AM, Xie Y, Niu P, Musch MW, Rao MC, Chang EB. Na+/H+ exchangers, NHE-1 and NHE-3, of rat intestine. Expression and localization. J Clin Invest 1994; 93:106-13. [PMID: 8282777 PMCID: PMC293742 DOI: 10.1172/jci116933] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Na-H exchange (NHE) is one of the major non-nutritive Na absorptive pathways of the intestine and kidney. Of the four NHE isoforms that have been cloned, only one, NHE-3, appears to be epithelial specific. We have examined the regional and cellular expression of NHE-3 in the rat intestine. NHE-3 message in the small intestine was more abundant in the villus fractions of the small intestine than in the crypts. Analysis of NHE-3 mRNA distribution in the gut by in situ hybridization demonstrated epithelial cell specificity, as well as expression preferential to villus cells. NHE-1 message, in contrast, was ubiquitous, with slightly greater expression exhibited in the differentiating crypt and lower villus cells of the small intestine. Isoform-specific NHE-3 fusion protein antibody identified a 97-kD membrane protein in the upper villus cells of the small intestine, which was exclusively localized in the apical membrane. In contrast, antibody previously developed against the COOH-terminal region of human NHE-1 (McSwine, R. L., G. Babnigg, M. W. Musch, E. B. Chang, and M. L. Villereal, manuscript submitted for publication) identified a 110-kD basolateral membrane protein. These data suggest that unlike NHE-1, which probably serves a "housekeeping" function, NHE-3 may be involved in vectorial Na transport by the intestine.
Collapse
|
research-article |
31 |
162 |
4
|
Hsu A, Granneman GR, Witt G, Locke C, Denissen J, Molla A, Valdes J, Smith J, Erdman K, Lyons N, Niu P, Decourt JP, Fourtillan JB, Girault J, Leonard JM. Multiple-dose pharmacokinetics of ritonavir in human immunodeficiency virus-infected subjects. Antimicrob Agents Chemother 1997; 41:898-905. [PMID: 9145841 PMCID: PMC163822 DOI: 10.1128/aac.41.5.898] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The multiple-dose pharmacokinetics of ritonavir were investigated in four groups of human immunodeficiency virus-positive male subjects (with 16 subjects per group) under nonfasting conditions; a 3:1 ritonavir:placebo ratio was used. Ritonavir was given at 200 (group I), 300 (group II), 400 (group III), or 500 (group IV) mg every 12 h for 2 weeks. The multiple-dose pharmacokinetics of ritonavir were moderately dose dependent, with the clearance for group IV (6.8 +/- 2.7 liters/h) being an average of 32% lower than that for group I (10.0 +/- 3.2 liters/h). First-pass metabolism should be minimal for ritonavir. The functional half-life, estimated from peak and trough concentrations, were similar among the dosage groups, averaging 3.1 and 5.7 h after the morning and evening doses, respectively. The area under the concentration-time curve at 24 h (AUC24) and apparent terminal-phase elimination rate constant remained relatively time invariant, but predose concentrations decreased 30 to 70% over time. Concentration-dependent autoinduction is the most likely mechanism for the time-dependent pharmacokinetics. The Km and initial maximum rate of metabolism (Vmax) values estimated from population pharmacokinetic modeling (nonlinear mixed-effects models) were 3.43 microg/ml and 46.9 mg/h, respectively. The group IV Vmax increased to 68 mg/h after 2 weeks. The maximum concentration of ritonavir in serum (Cmax) and AUC after the evening doses were an average of 30 to 40% lower than the values after the morning doses, while the concentration at 12 h was an average of 32% lower than the predose concentration, probably due to protracted absorption. Less than 2% of the dose was eliminated unchanged in the urine. Triglyceride levels increased from the levels at the baseline, and the levels were correlated with baseline triglyceride levels and AUC, Cmax, or predose concentrations.
Collapse
|
research-article |
28 |
151 |
5
|
Uozumi H, Hiroi Y, Zou Y, Takimoto E, Toko H, Niu P, Shimoyama M, Yazaki Y, Nagai R, Komuro I. gp130 plays a critical role in pressure overload-induced cardiac hypertrophy. J Biol Chem 2001; 276:23115-9. [PMID: 11262406 DOI: 10.1074/jbc.m100814200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
gp130, a common receptor for the interleukin 6 family, plays pivotal roles in growth and survival of cardiac myocytes. In the present study, we examined the role of gp130 in pressure overload-induced cardiac hypertrophy using transgenic (TG) mice, which express a dominant negative mutant of gp130 in the heart under the control of alpha myosin heavy chain promoter. TG mice were apparently healthy and fertile. There were no differences in body weight and heart weight between TG mice and littermate wild type (WT) mice. Pressure overload-induced increases in the heart weight/body weight ratio, ventricular wall thickness, and cross-sectional areas of cardiac myocytes were significantly smaller in TG mice than in WT mice. Northern blot analysis revealed that pressure overload-induced up-regulation of brain natriuretic factor gene and down-regulation of sarcoplasmic reticulum Ca(2+) ATPase 2 gene were attenuated in TG mice. Pressure overload activated ERKs and STAT3 in the heart of WT mice, whereas pressure overload-induced activation of STAT3, but not of ERKs, was suppressed in TG mice. These results suggest that gp130 plays a critical role in pressure overload-induced cardiac hypertrophy possibly through the STAT3 pathway.
Collapse
|
|
24 |
67 |
6
|
Fox JE, Cornette J, Deleuze G, Dyson W, Giersak C, Niu P, Zapata J, McChesney J. The formation, isolation, and biological activity of a cytokinin 7-glucoside. PLANT PHYSIOLOGY 1973; 52:627-32. [PMID: 16658619 PMCID: PMC366560 DOI: 10.1104/pp.52.6.627] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The cytokinin, 6-benzylaminopurine, is converted to its 7-glucoside in intact seedlings, organ slices, and tissue cultures from several plants. The ribonucleoside and 5'-ribonucleotide appear transiently, and the general metabolic sequence seems to be nearly identical in the four plant species thus far studied. The glucoside persists for long periods in plant tissues, while all other forms of the cytokinin are rapidly metabolized and disappear within a few hours. A procedure for the isolation in pure form of the glucoside is described.
Collapse
|
research-article |
52 |
34 |
7
|
Staplin N, Haynes R, Judge PK, Wanner C, Green JB, Emberson J, Preiss D, Mayne KJ, Ng SYA, Sammons E, Zhu D, Hill M, Stevens W, Wallendszus K, Brenner S, Cheung AK, Liu ZH, Li J, Hooi LS, Liu WJ, Kadowaki T, Nangaku M, Levin A, Cherney D, Maggioni AP, Pontremoli R, Deo R, Goto S, Rossello X, Tuttle KR, Steubl D, Petrini M, Seidi S, Landray MJ, Baigent C, Herrington WG, Abat S, Abd Rahman R, Abdul Cader R, Abdul Hafidz MI, Abdul Wahab MZ, Abdullah NK, Abdul-Samad T, Abe M, Abraham N, Acheampong S, Achiri P, Acosta JA, Adeleke A, Adell V, Adewuyi-Dalton R, Adnan N, Africano A, Agharazii M, Aguilar F, Aguilera A, Ahmad M, Ahmad MK, Ahmad NA, Ahmad NH, Ahmad NI, Ahmad Miswan N, Ahmad Rosdi H, Ahmed I, Ahmed S, Ahmed S, Aiello J, Aitken A, AitSadi R, Aker S, Akimoto S, Akinfolarin A, Akram S, Alberici F, Albert C, Aldrich L, Alegata M, Alexander L, Alfaress S, Alhadj Ali M, Ali A, Ali A, Alicic R, Aliu A, Almaraz R, Almasarwah R, Almeida J, Aloisi A, Al-Rabadi L, Alscher D, Alvarez P, Al-Zeer B, Amat M, Ambrose C, Ammar H, An Y, Andriaccio L, Ansu K, Apostolidi A, Arai N, et alStaplin N, Haynes R, Judge PK, Wanner C, Green JB, Emberson J, Preiss D, Mayne KJ, Ng SYA, Sammons E, Zhu D, Hill M, Stevens W, Wallendszus K, Brenner S, Cheung AK, Liu ZH, Li J, Hooi LS, Liu WJ, Kadowaki T, Nangaku M, Levin A, Cherney D, Maggioni AP, Pontremoli R, Deo R, Goto S, Rossello X, Tuttle KR, Steubl D, Petrini M, Seidi S, Landray MJ, Baigent C, Herrington WG, Abat S, Abd Rahman R, Abdul Cader R, Abdul Hafidz MI, Abdul Wahab MZ, Abdullah NK, Abdul-Samad T, Abe M, Abraham N, Acheampong S, Achiri P, Acosta JA, Adeleke A, Adell V, Adewuyi-Dalton R, Adnan N, Africano A, Agharazii M, Aguilar F, Aguilera A, Ahmad M, Ahmad MK, Ahmad NA, Ahmad NH, Ahmad NI, Ahmad Miswan N, Ahmad Rosdi H, Ahmed I, Ahmed S, Ahmed S, Aiello J, Aitken A, AitSadi R, Aker S, Akimoto S, Akinfolarin A, Akram S, Alberici F, Albert C, Aldrich L, Alegata M, Alexander L, Alfaress S, Alhadj Ali M, Ali A, Ali A, Alicic R, Aliu A, Almaraz R, Almasarwah R, Almeida J, Aloisi A, Al-Rabadi L, Alscher D, Alvarez P, Al-Zeer B, Amat M, Ambrose C, Ammar H, An Y, Andriaccio L, Ansu K, Apostolidi A, Arai N, Araki H, Araki S, Arbi A, Arechiga O, Armstrong S, Arnold T, Aronoff S, Arriaga W, Arroyo J, Arteaga D, Asahara S, Asai A, Asai N, Asano S, Asawa M, Asmee MF, Aucella F, Augustin M, Avery A, Awad A, Awang IY, Awazawa M, Axler A, Ayub W, Azhari Z, Baccaro R, Badin C, Bagwell B, Bahlmann-Kroll E, Bahtar AZ, Baigent C, Bains D, Bajaj H, Baker R, Baldini E, Banas B, Banerjee D, Banno S, Bansal S, Barberi S, Barnes S, Barnini C, Barot C, Barrett K, Barrios R, Bartolomei Mecatti B, Barton I, Barton J, Basily W, Bavanandan S, Baxter A, Becker L, Beddhu S, Beige J, Beigh S, Bell S, Benck U, Beneat A, Bennett A, Bennett D, Benyon S, Berdeprado J, Bergler T, Bergner A, Berry M, Bevilacqua M, Bhairoo J, Bhandari S, Bhandary N, Bhatt A, Bhattarai M, Bhavsar M, Bian W, Bianchini F, Bianco S, Bilous R, Bilton J, Bilucaglia D, Bird C, Birudaraju D, Biscoveanu M, Blake C, Bleakley N, Bocchicchia K, Bodine S, Bodington R, Boedecker S, Bolduc M, Bolton S, Bond C, Boreky F, Boren K, Bouchi R, Bough L, Bovan D, Bowler C, Bowman L, Brar N, Braun C, Breach A, Breitenfeldt M, Brenner S, Brettschneider B, Brewer A, Brewer G, Brindle V, Brioni E, Brown C, Brown H, Brown L, Brown R, Brown S, Browne D, Bruce K, Brueckmann M, Brunskill N, Bryant M, Brzoska M, Bu Y, Buckman C, Budoff M, Bullen M, Burke A, Burnette S, Burston C, Busch M, Bushnell J, Butler S, Büttner C, Byrne C, Caamano A, Cadorna J, Cafiero C, Cagle M, Cai J, Calabrese K, Calvi C, Camilleri B, Camp S, Campbell D, Campbell R, Cao H, Capelli I, Caple M, Caplin B, Cardone A, Carle J, Carnall V, Caroppo M, Carr S, Carraro G, Carson M, Casares P, Castillo C, Castro C, Caudill B, Cejka V, Ceseri M, Cham L, Chamberlain A, Chambers J, Chan CBT, Chan JYM, Chan YC, Chang E, Chang E, Chant T, Chavagnon T, Chellamuthu P, Chen F, Chen J, Chen P, Chen TM, Chen Y, Chen Y, Cheng C, Cheng H, Cheng MC, Cherney D, Cheung AK, Ching CH, Chitalia N, Choksi R, Chukwu C, Chung K, Cianciolo G, Cipressa L, Clark S, Clarke H, Clarke R, Clarke S, Cleveland B, Cole E, Coles H, Condurache L, Connor A, Convery K, Cooper A, Cooper N, Cooper Z, Cooperman L, Cosgrove L, Coutts P, Cowley A, Craik R, Cui G, Cummins T, Dahl N, Dai H, Dajani L, D'Amelio A, Damian E, Damianik K, Danel L, Daniels C, Daniels T, Darbeau S, Darius H, Dasgupta T, Davies J, Davies L, Davis A, Davis J, Davis L, Dayanandan R, Dayi S, Dayrell R, De Nicola L, Debnath S, Deeb W, Degenhardt S, DeGoursey K, Delaney M, Deo R, DeRaad R, Derebail V, Dev D, Devaux M, Dhall P, Dhillon G, Dienes J, Dobre M, Doctolero E, Dodds V, Domingo D, Donaldson D, Donaldson P, Donhauser C, Donley V, Dorestin S, Dorey S, Doulton T, Draganova D, Draxlbauer K, Driver F, Du H, Dube F, Duck T, Dugal T, Dugas J, Dukka H, Dumann H, Durham W, Dursch M, Dykas R, Easow R, Eckrich E, Eden G, Edmerson E, Edwards H, Ee LW, Eguchi J, Ehrl Y, Eichstadt K, Eid W, Eilerman B, Ejima Y, Eldon H, Ellam T, Elliott L, Ellison R, Emberson J, Epp R, Er A, Espino-Obrero M, Estcourt S, Estienne L, Evans G, Evans J, Evans S, Fabbri G, Fajardo-Moser M, Falcone C, Fani F, Faria-Shayler P, Farnia F, Farrugia D, Fechter M, Fellowes D, Feng F, Fernandez J, Ferraro P, Field A, Fikry S, Finch J, Finn H, Fioretto P, Fish R, Fleischer A, Fleming-Brown D, Fletcher L, Flora R, Foellinger C, Foligno N, Forest S, Forghani Z, Forsyth K, Fottrell-Gould D, Fox P, Frankel A, Fraser D, Frazier R, Frederick K, Freking N, French H, Froment A, Fuchs B, Fuessl L, Fujii H, Fujimoto A, Fujita A, Fujita K, Fujita Y, Fukagawa M, Fukao Y, Fukasawa A, Fuller T, Funayama T, Fung E, Furukawa M, Furukawa Y, Furusho M, Gabel S, Gaidu J, Gaiser S, Gallo K, Galloway C, Gambaro G, Gan CC, Gangemi C, Gao M, Garcia K, Garcia M, Garofalo C, Garrity M, Garza A, Gasko S, Gavrila M, Gebeyehu B, Geddes A, Gentile G, George A, George J, Gesualdo L, Ghalli F, Ghanem A, Ghate T, Ghavampour S, Ghazi A, Gherman A, Giebeln-Hudnell U, Gill B, Gillham S, Girakossyan I, Girndt M, Giuffrida A, Glenwright M, Glider T, Gloria R, Glowski D, Goh BL, Goh CB, Gohda T, Goldenberg R, Goldfaden R, Goldsmith C, Golson B, Gonce V, Gong Q, Goodenough B, Goodwin N, Goonasekera M, Gordon A, Gordon J, Gore A, Goto H, Goto S, Goto S, Gowen D, Grace A, Graham J, Grandaliano G, Gray M, Green JB, Greene T, Greenwood G, Grewal B, Grifa R, Griffin D, Griffin S, Grimmer P, Grobovaite E, Grotjahn S, Guerini A, Guest C, Gunda S, Guo B, Guo Q, Haack S, Haase M, Haaser K, Habuki K, Hadley A, Hagan S, Hagge S, Haller H, Ham S, Hamal S, Hamamoto Y, Hamano N, Hamm M, Hanburry A, Haneda M, Hanf C, Hanif W, Hansen J, Hanson L, Hantel S, Haraguchi T, Harding E, Harding T, Hardy C, Hartner C, Harun Z, Harvill L, Hasan A, Hase H, Hasegawa F, Hasegawa T, Hashimoto A, Hashimoto C, Hashimoto M, Hashimoto S, Haskett S, Hauske SJ, Hawfield A, Hayami T, Hayashi M, Hayashi S, Haynes R, Hazara A, Healy C, Hecktman J, Heine G, Henderson H, Henschel R, Hepditch A, Herfurth K, Hernandez G, Hernandez Pena A, Hernandez-Cassis C, Herrington WG, Herzog C, Hewins S, Hewitt D, Hichkad L, Higashi S, Higuchi C, Hill C, Hill L, Hill M, Himeno T, Hing A, Hirakawa Y, Hirata K, Hirota Y, Hisatake T, Hitchcock S, Hodakowski A, Hodge W, Hogan R, Hohenstatt U, Hohenstein B, Hooi L, Hope S, Hopley M, Horikawa S, Hosein D, Hosooka T, Hou L, Hou W, Howie L, Howson A, Hozak M, Htet Z, Hu X, Hu Y, Huang J, Huda N, Hudig L, Hudson A, Hugo C, Hull R, Hume L, Hundei W, Hunt N, Hunter A, Hurley S, Hurst A, Hutchinson C, Hyo T, Ibrahim FH, Ibrahim S, Ihana N, Ikeda T, Imai A, Imamine R, Inamori A, Inazawa H, Ingell J, Inomata K, Inukai Y, Ioka M, Irtiza-Ali A, Isakova T, Isari W, Iselt M, Ishiguro A, Ishihara K, Ishikawa T, Ishimoto T, Ishizuka K, Ismail R, Itano S, Ito H, Ito K, Ito M, Ito Y, Iwagaitsu S, Iwaita Y, Iwakura T, Iwamoto M, Iwasa M, Iwasaki H, Iwasaki S, Izumi K, Izumi K, Izumi T, Jaafar SM, Jackson C, Jackson Y, Jafari G, Jahangiriesmaili M, Jain N, Jansson K, Jasim H, Jeffers L, Jenkins A, Jesky M, Jesus-Silva J, Jeyarajah D, Jiang Y, Jiao X, Jimenez G, Jin B, Jin Q, Jochims J, Johns B, Johnson C, Johnson T, Jolly S, Jones L, Jones L, Jones S, Jones T, Jones V, Joseph M, Joshi S, Judge P, Junejo N, Junus S, Kachele M, Kadowaki T, Kadoya H, Kaga H, Kai H, Kajio H, Kaluza-Schilling W, Kamaruzaman L, Kamarzarian A, Kamimura Y, Kamiya H, Kamundi C, Kan T, Kanaguchi Y, Kanazawa A, Kanda E, Kanegae S, Kaneko K, Kaneko K, Kang HY, Kano T, Karim M, Karounos D, Karsan W, Kasagi R, Kashihara N, Katagiri H, Katanosaka A, Katayama A, Katayama M, Katiman E, Kato K, Kato M, Kato N, Kato S, Kato T, Kato Y, Katsuda Y, Katsuno T, Kaufeld J, Kavak Y, Kawai I, Kawai M, Kawai M, Kawase A, Kawashima S, Kazory A, Kearney J, Keith B, Kellett J, Kelley S, Kershaw M, Ketteler M, Khai Q, Khairullah Q, Khandwala H, Khoo KKL, Khwaja A, Kidokoro K, Kielstein J, Kihara M, Kimber C, Kimura S, Kinashi H, Kingston H, Kinomura M, Kinsella-Perks E, Kitagawa M, Kitajima M, Kitamura S, Kiyosue A, Kiyota M, Klauser F, Klausmann G, Kmietschak W, Knapp K, Knight C, Knoppe A, Knott C, Kobayashi M, Kobayashi R, Kobayashi T, Koch M, Kodama S, Kodani N, Kogure E, Koizumi M, Kojima H, Kojo T, Kolhe N, Komaba H, Komiya T, Komori H, Kon SP, Kondo M, Kondo M, Kong W, Konishi M, Kono K, Koshino M, Kosugi T, Kothapalli B, Kozlowski T, Kraemer B, Kraemer-Guth A, Krappe J, Kraus D, Kriatselis C, Krieger C, Krish P, Kruger B, Ku Md Razi KR, Kuan Y, Kubota S, Kuhn S, Kumar P, Kume S, Kummer I, Kumuji R, Küpper A, Kuramae T, Kurian L, Kuribayashi C, Kurien R, Kuroda E, Kurose T, Kutschat A, Kuwabara N, Kuwata H, La Manna G, Lacey M, Lafferty K, LaFleur P, Lai V, Laity E, Lambert A, Landray MJ, Langlois M, Latif F, Latore E, Laundy E, Laurienti D, Lawson A, Lay M, Leal I, Leal I, Lee AK, Lee J, Lee KQ, Lee R, Lee SA, Lee YY, Lee-Barkey Y, Leonard N, Leoncini G, Leong CM, Lerario S, Leslie A, Levin A, Lewington A, Li J, Li N, Li X, Li Y, Liberti L, Liberti ME, Liew A, Liew YF, Lilavivat U, Lim SK, Lim YS, Limon E, Lin H, Lioudaki E, Liu H, Liu J, Liu L, Liu Q, Liu WJ, Liu X, Liu Z, Loader D, Lochhead H, Loh CL, Lorimer A, Loudermilk L, Loutan J, Low CK, Low CL, Low YM, Lozon Z, Lu Y, Lucci D, Ludwig U, Luker N, Lund D, Lustig R, Lyle S, Macdonald C, MacDougall I, Machicado R, MacLean D, Macleod P, Madera A, Madore F, Maeda K, Maegawa H, Maeno S, Mafham M, Magee J, Maggioni AP, Mah DY, Mahabadi V, Maiguma M, Makita Y, Makos G, Manco L, Mangiacapra R, Manley J, Mann P, Mano S, Marcotte G, Maris J, Mark P, Markau S, Markovic M, Marshall C, Martin M, Martinez C, Martinez S, Martins G, Maruyama K, Maruyama S, Marx K, Maselli A, Masengu A, Maskill A, Masumoto S, Masutani K, Matsumoto M, Matsunaga T, Matsuoka N, Matsushita M, Matthews M, Matthias S, Matvienko E, Maurer M, Maxwell P, Mayne KJ, Mazlan N, Mazlan SA, Mbuyisa A, McCafferty K, McCarroll F, McCarthy T, McClary-Wright C, McCray K, McDermott P, McDonald C, McDougall R, McHaffie E, McIntosh K, McKinley T, McLaughlin S, McLean N, McNeil L, Measor A, Meek J, Mehta A, Mehta R, Melandri M, Mené P, Meng T, Menne J, Merritt K, Merscher S, Meshykhi C, Messa P, Messinger L, Miftari N, Miller R, Miller Y, Miller-Hodges E, Minatoguchi M, Miners M, Minutolo R, Mita T, Miura Y, Miyaji M, Miyamoto S, Miyatsuka T, Miyazaki M, Miyazawa I, Mizumachi R, Mizuno M, Moffat S, Mohamad Nor FS, Mohamad Zaini SN, Mohamed Affandi FA, Mohandas C, Mohd R, Mohd Fauzi NA, Mohd Sharif NH, Mohd Yusoff Y, Moist L, Moncada A, Montasser M, Moon A, Moran C, Morgan N, Moriarty J, Morig G, Morinaga H, Morino K, Morisaki T, Morishita Y, Morlok S, Morris A, Morris F, Mostafa S, Mostefai Y, Motegi M, Motherwell N, Motta D, Mottl A, Moys R, Mozaffari S, Muir J, Mulhern J, Mulligan S, Munakata Y, Murakami C, Murakoshi M, Murawska A, Murphy K, Murphy L, Murray S, Murtagh H, Musa MA, Mushahar L, Mustafa R, Mustafar R, Muto M, Nadar E, Nagano R, Nagasawa T, Nagashima E, Nagasu H, Nagelberg S, Nair H, Nakagawa Y, Nakahara M, Nakamura J, Nakamura R, Nakamura T, Nakaoka M, Nakashima E, Nakata J, Nakata M, Nakatani S, Nakatsuka A, Nakayama Y, Nakhoul G, Nangaku M, Naverrete G, Navivala A, Nazeer I, Negrea L, Nethaji C, Newman E, Ng SYA, Ng TJ, Ngu LLS, Nimbkar T, Nishi H, Nishi M, Nishi S, Nishida Y, Nishiyama A, Niu J, Niu P, Nobili G, Nohara N, Nojima I, Nolan J, Nosseir H, Nozawa M, Nunn M, Nunokawa S, Oda M, Oe M, Oe Y, Ogane K, Ogawa W, Ogihara T, Oguchi G, Ohsugi M, Oishi K, Okada Y, Okajyo J, Okamoto S, Okamura K, Olufuwa O, Oluyombo R, Omata A, Omori Y, Ong LM, Ong YC, Onyema J, Oomatia A, Oommen A, Oremus R, Orimo Y, Ortalda V, Osaki Y, Osawa Y, Osmond Foster J, O'Sullivan A, Otani T, Othman N, Otomo S, O'Toole J, Owen L, Ozawa T, Padiyar A, Page N, Pajak S, Paliege A, Pandey A, Pandey R, Pariani H, Park J, Parrigon M, Passauer J, Patecki M, Patel M, Patel R, Patel T, Patel Z, Paul R, Paul R, Paulsen L, Pavone L, Peixoto A, Peji J, Peng BC, Peng K, Pennino L, Pereira E, Perez E, Pergola P, Pesce F, Pessolano G, Petchey W, Petr EJ, Pfab T, Phelan P, Phillips R, Phillips T, Phipps M, Piccinni G, Pickett T, Pickworth S, Piemontese M, Pinto D, Piper J, Plummer-Morgan J, Poehler D, Polese L, Poma V, Pontremoli R, Postal A, Pötz C, Power A, Pradhan N, Pradhan R, Preiss D, Preiss E, Preston K, Prib N, Price L, Provenzano C, Pugay C, Pulido R, Putz F, Qiao Y, Quartagno R, Quashie-Akponeware M, Rabara R, Rabasa-Lhoret R, Radhakrishnan D, Radley M, Raff R, Raguwaran S, Rahbari-Oskoui F, Rahman M, Rahmat K, Ramadoss S, Ramanaidu S, Ramasamy S, Ramli R, Ramli S, Ramsey T, Rankin A, Rashidi A, Raymond L, Razali WAFA, Read K, Reiner H, Reisler A, Reith C, Renner J, Rettenmaier B, Richmond L, Rijos D, Rivera R, Rivers V, Robinson H, Rocco M, Rodriguez-Bachiller I, Rodriquez R, Roesch C, Roesch J, Rogers J, Rohnstock M, Rolfsmeier S, Roman M, Romo A, Rosati A, Rosenberg S, Ross T, Rossello X, Roura M, Roussel M, Rovner S, Roy S, Rucker S, Rump L, Ruocco M, Ruse S, Russo F, Russo M, Ryder M, Sabarai A, Saccà C, Sachson R, Sadler E, Safiee NS, Sahani M, Saillant A, Saini J, Saito C, Saito S, Sakaguchi K, Sakai M, Salim H, Salviani C, Sammons E, Sampson A, Samson F, Sandercock P, Sanguila S, Santorelli G, Santoro D, Sarabu N, Saram T, Sardell R, Sasajima H, Sasaki T, Satko S, Sato A, Sato D, Sato H, Sato H, Sato J, Sato T, Sato Y, Satoh M, Sawada K, Schanz M, Scheidemantel F, Schemmelmann M, Schettler E, Schettler V, Schlieper GR, Schmidt C, Schmidt G, Schmidt U, Schmidt-Gurtler H, Schmude M, Schneider A, Schneider I, Schneider-Danwitz C, Schomig M, Schramm T, Schreiber A, Schricker S, Schroppel B, Schulte-Kemna L, Schulz E, Schumacher B, Schuster A, Schwab A, Scolari F, Scott A, Seeger W, Seeger W, Segal M, Seifert L, Seifert M, Sekiya M, Sellars R, Seman MR, Shah S, Shah S, Shainberg L, Shanmuganathan M, Shao F, Sharma K, Sharpe C, Sheikh-Ali M, Sheldon J, Shenton C, Shepherd A, Shepperd M, Sheridan R, Sheriff Z, Shibata Y, Shigehara T, Shikata K, Shimamura K, Shimano H, Shimizu Y, Shimoda H, Shin K, Shivashankar G, Shojima N, Silva R, Sim CSB, Simmons K, Sinha S, Sitter T, Sivanandam S, Skipper M, Sloan K, Sloan L, Smith R, Smyth J, Sobande T, Sobata M, Somalanka S, Song X, Sonntag F, Sood B, Sor SY, Soufer J, Sparks H, Spatoliatore G, Spinola T, Squyres S, Srivastava A, Stanfield J, Staplin N, Staylor K, Steele A, Steen O, Steffl D, Stegbauer J, Stellbrink C, Stellbrink E, Stevens W, Stevenson A, Stewart-Ray V, Stickley J, Stoffler D, Stratmann B, Streitenberger S, Strutz F, Stubbs J, Stumpf J, Suazo N, Suchinda P, Suckling R, Sudin A, Sugamori K, Sugawara H, Sugawara K, Sugimoto D, Sugiyama H, Sugiyama H, Sugiyama T, Sullivan M, Sumi M, Suresh N, Sutton D, Suzuki H, Suzuki R, Suzuki Y, Suzuki Y, Suzuki Y, Swanson E, Swift P, Syed S, Szerlip H, Taal M, Taddeo M, Tailor C, Tajima K, Takagi M, Takahashi K, Takahashi K, Takahashi M, Takahashi T, Takahira E, Takai T, Takaoka M, Takeoka J, Takesada A, Takezawa M, Talbot M, Taliercio J, Talsania T, Tamori Y, Tamura R, Tamura Y, Tan CHH, Tan EZZ, Tanabe A, Tanabe K, Tanaka A, Tanaka A, Tanaka N, Tang S, Tang Z, Tanigaki K, Tarlac M, Tatsuzawa A, Tay JF, Tay LL, Taylor J, Taylor K, Taylor K, Te A, Tenbusch L, Teng KS, Terakawa A, Terry J, Tham ZD, Tholl S, Thomas G, Thong KM, Tietjen D, Timadjer A, Tindall H, Tipper S, Tobin K, Toda N, Tokuyama A, Tolibas M, Tomita A, Tomita T, Tomlinson J, Tonks L, Topf J, Topping S, Torp A, Torres A, Totaro F, Toth P, Toyonaga Y, Tripodi F, Trivedi K, Tropman E, Tschope D, Tse J, Tsuji K, Tsunekawa S, Tsunoda R, Tucky B, Tufail S, Tuffaha A, Turan E, Turner H, Turner J, Turner M, Tuttle KR, Tye YL, Tyler A, Tyler J, Uchi H, Uchida H, Uchida T, Uchida T, Udagawa T, Ueda S, Ueda Y, Ueki K, Ugni S, Ugwu E, Umeno R, Unekawa C, Uozumi K, Urquia K, Valleteau A, Valletta C, van Erp R, Vanhoy C, Varad V, Varma R, Varughese A, Vasquez P, Vasseur A, Veelken R, Velagapudi C, Verdel K, Vettoretti S, Vezzoli G, Vielhauer V, Viera R, Vilar E, Villaruel S, Vinall L, Vinathan J, Visnjic M, Voigt E, von-Eynatten M, Vourvou M, Wada J, Wada J, Wada T, Wada Y, Wakayama K, Wakita Y, Wallendszus K, Walters T, Wan Mohamad WH, Wang L, Wang W, Wang X, Wang X, Wang Y, Wanner C, Wanninayake S, Watada H, Watanabe K, Watanabe K, Watanabe M, Waterfall H, Watkins D, Watson S, Weaving L, Weber B, Webley Y, Webster A, Webster M, Weetman M, Wei W, Weihprecht H, Weiland L, Weinmann-Menke J, Weinreich T, Wendt R, Weng Y, Whalen M, Whalley G, Wheatley R, Wheeler A, Wheeler J, Whelton P, White K, Whitmore B, Whittaker S, Wiebel J, Wiley J, Wilkinson L, Willett M, Williams A, Williams E, Williams K, Williams T, Wilson A, Wilson P, Wincott L, Wines E, Winkelmann B, Winkler M, Winter-Goodwin B, Witczak J, Wittes J, Wittmann M, Wolf G, Wolf L, Wolfling R, Wong C, Wong E, Wong HS, Wong LW, Wong YH, Wonnacott A, Wood A, Wood L, Woodhouse H, Wooding N, Woodman A, Wren K, Wu J, Wu P, Xia S, Xiao H, Xiao X, Xie Y, Xu C, Xu Y, Xue H, Yahaya H, Yalamanchili H, Yamada A, Yamada N, Yamagata K, Yamaguchi M, Yamaji Y, Yamamoto A, Yamamoto S, Yamamoto S, Yamamoto T, Yamanaka A, Yamano T, Yamanouchi Y, Yamasaki N, Yamasaki Y, Yamasaki Y, Yamashita C, Yamauchi T, Yan Q, Yanagisawa E, Yang F, Yang L, Yano S, Yao S, Yao Y, Yarlagadda S, Yasuda Y, Yiu V, Yokoyama T, Yoshida S, Yoshidome E, Yoshikawa H, Young A, Young T, Yousif V, Yu H, Yu Y, Yuasa K, Yusof N, Zalunardo N, Zander B, Zani R, Zappulo F, Zayed M, Zemann B, Zettergren P, Zhang H, Zhang L, Zhang L, Zhang N, Zhang X, Zhao J, Zhao L, Zhao S, Zhao Z, Zhong H, Zhou N, Zhou S, Zhu D, Zhu L, Zhu S, Zietz M, Zippo M, Zirino F, Zulkipli FH. Effects of empagliflozin on progression of chronic kidney disease: a prespecified secondary analysis from the empa-kidney trial. Lancet Diabetes Endocrinol 2024; 12:39-50. [PMID: 38061371 PMCID: PMC7615591 DOI: 10.1016/s2213-8587(23)00321-2] [Show More Authors] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Sodium-glucose co-transporter-2 (SGLT2) inhibitors reduce progression of chronic kidney disease and the risk of cardiovascular morbidity and mortality in a wide range of patients. However, their effects on kidney disease progression in some patients with chronic kidney disease are unclear because few clinical kidney outcomes occurred among such patients in the completed trials. In particular, some guidelines stratify their level of recommendation about who should be treated with SGLT2 inhibitors based on diabetes status and albuminuria. We aimed to assess the effects of empagliflozin on progression of chronic kidney disease both overall and among specific types of participants in the EMPA-KIDNEY trial. METHODS EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA), and included individuals aged 18 years or older with an estimated glomerular filtration rate (eGFR) of 20 to less than 45 mL/min per 1·73 m2, or with an eGFR of 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher. We explored the effects of 10 mg oral empagliflozin once daily versus placebo on the annualised rate of change in estimated glomerular filtration rate (eGFR slope), a tertiary outcome. We studied the acute slope (from randomisation to 2 months) and chronic slope (from 2 months onwards) separately, using shared parameter models to estimate the latter. Analyses were done in all randomly assigned participants by intention to treat. EMPA-KIDNEY is registered at ClinicalTrials.gov, NCT03594110. FINDINGS Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and then followed up for a median of 2·0 years (IQR 1·5-2·4). Prespecified subgroups of eGFR included 2282 (34·5%) participants with an eGFR of less than 30 mL/min per 1·73 m2, 2928 (44·3%) with an eGFR of 30 to less than 45 mL/min per 1·73 m2, and 1399 (21·2%) with an eGFR 45 mL/min per 1·73 m2 or higher. Prespecified subgroups of uACR included 1328 (20·1%) with a uACR of less than 30 mg/g, 1864 (28·2%) with a uACR of 30 to 300 mg/g, and 3417 (51·7%) with a uACR of more than 300 mg/g. Overall, allocation to empagliflozin caused an acute 2·12 mL/min per 1·73 m2 (95% CI 1·83-2·41) reduction in eGFR, equivalent to a 6% (5-6) dip in the first 2 months. After this, it halved the chronic slope from -2·75 to -1·37 mL/min per 1·73 m2 per year (relative difference 50%, 95% CI 42-58). The absolute and relative benefits of empagliflozin on the magnitude of the chronic slope varied significantly depending on diabetes status and baseline levels of eGFR and uACR. In particular, the absolute difference in chronic slopes was lower in patients with lower baseline uACR, but because this group progressed more slowly than those with higher uACR, this translated to a larger relative difference in chronic slopes in this group (86% [36-136] reduction in the chronic slope among those with baseline uACR <30 mg/g compared with a 29% [19-38] reduction for those with baseline uACR ≥2000 mg/g; ptrend<0·0001). INTERPRETATION Empagliflozin slowed the rate of progression of chronic kidney disease among all types of participant in the EMPA-KIDNEY trial, including those with little albuminuria. Albuminuria alone should not be used to determine whether to treat with an SGLT2 inhibitor. FUNDING Boehringer Ingelheim and Eli Lilly.
Collapse
|
Randomized Controlled Trial |
1 |
32 |
8
|
Wang J, Cai K, He X, Shen X, Wang J, Liu J, Xu J, Qiu F, Lei W, Cui L, Ge Y, Wu T, Zhang Y, Yan H, Chen Y, Yu J, Ma X, Shi H, Zhang R, Li X, Gao Y, Niu P, Tan W, Wu G, Jiang Y, Xu W, Ma X. Multiple-centre clinical evaluation of an ultrafast single-tube assay for SARS-CoV-2 RNA. Clin Microbiol Infect 2020; 26:1076-1081. [PMID: 32422410 PMCID: PMC7227500 DOI: 10.1016/j.cmi.2020.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To evaluate the performance of an ultrafast single-tube nucleic acid isothermal amplification detection assay for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA using clinical samples from multiple centres. METHODS A reverse transcription recombinase-aided amplification (RT-RAA) assay for SARS-CoV-2 was conducted within 15 minutes at 39°C with portable instruments after addition of extracted RNA. The clinical performance of RT-RAA assay was evaluated using 947 clinical samples from five institutions in four regions of China; approved commercial fluorescence quantitative real-time PCR (qRT-PCR) kits were used for parallel detection. The sensitivity and specificity of RT-RAA were compared and analysed. RESULTS The RT-RAA test results of 926 samples were consistent with those of qRT-PCR (330 were positive, 596 negative); 21 results were inconsistent. The sensitivity and specificity of RT-RAA was 97.63% (330/338, 95% confidence interval (CI) 95.21 to 98.90) and 97.87% (596/609, 95% CI 96.28 to 98.81) respectively. The positive and negative predictive values were 96.21% (330/343, 95% CI 93.45 to 97.88) and 98.68% (596/604, 95% CI 97.30 to 99.38) respectively. The total coincidence rate was 97.78% (926/947, 95% CI 96.80 to 98.70), and the kappa was 0.952 (p < 0.05). CONCLUSIONS With comparable sensitivity and specificity to the commercial qRT-PCR kits, RT-RAA assay for SARS-CoV-2 exhibited the distinctive advantages of simplicity and rapidity in terms of operation and turnaround time.
Collapse
|
Multicenter Study |
5 |
32 |
9
|
Yao BB, Niu P, Surowy CS, Faltynek CR. Direct interaction of STAT4 with the IL-12 receptor. Arch Biochem Biophys 1999; 368:147-55. [PMID: 10415122 DOI: 10.1006/abbi.1999.1302] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Signal transduction by interleukin-12 (IL-12) requires phosphorylation and activation of STAT4. Direct interaction of the SH2 domain of STAT4 with a phosphotyrosine residue in the IL-12 receptor has been proposed to be required for the subsequent STAT4 phosphorylation. The IL-12 receptor beta2 subunit contains three tyrosine residues in its cytoplasmic domain. To test the hypothesis that one of these tyrosines is involved in binding STAT4, phosphopeptides were synthesized according to the amino acid sequences surrounding each of these tyrosine residues. Only the phosphopeptide containing pTyr800 strongly bound to STAT4 in a cell-free binding assay. When this phosphopeptide was introduced into TALL-104 cells, it blocked IL-12-induced STAT4 phosphorylation by competing with the IL-12 receptor for binding to STAT4. A series of alanine replacements was performed in this phosphopeptide to elucidate which amino acids surrounding the pTyr800 residue are critical for STAT4 binding. To summarize, the site on the IL-12 receptor which binds STAT4 can be described as -T-X-X-G-pY(800)-L-, where the core G-pY(800)-L motif is critical for the binding; the threonine at the pY-4 position has only a minor contribution and X represents amino acids not critical for the binding. These results demonstrate that only a small region of the IL-12 receptor is critically involved in binding STAT4 and suggest the feasibility that small molecule inhibitors could be identified which interfere with IL-12 signal transduction for treatment of autoimmune diseases.
Collapse
|
|
26 |
32 |
10
|
Yang G, Zhu Z, Wang Y, Gao A, Niu P, Chen L, Tian L. Bone morphogenetic protein 7 attenuates epithelial-mesenchymal transition induced by silica. Hum Exp Toxicol 2015; 35:69-77. [PMID: 25733726 DOI: 10.1177/0960327115577550] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a critical process in the pulmonary fibrosis. It has been reported that bone morphogenetic protein 7 (BMP-7) was able to reverse EMT in proximal tubular cells. Therefore, we test the hypothesis that EMT contributes to silica-induced pulmonary fibrosis and BMP-7 inhibits EMT in silica-induced pulmonary fibrosis. Progressive silica-induced pulmonary fibrosis in the rat was used as a model of silicosis. Epithelial and mesenchymal markers were measured from rat fibrotic lungs. Then the effects of BMP-7 on the EMT were further confirmed in A549 cells. There are increases of vimentin as a mesenchymal marker and decreases of E-cadherin as an epithelial marker in the silica-exposed rat lungs, which is in agreement with the A549 cells data. However, BMP-7 treatment significantly reduced expression of vimentin in the rat pulmonary fibrosis model and in A549 cells. In conclusion, EMT contributes to silica-induced pulmonary fibrosis. Meanwhile, the treatment of BMP-7 can inhibit silica-induced EMT in vitro and in vivo.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
18 |
11
|
Li YS, Zhu NH, Niu PP, Shi FX, Hughes CL, Tian GX, Huang RH. Effects of Dietary Chromium Methionine on Growth Performance, Carcass Composition, Meat Colour and Expression of the Colour-related Gene Myoglobin of Growing-finishing Pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 26:1021-9. [PMID: 25049881 PMCID: PMC4093490 DOI: 10.5713/ajas.2013.13012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/27/2013] [Accepted: 03/06/2013] [Indexed: 11/27/2022]
Abstract
To investigate the effect of dietary chromium (Cr) as Cr methionine (CrMet) on growth performance, carcass traits, pork quality, meat colour and expression of meat colour-related genes in growing-finishing pigs, 189 crossbred Duroc×(Landrace×Yorkshire) growing-finishing pigs (male, castrated, average initial BW 74.58±1.52 kg) were selected and randomly allocated into four groups. Dietary treatments per kg of feed were as follows: 0 (CT), 0.3 mg/kg (T1), 0.6 mg/kg (T2) and 0.9 mg/kg (T3) Cr (in the form of CrMet; as-fed basis), and each treatment was replicated five times with 8 to 10 pigs per replicate pen. During the 28 d of the experiment, both the ADG and the ADFI increased linearly (p<0.05) as the level of dietary Cr increased. The F/G ratio decreased linearly (p<0.05). As dietary Cr increased, loin muscle areas (linear, p = 0.013) and average backfat thickness (linear, p = 0.072) decreased. Shear force (linear, p = 0.070) and Commission Internationale de I’Éclairage (CIE) redness (quadratic, p = 0.028) were increased. In addition, CIE Lightness (quadratic, p = 0.053) were decreased as dietary Cr increased. As dietary Cr increased, total myglobin (Mb) content (quadratic, p = 0.015) and the mb mRNA levels (quadratic, p = 0.046) in longissimus muscles of pigs were up-regulated. In conclusion, supplementation of dietary Cr improved growth and meat colour, but increased shear force and decreased IMF reduced palatability of longissimus muscles. Moreover, the increasing total Mb content and mb mRNA levels indicated that CrMet dietary supplementation may improve meat colour via up-regulating expression of the mb gene.
Collapse
|
Journal Article |
11 |
17 |
12
|
Niu PP, Yang G, Zheng BK, Guo ZN, Jin H, Yang Y. Relationship between endothelial nitric oxide synthase gene polymorphisms and ischemic stroke: a meta-analysis. Acta Neurol Scand 2013; 128:202-12. [PMID: 23560937 DOI: 10.1111/ane.12120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2013] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Previous studies examining whether polymorphisms (G894T, 4b/a, and T786C) in the endothelial nitric oxide synthase (eNOS) gene are associated with ischemic stroke have yielded conflicting results. We performed a meta-analysis to investigate the potential association between these three eNOS gene polymorphisms and ischemic stroke risk. MATERIALS AND METHODS We searched databases until April 30, 2012 and used fixed or random effects models to estimate the pooled odds ratios (ORs). RESULTS We analyzed 34 case-control data sets from 33 publications involving 5261/5823 cases/controls for G894T, 4295/4682 for 4b/a, and 2698/3254 for T786C polymorphisms. For Asian populations, all models showed significantly increased risk of ischemic stroke for the G894T (dominant model: OR = 1.58; 95% CI, 1.30-1.91; P = 0.000) and 4b/a polymorphisms (dominant model: OR = 1.46; 95% CI, 1.25-1.71; P = 0.000), even after Bonferroni correction (because 0.000 < 0.017). In white populations, the aa genotype seemed to be protective for ischemic stroke, as indicated by the recessive model (OR = 0.44; 95% CI, 0.22-0.87; P = 0.019). In Asian populations, the T786C polymorphism was significantly associated with ischemic stroke, as found using the dominant (OR = 1.17; 95% CI, 1.02-1.34; P = 0.025) and additive models (OR = 1.18; 95% CI, 1.05-1.33; P = 0.006). CONCLUSIONS Our comprehensive meta-analysis ascertains that the G894T, 4b/a, and T786C polymorphisms are associated with ischemic stroke risk in Asians. A possible contrasting role of the 4b/a polymorphism in ischemic stroke was indicated in white populations.
Collapse
|
Meta-Analysis |
12 |
16 |
13
|
Wang BB, Hou LM, Zhou WD, Liu H, Tao W, Wu WJ, Niu PP, Zhang ZP, Zhou J, Li Q, Huang RH, Li PH. Genome-wide association study reveals a quantitative trait locus and two candidate genes on Sus scrofa chromosome 5 affecting intramuscular fat content in Suhuai pigs. Animal 2021; 15:100341. [PMID: 34425484 DOI: 10.1016/j.animal.2021.100341] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022] Open
Abstract
Intramuscular fat content (IFC) is an essential quantitative trait of meat, affecting multiple meat quality indicators. A certain amount of IFC could not only improve the sensory score of pork but also increase the flavour, tenderness, juiciness and shelf-life. To dissect the genetic determinants of IFC, two methods, including genome-wide efficient mixed-model analysis (GEMMA) and linkage disequilibrium adjusted kinships (LDAKs), were used to carry out genome-wide association studies for IFC in Suhuai pig population. A total of 14 and 18 significant single nucleotide polymorphisms (SNPs) were identified by GEMMA and LDAK, respectively. The results of these two methods were highly consistent and all 14 significant SNPs in GEMMA were detected by LDAK. Seven of the 18 SNPs reached the genome-wide significance level (P < 9.85E-07) while 11 cases reached the suggestive significance level (P < 1.77E-05). These significant SNPs were mainly distributed on Sus scrofa chromosome (SSC) 5, 3, and 7. Moreover, one locus resides in a 2.27 Mb (71.37-73.64 Mb) region on SSC5 harbouring 13 significant SNPs associated with IFC, and the lead SNP (rs81302978) also locates in this region. Linkage disequilibrium (LD) analysis showed that there were four pairs of complete LD (r2 = 1) among these 13 SNPs, and the remaining 9 SNPs with incomplete LD (r2 ≠ 1) were selected for subsequent analyses of IFC. Association analyses showed that 7 out of 9 SNPs were significantly associated with IFC (P < 0.05) in 330 Suhuai pigs, and the other 2 SNPs tended to reach a significant association level with IFC (P < 0.1). The phenotypic variance explained (PVE) range of these 9 SNPs was 0.92-3.55%. Meanwhile, the lead SNP was also significantly associated (rs81302978) with IFC (P < 0.05) in 378 commercial hybrid pigs (Pietrain × Duroc) × (Landrace × Yorkshire) (PDLY), and the PVE was 1.38%. Besides, two lipid metabolism-relevant candidate genes, the leucine rich repeat kinase 2 (LRRK2) and PDZ domain containing ring finger 4 (PDZRN4) were identified in the 2.27 Mb region on SSC5. In conclusion, our results may provide a set of markers useful for genetic improvement of IFC in pigs and will advance the genome selection process of IFC on pig breeding programmes.
Collapse
|
|
4 |
11 |
14
|
Niu P, Yang K. The 11 beta-hydroxysteroid dehydrogenase type 2 activity in human placental microsomes is inactivated by zinc and the sulfhydryl modifying reagent N-ethylmaleimide. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1594:364-71. [PMID: 11904232 DOI: 10.1016/s0167-4838(01)00329-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Proper glucocorticoid exposure in utero is vital to normal fetal organ growth and maturation. The human placental 11 beta-hydroxysteroid dehydrogenase type 2 enzyme (11 beta-HSD2) catalyzes the unidirectional conversion of cortisol to its inert metabolite cortisone, thereby controlling fetal exposure to maternal cortisol. The present study examined the effect of zinc and the relatively specific sulfhydryl modifying reagent N-ethylmaleimide (NEM) on the activity of 11 beta-HSD2 in human placental microsomes. Enzyme activity, reflected by the rate of conversion of cortisol to cortisone, was inactivated by NEM (IC(50)=10 microM), while the activity was markedly increased by the sulfhydryl protecting reagent dithiothreitol (DTT; EC(50)=1 mM). Furthermore, DTT blocked the NEM-induced inhibition of 11 beta-HSD2 activity. Taken together, these results suggested that the sulfhydryl (SH) group(s) of the microsomal 11 beta-HSD2 may be critical for enzyme activity. Zn(2+) also inactivated enzyme activity (IC(50)=2.5 microM), but through a novel mechanism not involving the SH groups. In addition, prior incubation of human placental microsomes with NAD(+) (cofactor) but not cortisol (substrate) resulted in a concentration-dependent increase (EC(50)=8 microM) in 11 beta-HSD2 activity, indicating that binding of NAD(+) to the microsomal 11 beta-HSD2 facilitated the conversion of cortisol to cortisone. Thus, this finding substantiates the previously proposed concept that a compulsorily ordered ternary complex mechanism may operate for 11 beta-HSD2, with NAD(+) binding first, followed by a conformational change allowing cortisol binding with high affinity. Collectively, the present results suggest that cellular mechanisms of SH group modification and intracellular levels of Zn(2+) may play an important role in regulation of placental 11 beta-HSD2 activity.
Collapse
|
|
23 |
8 |
15
|
Liang D, An G, Zhu Z, Wang Y, Yang G, Li X, Niu P, Chen L, Tian L. The protective effects of bone morphogenetic protein-7 against epithelial injury and matrix metalloproteases upregulation induced by silica in vitro. Hum Exp Toxicol 2016; 36:892-900. [PMID: 28838258 DOI: 10.1177/0960327116674527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE We investigate the effects of bone morphogenetic protein-7 (BMP-7) on models with silica-induced and macrophage-mediated fibrosis and its possible mechanisms in vitro. METHODS Rat alveolar II epithelial (RLE-6TN) cells were incubated with the supernatant of mouse macrophage-like cells (RAW264.7) and treated with 0, 25, 50, and 100 μg/mL silica. Using Western blotting, the epithelial markers (surfactant proteins-C and E-cadherin) and the mesenchymal markers (fibronectin (FN) and viminten (Vim)) were detected. After neutralizing the BMP-7, the progress of fibrosis was assessed by the content of hydroxyproline (Hyp) and collagen I, III protein levels as well as the Smad signaling pathway proteins, including phosphorylated Smad1/5(P-Smad1/5) and phosphorylated Smad2/3(P-Smad2/3). Collagen I was also identified by immunofluorescence and pretreated with SB-431542, LDN-193189, or anti-BMP-7-neutralizing antibody. In addition, the levels of matrix metalloproteinase-2 (MMP-2) and MMP-9 were detected using Western blotting. RESULTS The model of RLE-6TN cells was established successfully, the expressions of Vim, FN, MMP-2, and MMP-9 were upregulated, while the concentration of silica is increased. Neutralizing BMP-7 stimulated the decrease of P-Smad1/5 and the increase of P-Smad2/3, as well as the collagen I, collagen III, FN, and Hyp via Smad signaling pathway. Furthermore, pretreated with LDN-193189 or anti-BMP-7-neutralizing antibody, the expression of collagen I was increased, yet it was decreased with SB-431542 intervention. CONCLUSION The activated BMP/Smad and suppressed transforming growth factor-β/Smad pathways could suppress silica-induced fibrosis via a MMP-dependent mechanism. BMP-7 is expected to be the optimized strategy of delaying the interstitial changes.
Collapse
|
Journal Article |
9 |
3 |
16
|
Kjeldsen MH, Johansen M, Weisbjerg MR, Hellwing ALF, Bannink A, Colombini S, Crompton L, Dijkstra J, Eugène M, Guinguina A, Hristov AN, Huhtanen P, Jonker A, Kreuzer M, Kuhla B, Martin C, Moate PJ, Niu P, Peiren N, Reynolds C, Williams SRO, Lund P. Predicting CO 2 production of lactating dairy cows from animal, dietary, and production traits using an international dataset. J Dairy Sci 2024; 107:6771-6784. [PMID: 38754833 DOI: 10.3168/jds.2023-24414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/26/2024] [Indexed: 05/18/2024]
Abstract
Automated measurements of the ratio of concentrations of methane and carbon dioxide, [CH4]:[CO2], in breath from individual animals (the so-called "sniffer technique") and estimated CO2 production can be used to estimate CH4 production, provided that CO2 production can be reliably calculated. This would allow CH4 production from individual cows to be estimated in large cohorts of cows, whereby ranking of cows according to their CH4 production might become possible and their values could be used for breeding of low CH4-emitting animals. Estimates of CO2 production are typically based on predictions of heat production, which can be calculated from body weight (BW), energy-corrected milk yield, and days of pregnancy. The objectives of the present study were to develop predictions of CO2 production directly from milk production, dietary, and animal variables, and furthermore to develop different models to be used for different scenarios, depending on available data. An international dataset with 2,244 records from individual lactating cows including CO2 production and associated traits, as dry matter intake (DMI), diet composition, BW, milk production and composition, days in milk, and days pregnant, was compiled to constitute the training dataset. Research location and experiment nested within research location were included as random intercepts. The method of CO2 production measurement (respiration chamber [RC] or GreenFeed [GF]) was confounded with research location, and therefore excluded from the model. In total, 3 models were developed based on the current training dataset: model 1 ("best model"), where all significant traits were included; model 2 ("on-farm model"), where DMI was excluded; and model 3 ("reduced on-farm model"), where both DMI and BW were excluded. Evaluation on test dat sets with either RC data (n = 103), GF data without additives (n = 478), or GF data only including observations where nitrate, 3-nitrooxypropanol (3-NOP), or a combination of nitrate and 3-NOP were fed to the cows (GF+: n = 295), showed good precision of the 3 models, illustrated by low slope bias both in absolute values (-0.22 to 0.097) and in percentage (0.049 to 4.89) of mean square error (MSE). However, the mean bias (MB) indicated systematic overprediction and underprediction of CO2 production when the models were evaluated on the GF and the RC test datasets, respectively. To address this bias, the 3 models were evaluated on a modified test dataset, where the CO2 production (g/d) was adjusted by subtracting (where measurements were obtained by RC) or adding absolute MB (where measurements were obtained by GF) from evaluation of the specific model on RC, GF, and GF+ test datasets. With this modification, the absolute values of MB and MB as percentage of MSE became negligible. In conclusion, the 3 models were precise in predicting CO2 production from lactating dairy cows.
Collapse
|
|
1 |
|
17
|
Sun B, Wang X, Song Q, Wang Y, Xue L, Wang C, Quan Z, Zhang Y, Niu P. Prospective studies on the relationship between the 50 g glucose challenge test and pregnant outcome. Chin Med J (Engl) 1995; 108:910-3. [PMID: 8728943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The 50 g oral glucose challenge test (50gGCT) was performed on 622 pregnant women, and 75 g oral glucose tolerance test (75gGTT) was further done on subjects with screening tests value of > or = 7.78 mmol/L. The results showed that there were 16.56% (103/622) women with screening value of > or = 7.78 mmol/L, among whom, 32 were identified as having gestational impaired glucose tolerance (GIGT) and 12, gestational diabetes mellitus (GDM) by confirmatory test of 75gGTT. The sensitivity of 50gGCT was 42.72%(44/103). The incidences of edema-proteinuria-hypertension syndrome (EPH-syndrome), premature rupture of membranes, fetal macrosomia, operative deliveries and perinatal morbidity were higher in women with GIGT/GDM than in women without GIGT/GDM. It suggests that 50gGCT is an ideal method of screening for GDM and should be performed on all pregnant women.
Collapse
|
|
30 |
|
18
|
Niu P, Zhao S, Fan B. Identification of gene variation within porcine PRDM16 gene and its association with fat and loin muscle area. S AFR J ANIM SCI 2010. [DOI: 10.4314/sajas.v39i4.51131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
|
15 |
|
19
|
Wang LP, Niu H, Xia YF, Han YL, Niu P, Wang HY, Zhou QL. Prognostic significance of serum sMICA levels in non-small cell lung cancer. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2015; 19:2226-2230. [PMID: 26166647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
OBJECTIVE The soluble form of major histocompatibility complex class I-related chain A (MICA) is released from the surface of tumor cells of epithelial origin. Serum levels of soluble MHC class I-related chain A (sMICA) is related with the prognosis of various types of cancer. However, there are studies on the prognostic value of sMICA in non-small cell carcinoma (NSCLC). In this study, we retrospectively investigated the relationship between sMICA levels and clinical features of NSCLC, and we assessed the prognostic value of sMICA in NSCLC. PATIENTS AND METHODS sMICA levels were detected in 207 NSCLC patients and 207 normal control individuals with using enzyme-linked immunosorbent assay (ELISA), and its associations with clinicopathological parameters were evaluated. Survival curves were compared using the Kaplan-Meier method and log-rank tests. Univariate Cox regression was used on each clinical covariate to examine its influence on patient survival. Multivariate models were based on step-wise addition. RESULTS Serum sMICA levels were significantly higher in NSCLC patients than in healthy controls (mean ± SD [pg/ml], 143.52 ± 27.6 vs. 32.4 ± 7.53 p < 0.01) and were significantly correlated with TNM stage, poorer differentiation, lymph node metastases and distant metastases. Survival analysis showed that a low sMICA level had longer survival time than those with high serum sMICA. Multivariate analyses indicated that high sMICA proved to be an independent predictor of survival time. CONCLUSIONS Serum sMICA level in NSCLC patients is associated with metastasis. It is an indicator of a poorer survival probability. Serum sMICA levels may be an independent prognostic factor for NSCLC.
Collapse
|
|
10 |
|
20
|
Judge PK, Staplin N, Mayne KJ, Wanner C, Green JB, Hauske SJ, Emberson JR, Preiss D, Ng SYA, Roddick AJ, Sammons E, Zhu D, Hill M, Stevens W, Wallendszus K, Brenner S, Cheung AK, Liu ZH, Li J, Hooi LS, Liu WJ, Kadowaki T, Nangaku M, Levin A, Cherney D, Maggioni AP, Pontremoli R, Deo R, Goto S, Rossello X, Tuttle KR, Steubl D, Massey D, Landray MJ, Baigent C, Haynes R, Herrington WG, Abat S, Abd Rahman R, Abdul Cader R, Abdul Hafidz MI, Abdul Wahab MZ, Abdullah NK, Abdul-Samad T, Abe M, Abraham N, Acheampong S, Achiri P, Acosta JA, Adeleke A, Adell V, Adewuyi-Dalton R, Adnan N, Africano A, Agharazii M, Aguilar F, Aguilera A, Ahmad M, Ahmad MK, Ahmad NA, Ahmad NH, Ahmad NI, Ahmad Miswan N, Ahmad Rosdi H, Ahmed I, Ahmed S, Ahmed S, Aiello J, Aitken A, AitSadi R, Aker S, Akimoto S, Akinfolarin A, Akram S, Alberici F, Albert C, Aldrich L, Alegata M, Alexander L, Alfaress S, Alhadj Ali M, Ali A, Ali A, Alicic R, Aliu A, Almaraz R, Almasarwah R, Almeida J, Aloisi A, Al-Rabadi L, Alscher D, Alvarez P, Al-Zeer B, Amat M, Ambrose C, Ammar H, An Y, Andriaccio L, Ansu K, Apostolidi A, et alJudge PK, Staplin N, Mayne KJ, Wanner C, Green JB, Hauske SJ, Emberson JR, Preiss D, Ng SYA, Roddick AJ, Sammons E, Zhu D, Hill M, Stevens W, Wallendszus K, Brenner S, Cheung AK, Liu ZH, Li J, Hooi LS, Liu WJ, Kadowaki T, Nangaku M, Levin A, Cherney D, Maggioni AP, Pontremoli R, Deo R, Goto S, Rossello X, Tuttle KR, Steubl D, Massey D, Landray MJ, Baigent C, Haynes R, Herrington WG, Abat S, Abd Rahman R, Abdul Cader R, Abdul Hafidz MI, Abdul Wahab MZ, Abdullah NK, Abdul-Samad T, Abe M, Abraham N, Acheampong S, Achiri P, Acosta JA, Adeleke A, Adell V, Adewuyi-Dalton R, Adnan N, Africano A, Agharazii M, Aguilar F, Aguilera A, Ahmad M, Ahmad MK, Ahmad NA, Ahmad NH, Ahmad NI, Ahmad Miswan N, Ahmad Rosdi H, Ahmed I, Ahmed S, Ahmed S, Aiello J, Aitken A, AitSadi R, Aker S, Akimoto S, Akinfolarin A, Akram S, Alberici F, Albert C, Aldrich L, Alegata M, Alexander L, Alfaress S, Alhadj Ali M, Ali A, Ali A, Alicic R, Aliu A, Almaraz R, Almasarwah R, Almeida J, Aloisi A, Al-Rabadi L, Alscher D, Alvarez P, Al-Zeer B, Amat M, Ambrose C, Ammar H, An Y, Andriaccio L, Ansu K, Apostolidi A, Arai N, Araki H, Araki S, Arbi A, Arechiga O, Armstrong S, Arnold T, Aronoff S, Arriaga W, Arroyo J, Arteaga D, Asahara S, Asai A, Asai N, Asano S, Asawa M, Asmee MF, Aucella F, Augustin M, Avery A, Awad A, Awang IY, Awazawa M, Axler A, Ayub W, Azhari Z, Baccaro R, Badin C, Bagwell B, Bahlmann-Kroll E, Bahtar AZ, Baigent C, Bains D, Bajaj H, Baker R, Baldini E, Banas B, Banerjee D, Banno S, Bansal S, Barberi S, Barnes S, Barnini C, Barot C, Barrett K, Barrios R, Bartolomei Mecatti B, Barton I, Barton J, Basily W, Bavanandan S, Baxter A, Becker L, Beddhu S, Beige J, Beigh S, Bell S, Benck U, Beneat A, Bennett A, Bennett D, Benyon S, Berdeprado J, Bergler T, Bergner A, Berry M, Bevilacqua M, Bhairoo J, Bhandari S, Bhandary N, Bhatt A, Bhattarai M, Bhavsar M, Bian W, Bianchini F, Bianco S, Bilous R, Bilton J, Bilucaglia D, Bird C, Birudaraju D, Biscoveanu M, Blake C, Bleakley N, Bocchicchia K, Bodine S, Bodington R, Boedecker S, Bolduc M, Bolton S, Bond C, Boreky F, Boren K, Bouchi R, Bough L, Bovan D, Bowler C, Bowman L, Brar N, Braun C, Breach A, Breitenfeldt M, Brenner S, Brettschneider B, Brewer A, Brewer G, Brindle V, Brioni E, Brown C, Brown H, Brown L, Brown R, Brown S, Browne D, Bruce K, Brueckmann M, Brunskill N, Bryant M, Brzoska M, Bu Y, Buckman C, Budoff M, Bullen M, Burke A, Burnette S, Burston C, Busch M, Bushnell J, Butler S, Büttner C, Byrne C, Caamano A, Cadorna J, Cafiero C, Cagle M, Cai J, Calabrese K, Calvi C, Camilleri B, Camp S, Campbell D, Campbell R, Cao H, Capelli I, Caple M, Caplin B, Cardone A, Carle J, Carnall V, Caroppo M, Carr S, Carraro G, Carson M, Casares P, Castillo C, Castro C, Caudill B, Cejka V, Ceseri M, Cham L, Chamberlain A, Chambers J, Chan CBT, Chan JYM, Chan YC, Chang E, Chang E, Chant T, Chavagnon T, Chellamuthu P, Chen F, Chen J, Chen P, Chen TM, Chen Y, Chen Y, Cheng C, Cheng H, Cheng MC, Cherney D, Cheung AK, Ching CH, Chitalia N, Choksi R, Chukwu C, Chung K, Cianciolo G, Cipressa L, Clark S, Clarke H, Clarke R, Clarke S, Cleveland B, Cole E, Coles H, Condurache L, Connor A, Convery K, Cooper A, Cooper N, Cooper Z, Cooperman L, Cosgrove L, Coutts P, Cowley A, Craik R, Cui G, Cummins T, Dahl N, Dai H, Dajani L, D'Amelio A, Damian E, Damianik K, Danel L, Daniels C, Daniels T, Darbeau S, Darius H, Dasgupta T, Davies J, Davies L, Davis A, Davis J, Davis L, Dayanandan R, Dayi S, Dayrell R, De Nicola L, Debnath S, Deeb W, Degenhardt S, DeGoursey K, Delaney M, Deo R, DeRaad R, Derebail V, Dev D, Devaux M, Dhall P, Dhillon G, Dienes J, Dobre M, Doctolero E, Dodds V, Domingo D, Donaldson D, Donaldson P, Donhauser C, Donley V, Dorestin S, Dorey S, Doulton T, Draganova D, Draxlbauer K, Driver F, Du H, Dube F, Duck T, Dugal T, Dugas J, Dukka H, Dumann H, Durham W, Dursch M, Dykas R, Easow R, Eckrich E, Eden G, Edmerson E, Edwards H, Ee LW, Eguchi J, Ehrl Y, Eichstadt K, Eid W, Eilerman B, Ejima Y, Eldon H, Ellam T, Elliott L, Ellison R, Emberson J, Epp R, Er A, Espino-Obrero M, Estcourt S, Estienne L, Evans G, Evans J, Evans S, Fabbri G, Fajardo-Moser M, Falcone C, Fani F, Faria-Shayler P, Farnia F, Farrugia D, Fechter M, Fellowes D, Feng F, Fernandez J, Ferraro P, Field A, Fikry S, Finch J, Finn H, Fioretto P, Fish R, Fleischer A, Fleming-Brown D, Fletcher L, Flora R, Foellinger C, Foligno N, Forest S, Forghani Z, Forsyth K, Fottrell-Gould D, Fox P, Frankel A, Fraser D, Frazier R, Frederick K, Freking N, French H, Froment A, Fuchs B, Fuessl L, Fujii H, Fujimoto A, Fujita A, Fujita K, Fujita Y, Fukagawa M, Fukao Y, Fukasawa A, Fuller T, Funayama T, Fung E, Furukawa M, Furukawa Y, Furusho M, Gabel S, Gaidu J, Gaiser S, Gallo K, Galloway C, Gambaro G, Gan CC, Gangemi C, Gao M, Garcia K, Garcia M, Garofalo C, Garrity M, Garza A, Gasko S, Gavrila M, Gebeyehu B, Geddes A, Gentile G, George A, George J, Gesualdo L, Ghalli F, Ghanem A, Ghate T, Ghavampour S, Ghazi A, Gherman A, Giebeln-Hudnell U, Gill B, Gillham S, Girakossyan I, Girndt M, Giuffrida A, Glenwright M, Glider T, Gloria R, Glowski D, Goh BL, Goh CB, Gohda T, Goldenberg R, Goldfaden R, Goldsmith C, Golson B, Gonce V, Gong Q, Goodenough B, Goodwin N, Goonasekera M, Gordon A, Gordon J, Gore A, Goto H, Goto S, Goto S, Gowen D, Grace A, Graham J, Grandaliano G, Gray M, Green JB, Greene T, Greenwood G, Grewal B, Grifa R, Griffin D, Griffin S, Grimmer P, Grobovaite E, Grotjahn S, Guerini A, Guest C, Gunda S, Guo B, Guo Q, Haack S, Haase M, Haaser K, Habuki K, Hadley A, Hagan S, Hagge S, Haller H, Ham S, Hamal S, Hamamoto Y, Hamano N, Hamm M, Hanburry A, Haneda M, Hanf C, Hanif W, Hansen J, Hanson L, Hantel S, Haraguchi T, Harding E, Harding T, Hardy C, Hartner C, Harun Z, Harvill L, Hasan A, Hase H, Hasegawa F, Hasegawa T, Hashimoto A, Hashimoto C, Hashimoto M, Hashimoto S, Haskett S, Hauske SJ, Hawfield A, Hayami T, Hayashi M, Hayashi S, Haynes R, Hazara A, Healy C, Hecktman J, Heine G, Henderson H, Henschel R, Hepditch A, Herfurth K, Hernandez G, Hernandez Pena A, Hernandez-Cassis C, Herrington WG, Herzog C, Hewins S, Hewitt D, Hichkad L, Higashi S, Higuchi C, Hill C, Hill L, Hill M, Himeno T, Hing A, Hirakawa Y, Hirata K, Hirota Y, Hisatake T, Hitchcock S, Hodakowski A, Hodge W, Hogan R, Hohenstatt U, Hohenstein B, Hooi L, Hope S, Hopley M, Horikawa S, Hosein D, Hosooka T, Hou L, Hou W, Howie L, Howson A, Hozak M, Htet Z, Hu X, Hu Y, Huang J, Huda N, Hudig L, Hudson A, Hugo C, Hull R, Hume L, Hundei W, Hunt N, Hunter A, Hurley S, Hurst A, Hutchinson C, Hyo T, Ibrahim FH, Ibrahim S, Ihana N, Ikeda T, Imai A, Imamine R, Inamori A, Inazawa H, Ingell J, Inomata K, Inukai Y, Ioka M, Irtiza-Ali A, Isakova T, Isari W, Iselt M, Ishiguro A, Ishihara K, Ishikawa T, Ishimoto T, Ishizuka K, Ismail R, Itano S, Ito H, Ito K, Ito M, Ito Y, Iwagaitsu S, Iwaita Y, Iwakura T, Iwamoto M, Iwasa M, Iwasaki H, Iwasaki S, Izumi K, Izumi K, Izumi T, Jaafar SM, Jackson C, Jackson Y, Jafari G, Jahangiriesmaili M, Jain N, Jansson K, Jasim H, Jeffers L, Jenkins A, Jesky M, Jesus-Silva J, Jeyarajah D, Jiang Y, Jiao X, Jimenez G, Jin B, Jin Q, Jochims J, Johns B, Johnson C, Johnson T, Jolly S, Jones L, Jones L, Jones S, Jones T, Jones V, Joseph M, Joshi S, Judge P, Junejo N, Junus S, Kachele M, Kadowaki T, Kadoya H, Kaga H, Kai H, Kajio H, Kaluza-Schilling W, Kamaruzaman L, Kamarzarian A, Kamimura Y, Kamiya H, Kamundi C, Kan T, Kanaguchi Y, Kanazawa A, Kanda E, Kanegae S, Kaneko K, Kaneko K, Kang HY, Kano T, Karim M, Karounos D, Karsan W, Kasagi R, Kashihara N, Katagiri H, Katanosaka A, Katayama A, Katayama M, Katiman E, Kato K, Kato M, Kato N, Kato S, Kato T, Kato Y, Katsuda Y, Katsuno T, Kaufeld J, Kavak Y, Kawai I, Kawai M, Kawai M, Kawase A, Kawashima S, Kazory A, Kearney J, Keith B, Kellett J, Kelley S, Kershaw M, Ketteler M, Khai Q, Khairullah Q, Khandwala H, Khoo KKL, Khwaja A, Kidokoro K, Kielstein J, Kihara M, Kimber C, Kimura S, Kinashi H, Kingston H, Kinomura M, Kinsella-Perks E, Kitagawa M, Kitajima M, Kitamura S, Kiyosue A, Kiyota M, Klauser F, Klausmann G, Kmietschak W, Knapp K, Knight C, Knoppe A, Knott C, Kobayashi M, Kobayashi R, Kobayashi T, Koch M, Kodama S, Kodani N, Kogure E, Koizumi M, Kojima H, Kojo T, Kolhe N, Komaba H, Komiya T, Komori H, Kon SP, Kondo M, Kondo M, Kong W, Konishi M, Kono K, Koshino M, Kosugi T, Kothapalli B, Kozlowski T, Kraemer B, Kraemer-Guth A, Krappe J, Kraus D, Kriatselis C, Krieger C, Krish P, Kruger B, Ku Md Razi KR, Kuan Y, Kubota S, Kuhn S, Kumar P, Kume S, Kummer I, Kumuji R, Küpper A, Kuramae T, Kurian L, Kuribayashi C, Kurien R, Kuroda E, Kurose T, Kutschat A, Kuwabara N, Kuwata H, La Manna G, Lacey M, Lafferty K, LaFleur P, Lai V, Laity E, Lambert A, Landray MJ, Langlois M, Latif F, Latore E, Laundy E, Laurienti D, Lawson A, Lay M, Leal I, Leal I, Lee AK, Lee J, Lee KQ, Lee R, Lee SA, Lee YY, Lee-Barkey Y, Leonard N, Leoncini G, Leong CM, Lerario S, Leslie A, Levin A, Lewington A, Li J, Li N, Li X, Li Y, Liberti L, Liberti ME, Liew A, Liew YF, Lilavivat U, Lim SK, Lim YS, Limon E, Lin H, Lioudaki E, Liu H, Liu J, Liu L, Liu Q, Liu WJ, Liu X, Liu Z, Loader D, Lochhead H, Loh CL, Lorimer A, Loudermilk L, Loutan J, Low CK, Low CL, Low YM, Lozon Z, Lu Y, Lucci D, Ludwig U, Luker N, Lund D, Lustig R, Lyle S, Macdonald C, MacDougall I, Machicado R, MacLean D, Macleod P, Madera A, Madore F, Maeda K, Maegawa H, Maeno S, Mafham M, Magee J, Maggioni AP, Mah DY, Mahabadi V, Maiguma M, Makita Y, Makos G, Manco L, Mangiacapra R, Manley J, Mann P, Mano S, Marcotte G, Maris J, Mark P, Markau S, Markovic M, Marshall C, Martin M, Martinez C, Martinez S, Martins G, Maruyama K, Maruyama S, Marx K, Maselli A, Masengu A, Maskill A, Masumoto S, Masutani K, Matsumoto M, Matsunaga T, Matsuoka N, Matsushita M, Matthews M, Matthias S, Matvienko E, Maurer M, Maxwell P, Mayne KJ, Mazlan N, Mazlan SA, Mbuyisa A, McCafferty K, McCarroll F, McCarthy T, McClary-Wright C, McCray K, McDermott P, McDonald C, McDougall R, McHaffie E, McIntosh K, McKinley T, McLaughlin S, McLean N, McNeil L, Measor A, Meek J, Mehta A, Mehta R, Melandri M, Mené P, Meng T, Menne J, Merritt K, Merscher S, Meshykhi C, Messa P, Messinger L, Miftari N, Miller R, Miller Y, Miller-Hodges E, Minatoguchi M, Miners M, Minutolo R, Mita T, Miura Y, Miyaji M, Miyamoto S, Miyatsuka T, Miyazaki M, Miyazawa I, Mizumachi R, Mizuno M, Moffat S, Mohamad Nor FS, Mohamad Zaini SN, Mohamed Affandi FA, Mohandas C, Mohd R, Mohd Fauzi NA, Mohd Sharif NH, Mohd Yusoff Y, Moist L, Moncada A, Montasser M, Moon A, Moran C, Morgan N, Moriarty J, Morig G, Morinaga H, Morino K, Morisaki T, Morishita Y, Morlok S, Morris A, Morris F, Mostafa S, Mostefai Y, Motegi M, Motherwell N, Motta D, Mottl A, Moys R, Mozaffari S, Muir J, Mulhern J, Mulligan S, Munakata Y, Murakami C, Murakoshi M, Murawska A, Murphy K, Murphy L, Murray S, Murtagh H, Musa MA, Mushahar L, Mustafa R, Mustafar R, Muto M, Nadar E, Nagano R, Nagasawa T, Nagashima E, Nagasu H, Nagelberg S, Nair H, Nakagawa Y, Nakahara M, Nakamura J, Nakamura R, Nakamura T, Nakaoka M, Nakashima E, Nakata J, Nakata M, Nakatani S, Nakatsuka A, Nakayama Y, Nakhoul G, Nangaku M, Naverrete G, Navivala A, Nazeer I, Negrea L, Nethaji C, Newman E, Ng SYA, Ng TJ, Ngu LLS, Nimbkar T, Nishi H, Nishi M, Nishi S, Nishida Y, Nishiyama A, Niu J, Niu P, Nobili G, Nohara N, Nojima I, Nolan J, Nosseir H, Nozawa M, Nunn M, Nunokawa S, Oda M, Oe M, Oe Y, Ogane K, Ogawa W, Ogihara T, Oguchi G, Ohsugi M, Oishi K, Okada Y, Okajyo J, Okamoto S, Okamura K, Olufuwa O, Oluyombo R, Omata A, Omori Y, Ong LM, Ong YC, Onyema J, Oomatia A, Oommen A, Oremus R, Orimo Y, Ortalda V, Osaki Y, Osawa Y, Osmond Foster J, O'Sullivan A, Otani T, Othman N, Otomo S, O'Toole J, Owen L, Ozawa T, Padiyar A, Page N, Pajak S, Paliege A, Pandey A, Pandey R, Pariani H, Park J, Parrigon M, Passauer J, Patecki M, Patel M, Patel R, Patel T, Patel Z, Paul R, Paul R, Paulsen L, Pavone L, Peixoto A, Peji J, Peng BC, Peng K, Pennino L, Pereira E, Perez E, Pergola P, Pesce F, Pessolano G, Petchey W, Petr EJ, Pfab T, Phelan P, Phillips R, Phillips T, Phipps M, Piccinni G, Pickett T, Pickworth S, Piemontese M, Pinto D, Piper J, Plummer-Morgan J, Poehler D, Polese L, Poma V, Pontremoli R, Postal A, Pötz C, Power A, Pradhan N, Pradhan R, Preiss D, Preiss E, Preston K, Prib N, Price L, Provenzano C, Pugay C, Pulido R, Putz F, Qiao Y, Quartagno R, Quashie-Akponeware M, Rabara R, Rabasa-Lhoret R, Radhakrishnan D, Radley M, Raff R, Raguwaran S, Rahbari-Oskoui F, Rahman M, Rahmat K, Ramadoss S, Ramanaidu S, Ramasamy S, Ramli R, Ramli S, Ramsey T, Rankin A, Rashidi A, Raymond L, Razali WAFA, Read K, Reiner H, Reisler A, Reith C, Renner J, Rettenmaier B, Richmond L, Rijos D, Rivera R, Rivers V, Robinson H, Rocco M, Rodriguez-Bachiller I, Rodriquez R, Roesch C, Roesch J, Rogers J, Rohnstock M, Rolfsmeier S, Roman M, Romo A, Rosati A, Rosenberg S, Ross T, Rossello X, Roura M, Roussel M, Rovner S, Roy S, Rucker S, Rump L, Ruocco M, Ruse S, Russo F, Russo M, Ryder M, Sabarai A, Saccà C, Sachson R, Sadler E, Safiee NS, Sahani M, Saillant A, Saini J, Saito C, Saito S, Sakaguchi K, Sakai M, Salim H, Salviani C, Sammons E, Sampson A, Samson F, Sandercock P, Sanguila S, Santorelli G, Santoro D, Sarabu N, Saram T, Sardell R, Sasajima H, Sasaki T, Satko S, Sato A, Sato D, Sato H, Sato H, Sato J, Sato T, Sato Y, Satoh M, Sawada K, Schanz M, Scheidemantel F, Schemmelmann M, Schettler E, Schettler V, Schlieper GR, Schmidt C, Schmidt G, Schmidt U, Schmidt-Gurtler H, Schmude M, Schneider A, Schneider I, Schneider-Danwitz C, Schomig M, Schramm T, Schreiber A, Schricker S, Schroppel B, Schulte-Kemna L, Schulz E, Schumacher B, Schuster A, Schwab A, Scolari F, Scott A, Seeger W, Seeger W, Segal M, Seifert L, Seifert M, Sekiya M, Sellars R, Seman MR, Shah S, Shah S, Shainberg L, Shanmuganathan M, Shao F, Sharma K, Sharpe C, Sheikh-Ali M, Sheldon J, Shenton C, Shepherd A, Shepperd M, Sheridan R, Sheriff Z, Shibata Y, Shigehara T, Shikata K, Shimamura K, Shimano H, Shimizu Y, Shimoda H, Shin K, Shivashankar G, Shojima N, Silva R, Sim CSB, Simmons K, Sinha S, Sitter T, Sivanandam S, Skipper M, Sloan K, Sloan L, Smith R, Smyth J, Sobande T, Sobata M, Somalanka S, Song X, Sonntag F, Sood B, Sor SY, Soufer J, Sparks H, Spatoliatore G, Spinola T, Squyres S, Srivastava A, Stanfield J, Staplin N, Staylor K, Steele A, Steen O, Steffl D, Stegbauer J, Stellbrink C, Stellbrink E, Stevens W, Stevenson A, Stewart-Ray V, Stickley J, Stoffler D, Stratmann B, Streitenberger S, Strutz F, Stubbs J, Stumpf J, Suazo N, Suchinda P, Suckling R, Sudin A, Sugamori K, Sugawara H, Sugawara K, Sugimoto D, Sugiyama H, Sugiyama H, Sugiyama T, Sullivan M, Sumi M, Suresh N, Sutton D, Suzuki H, Suzuki R, Suzuki Y, Suzuki Y, Suzuki Y, Swanson E, Swift P, Syed S, Szerlip H, Taal M, Taddeo M, Tailor C, Tajima K, Takagi M, Takahashi K, Takahashi K, Takahashi M, Takahashi T, Takahira E, Takai T, Takaoka M, Takeoka J, Takesada A, Takezawa M, Talbot M, Taliercio J, Talsania T, Tamori Y, Tamura R, Tamura Y, Tan CHH, Tan EZZ, Tanabe A, Tanabe K, Tanaka A, Tanaka A, Tanaka N, Tang S, Tang Z, Tanigaki K, Tarlac M, Tatsuzawa A, Tay JF, Tay LL, Taylor J, Taylor K, Taylor K, Te A, Tenbusch L, Teng KS, Terakawa A, Terry J, Tham ZD, Tholl S, Thomas G, Thong KM, Tietjen D, Timadjer A, Tindall H, Tipper S, Tobin K, Toda N, Tokuyama A, Tolibas M, Tomita A, Tomita T, Tomlinson J, Tonks L, Topf J, Topping S, Torp A, Torres A, Totaro F, Toth P, Toyonaga Y, Tripodi F, Trivedi K, Tropman E, Tschope D, Tse J, Tsuji K, Tsunekawa S, Tsunoda R, Tucky B, Tufail S, Tuffaha A, Turan E, Turner H, Turner J, Turner M, Tuttle KR, Tye YL, Tyler A, Tyler J, Uchi H, Uchida H, Uchida T, Uchida T, Udagawa T, Ueda S, Ueda Y, Ueki K, Ugni S, Ugwu E, Umeno R, Unekawa C, Uozumi K, Urquia K, Valleteau A, Valletta C, van Erp R, Vanhoy C, Varad V, Varma R, Varughese A, Vasquez P, Vasseur A, Veelken R, Velagapudi C, Verdel K, Vettoretti S, Vezzoli G, Vielhauer V, Viera R, Vilar E, Villaruel S, Vinall L, Vinathan J, Visnjic M, Voigt E, von-Eynatten M, Vourvou M, Wada J, Wada J, Wada T, Wada Y, Wakayama K, Wakita Y, Wallendszus K, Walters T, Wan Mohamad WH, Wang L, Wang W, Wang X, Wang X, Wang Y, Wanner C, Wanninayake S, Watada H, Watanabe K, Watanabe K, Watanabe M, Waterfall H, Watkins D, Watson S, Weaving L, Weber B, Webley Y, Webster A, Webster M, Weetman M, Wei W, Weihprecht H, Weiland L, Weinmann-Menke J, Weinreich T, Wendt R, Weng Y, Whalen M, Whalley G, Wheatley R, Wheeler A, Wheeler J, Whelton P, White K, Whitmore B, Whittaker S, Wiebel J, Wiley J, Wilkinson L, Willett M, Williams A, Williams E, Williams K, Williams T, Wilson A, Wilson P, Wincott L, Wines E, Winkelmann B, Winkler M, Winter-Goodwin B, Witczak J, Wittes J, Wittmann M, Wolf G, Wolf L, Wolfling R, Wong C, Wong E, Wong HS, Wong LW, Wong YH, Wonnacott A, Wood A, Wood L, Woodhouse H, Wooding N, Woodman A, Wren K, Wu J, Wu P, Xia S, Xiao H, Xiao X, Xie Y, Xu C, Xu Y, Xue H, Yahaya H, Yalamanchili H, Yamada A, Yamada N, Yamagata K, Yamaguchi M, Yamaji Y, Yamamoto A, Yamamoto S, Yamamoto S, Yamamoto T, Yamanaka A, Yamano T, Yamanouchi Y, Yamasaki N, Yamasaki Y, Yamasaki Y, Yamashita C, Yamauchi T, Yan Q, Yanagisawa E, Yang F, Yang L, Yano S, Yao S, Yao Y, Yarlagadda S, Yasuda Y, Yiu V, Yokoyama T, Yoshida S, Yoshidome E, Yoshikawa H, Young A, Young T, Yousif V, Yu H, Yu Y, Yuasa K, Yusof N, Zalunardo N, Zander B, Zani R, Zappulo F, Zayed M, Zemann B, Zettergren P, Zhang H, Zhang L, Zhang L, Zhang N, Zhang X, Zhao J, Zhao L, Zhao S, Zhao Z, Zhong H, Zhou N, Zhou S, Zhu D, Zhu L, Zhu S, Zietz M, Zippo M, Zirino F, Zulkipli FH. Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial. Lancet Diabetes Endocrinol 2024; 12:51-60. [PMID: 38061372 DOI: 10.1016/s2213-8587(23)00322-4] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The EMPA-KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. METHODS EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. FINDINGS Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5-2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62-0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16-1·59), representing a 50% (42-58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). INTERPRETATION In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. FUNDING Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council.
Collapse
|
Randomized Controlled Trial |
1 |
|
21
|
Niu P, Kreuzer M, Liesegang A, Kunz C, Schwarm A, Giller K. Effects of graded levels of dietary pomegranate peel on methane and nitrogen losses, and metabolic and health indicators in dairy cows. J Dairy Sci 2023; 106:8627-8641. [PMID: 37641245 DOI: 10.3168/jds.2022-23141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/05/2023] [Indexed: 08/31/2023]
Abstract
This study aimed to quantify the effects of dietary inclusion of tannin-rich pomegranate peel (PP) on intake, methane and nitrogen (N) losses, and metabolic and health indicators in dairy cows. Four multiparous, late-lactating Brown Swiss dairy cows (796 kg body weight; 29 kg/d of energy corrected milk yield) were randomly allocated to 3 treatments in a randomized cyclic change-over design with 3 periods, each comprising 14 d of adaptation, 7 d of milk, urine, and feces collection, and 2 d of methane measurements. Treatments were formulated using PP that replaced on a dry matter (DM) basis 0% (control), 5%, and 10% of the basal mixed ration (BMR) consisting of corn and grass silage, alfalfa, and concentrate. Gaseous exchange of the cows was determined in open-circuit respiration chambers. Blood samples were collected on d 15 of each period. Individual feed intake as well as feces and urine excretion were quantified, and representative samples were collected for analyses of nutrients and phenol composition. Milk was analyzed for concentrations of fat, protein, lactose, milk urea N, and fatty acids. Total phenols and antioxidant capacity in milk and plasma were determined. In serum, the concentrations of urea and bilirubin as well as the activities of alanine aminotransferase (ALT), aspartate aminotransferase, glutamate dehydrogenase, alkaline phosphatase, and γ-glutamyl transferase were measured. The data were subjected to ANOVA with the Mixed procedure of SAS, with treatment and period as fixed and animal as random effects. The PP and BMR contained 218 and 3.5 g of total extractable tannins per kg DM, respectively, and thereof 203 and 3.3 g of hydrolyzable tannins. Total DM intake, energy corrected milk, and methane emission (total, yield, and intensity) were not affected by PP supplementation. The proportions of C18:2n-6 and C18:3n-3 in milk increased linearly as the amount of PP was increased in the diet. Milk urea N, blood urea N, and urinary N excretion decreased linearly with the increase in dietary PP content. Total phenols and antioxidant capacity in milk and plasma were not affected by the inclusion of PP. The activity of ALT increased in a linear manner with the inclusion of PP. In conclusion, replacing up to 10% of BMR with PP improved milk fatty acid composition and alleviated metabolic and environmental N load. However, the elevated serum ALT activity indicates an onset of liver stress even at 5% PP, requiring the development of adaptation protocols for safe inclusion of PP in ruminant diets.
Collapse
|
Randomized Controlled Trial, Veterinary |
2 |
|