1
|
Sendra M, Pereiro P, Yeste MP, Mercado L, Figueras A, Novoa B. Size matters: Zebrafish (Danio rerio) as a model to study toxicity of nanoplastics from cells to the whole organism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115769. [PMID: 33070068 DOI: 10.1016/j.envpol.2020.115769] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 05/22/2023]
Abstract
The contamination of the aquatic environment by plastic nanoparticles is becoming a major concern due to their potential adverse effects in aquatic biota. Therefore, in-depth knowledge of their uptake, trafficking and effects at cellular and systemic levels is essential to understand their potential impacts for aquatic species. In this work, zebrafish (Danio rerio) was used as a model and our aims were: i) to determine the distribution, uptake, trafficking, degradation and genotoxicity of polystyrene (PS) NPs of different sizes in a zebrafish cell line; ii) to study PS NPs accumulation, migration of immune cells and genotoxicity in larvae exposed to PS NPs; and iii) to assess how PS NPs condition the survival of zebrafish larvae exposed to a pathogen and/or how they impact the resistance of an immunodeficient zebrafish. Our results revealed that the cellular distribution differed depending on the particle size: the 50 nm PS NPs were more homogeneously distributed in the cytoplasm and the 1 μM PS NPs more agglomerated. The main endocytic mechanisms for the uptake of NPs were dynamin-dependent internalization for the 50 nm NPs and phagocytosis for the 1 μm nanoparticles. In both cases, degradation in lysosomes was the main fate of the PS NPs, which generated alkalinisation and modified cathepsin genes expression. These effects at cellular level agree with the results in vivo, since lysosomal alkalization increases oxidative stress and vice versa. Nanoparticles mainly accumulated in the gut, where they triggered reactive oxygen species, decreased expression of the antioxidant gene catalase and induced migration of immune cells. Finally, although PS NPs did not induce mortality in wild-type larvae, immunodeficient and infected larvae had decreased survival upon exposure to PS NPs. This fact could be explained by the mechanical disruption and/or the oxidative damage caused by these NPs that increase their susceptibility to pathogens.
Collapse
|
|
4 |
85 |
2
|
Forn-Cuní G, Varela M, Pereiro P, Novoa B, Figueras A. Conserved gene regulation during acute inflammation between zebrafish and mammals. Sci Rep 2017; 7:41905. [PMID: 28157230 PMCID: PMC5291205 DOI: 10.1038/srep41905] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 01/03/2017] [Indexed: 11/09/2022] Open
Abstract
Zebrafish (Danio rerio), largely used as a model for studying developmental processes, has also emerged as a valuable system for modelling human inflammatory diseases. However, in a context where even mice have been questioned as a valid model for these analysis, a systematic study evaluating the reproducibility of human and mammalian inflammatory diseases in zebrafish is still lacking. In this report, we characterize the transcriptomic regulation to lipopolysaccharide in adult zebrafish kidney, liver, and muscle tissues using microarrays and demonstrate how the zebrafish genomic responses can effectively reproduce the mammalian inflammatory process induced by acute endotoxin stress. We provide evidence that immune signaling pathways and single gene expression is well conserved throughout evolution and that the zebrafish and mammal acute genomic responses after lipopolysaccharide stimulation are highly correlated despite the differential susceptibility between species to that compound. Therefore, we formally confirm that zebrafish inflammatory models are suited to study the basic mechanisms of inflammation in human inflammatory diseases, with great translational impact potential.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
75 |
3
|
Pereiro P, Varela M, Diaz-Rosales P, Romero A, Dios S, Figueras A, Novoa B. Zebrafish Nk-lysins: First insights about their cellular and functional diversification. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:148-159. [PMID: 25813149 DOI: 10.1016/j.dci.2015.03.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/19/2015] [Accepted: 03/19/2015] [Indexed: 06/04/2023]
Abstract
Nk-lysins are antimicrobial proteins produced by cytotoxic T lymphocytes and natural killer cells with a broad antimicrobial spectrum (including bacteria, fungi and parasites). Nevertheless, the implication of these proteins in the protection against viral infections is still poorly understood. In this work, four different Nk-lysin genes (nkla, nklb, nklc and nkld) were identified in the zebrafish genome. That means that zebrafish is the species with the higher repertoire of Nk-lysin genes described so far. The differential expression pattern of the Nk-lysins in several tissues, during ontogeny, among the different kidney cell populations, as well as between Rag1(-/-) and Rag1(+/+) individuals, could suggest a certain specialization of different cell types in the production of different Nk-lysin. Moreover, only two of these genes (nkla and nkld) were significantly up-regulated after viral infection, and this observation could be also a consequence of a functional diversification of the zebrafish Nk-lysins.
Collapse
|
|
10 |
61 |
4
|
Pereiro P, Figueras A, Novoa B. A novel hepcidin-like in turbot (Scophthalmus maximus L.) highly expressed after pathogen challenge but not after iron overload. FISH & SHELLFISH IMMUNOLOGY 2012; 32:879-89. [PMID: 22381569 DOI: 10.1016/j.fsi.2012.02.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/08/2012] [Accepted: 02/12/2012] [Indexed: 05/06/2023]
Abstract
Hepcidins are antimicrobial peptides with an important role in the host innate immunity. Moreover, it has been reported that mammalian hepcidins present a dual-function being a key regulator in the iron homeostasis. Here, we describe the coding sequence of a novel hepcidin-like peptide in turbot, Scophthalmus maximus. This molecule presents several differences with regard to the previously characterized hepcidin in this flatfish species and it has not the hypothetical iron regulatory sequence Q-S/I-H-L/I-S/A-L in the N-terminal region. Therefore we propose the existence of at least two types of hepcidin in turbot. Moreover, results revealed a higher variability in the mRNA sequences of the novel hepcidin compared with the other form. Constitutive expression of turbot hepcidins (Hepcidin-1 and Hepcidin-2) was analyzed in several tissues and as expected, both molecules were highly represented in liver. On the other hand, the effect of three different stimuli (bacterial or viral infection and iron overloading) in the level of hepcidin mRNA was also examined and a differential response to pathogens and iron was observed. Whereas both hepcidins were affected by pathogen challenge, only Hepcidin-1 was up-regulated after iron overloading. Therefore, this and other evidences suggest that these peptides could be involved in different functions covering the dual role of mammalian hepcidins.
Collapse
|
|
13 |
44 |
5
|
Lama R, Pereiro P, Costa MM, Encinar JA, Medina-Gali RM, Pérez L, Lamas J, Leiro J, Figueras A, Novoa B. Turbot (Scophthalmus maximus) Nk-lysin induces protection against the pathogenic parasite Philasterides dicentrarchi via membrane disruption. FISH & SHELLFISH IMMUNOLOGY 2018; 82:190-199. [PMID: 30086378 DOI: 10.1016/j.fsi.2018.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/23/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
P. dicentrarchi is one of the most threatening pathogens for turbot aquaculture. This protozoan ciliate is a causative agent of scuticociliatosis, which is a disease with important economic consequences for the sector. Neither vaccines nor therapeutic treatments are commercially available to combat this infection. Numerous antimicrobial peptides (AMPs) have demonstrated broad-spectrum activity against bacteria, viruses, fungi, parasites and even tumor cells; an example is Nk-lysin (Nkl), which is an AMP belonging to the saposin-like protein (SAPLIP) family with an ability to interact with biological membranes. Following the recent characterization of turbot Nkl, an expression plasmid encoding Nkl was constructed and an anti-Nkl polyclonal antibody was successfully tested. Using these tools, we demonstrated that although infection did not clearly affect nkl mRNA expression, it induced changes at the protein level. Turbot Nkl had the ability to inhibit proliferation of the P. dicentrarchi parasite both in vivo and in vitro. Moreover, a shortened peptide containing the active core of turbot Nkl (Nkl71-100) was synthesized and showed high antiparasitic activity with a direct effect on parasite viability that probably occurred via membrane disruption. Therefore, the nkl gene may be a good candidate for genetic breeding selection of fish, and either the encoded peptide or its shortened analog is a promising antiparasitic treatment in aquaculture.
Collapse
|
|
7 |
32 |
6
|
Diaz-Rosales P, Pereiro P, Figueras A, Novoa B, Dios S. The warm temperature acclimation protein (Wap65) has an important role in the inflammatory response of turbot (Scophthalmus maximus). FISH & SHELLFISH IMMUNOLOGY 2014; 41:80-92. [PMID: 24794581 DOI: 10.1016/j.fsi.2014.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/22/2014] [Indexed: 06/03/2023]
Abstract
Wap65 is a molecule similar to the mammalian hemopexin that is a serum glycoprotein produced mainly by the liver with high affinity to heme. Its primary role is participating in iron metabolism scavenging heme that is released into the plasma and transporting it to the liver. It has been reported an important role of hemopexin in the inflammation as an acute-phase protein and its production is up-regulated by pro-inflammatory cytokines. There are also some evidences suggesting this immune-induction in fish Wap65 genes. Most teleost species presents two Wap65 genes but their physiological functions have not been completely elucidated; in fact, the transcriptional patterns of Wap65 genes to stimulatory treatments are variable and contradictory. In the present study two Wap65 genes, Wap65-1 and Wap65-2, have been characterized for the first time in turbot (Scophthalmus maximus). Their constitutive expression and differential modulation by thermal treatments, immune challenges (bacterial and viral), as well as iron supplementation, have been investigated. Both genes were mainly expressed in liver, but they were detected in all tested tissues. Whereas Wap65-1 and Wap65-2 were up-regulated by temperature rise and bacterial challenge, VHSV infection inhibited the expression of both genes. Moreover, iron-dextran administration induced only the overexpression of Wap65-1. Interestingly, these induction were observed in head kidney buy not in liver. The effect of Wap65 protein purified from turbot serum by hemin-agarose affinity chromatography was also studied to demonstrate a possible anti-inflammatory role, analyzing its inhibitory effect on leucocytes migration induced by zymosan injection to the peritoneal cavity.
Collapse
|
|
11 |
17 |
7
|
Costa MM, Pereiro P, Wang T, Secombes CJ, Figueras A, Novoa B. Characterization and gene expression analysis of the two main Th17 cytokines (IL-17A/F and IL-22) in turbot, Scophthalmus maximus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:505-16. [PMID: 23000268 DOI: 10.1016/j.dci.2012.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 06/01/2023]
Abstract
This report describes the cloning, characterization and gene expression pattern of two Th17 cytokines, interleukin (IL)-17A/F and -22, in turbot Scophthalmus maximus. The turbot IL-17A/F cDNA contains a 516 bp open reading frame encoding a deduced IL-17A/F protein of 171 amino acid (aa) residues, containing a predicted signal peptide of 31 aa. Turbot IL-22 had a 564 bp ORF coding for a 187 aa protein with a 33 aa signal peptide. The turbot IL-22 protein contained a typical IL-10 family signature. Both cytokines had highest expression levels in the intestine followed by head kidney and gills. Stimulation with the Gram negative bacterium Aeromonas salmonicida was able to modulate IL-17A/F and IL-22 expression in head kidney, spleen and liver but not the intestine. PMA and PHA were also able to induce the expression of both cytokines, suggesting that, as expected, T-cells are likely the main producers of these molecules in turbot as in mammals.
Collapse
|
|
13 |
14 |
8
|
Pereiro P, Costa MM, Díaz-Rosales P, Dios S, Figueras A, Novoa B. The first characterization of two type I interferons in turbot (Scophthalmus maximus) reveals their differential role, expression pattern and gene induction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:233-244. [PMID: 24680948 DOI: 10.1016/j.dci.2014.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/10/2014] [Accepted: 03/12/2014] [Indexed: 06/03/2023]
Abstract
Type I interferons (IFNs) are considered the main cytokines directing the antiviral immune response in vertebrates. These molecules are able to induce the transcription of interferon-stimulated genes (ISGs) which, using different blocking mechanisms, reduce the viral proliferation in the host. In addition, a contradictory role of these IFNs in the protection against bacterial challenges using murine models has been observed, increasing the survival or having a detrimental effect depending on the bacteria species. In teleosts, a variable number of type I IFNs has been described with different expression patterns, protective capabilities or gene induction profiles even for the different IFNs belonging to the same species. In this work, two type I IFNs (ifn1 and ifn2) have been characterized for the first time in turbot (Scophthalmus maximus), showing different properties. Whereas Ifn1 reflected a clear antiviral activity (over-expression of ISGs and protection against viral haemorrhagic septicaemia virus), Ifn2 was not able to induce this response, although both transcripts were up-regulated after viral challenge. On the other hand, turbot IFNs did not show any protective effect against the bacteria Aeromonas salmonicida, although they were induced after bacterial challenge. Both IFNs induced the expression of several immune genes, but the effect of Ifn2 was mainly limited to the site of administration (intramuscular injection). Interestingly, Ifn2 but not Ifn1 induced an increase in the expression level of interleukin-1 beta (il1b). Therefore, the role of Ifn2 could be more related with the immune regulation, being involved mainly in the inflammation process.
Collapse
|
|
11 |
10 |
9
|
Pereiro P, Martinez-Lopez A, Falco A, Dios S, Figueras A, Coll JM, Novoa B, Estepa A. Protection and antibody response induced by intramuscular DNA vaccine encoding for viral haemorrhagic septicaemia virus (VHSV) G glycoprotein in turbot (Scophthalmus maximus). FISH & SHELLFISH IMMUNOLOGY 2012; 32:1088-1094. [PMID: 22554577 DOI: 10.1016/j.fsi.2012.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/01/2012] [Accepted: 03/05/2012] [Indexed: 05/31/2023]
Abstract
Turbot (Scophthalmus maximus) is a high-value farmed marine flatfish with growing demand and production levels in Europe susceptible to turbot-specific viral haemorrhagic septicaemia virus (VHSV) strains. To evaluate the possibility of controlling the outbreaks of this infectious disease by means of DNA vaccination, the gpG of a VHSV isolated from farmed turbot (VHSV(860)) was cloned into an expression plasmid containing the human cytomegalovirus (CMV) promoter (pMCV1.4-G(860)). In our experimental conditions, DNA immunised turbots were more than 85% protected against VHSV(860) lethal challenge and showed both VHSV-gpG specific and neutralizing antibodies. To our knowledge this is the first report showing the efficacy of turbot genetic immunisation against a VHSV. Work is in progress to determine the contribution of innate and adaptive immunity to the protective response elicited by the immunization.
Collapse
|
|
13 |
8 |
10
|
Blanco-Abad V, Noia M, Valle A, Fontenla F, Folgueira I, De Felipe AP, Pereiro P, Leiro J, Lamas J. The coagulation system helps control infection caused by the ciliate parasite Philasterides dicentrarchi in the turbot Scophthalmus maximus (L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:147-156. [PMID: 29935288 DOI: 10.1016/j.dci.2018.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Many studies have shown that coagulation systems play an important role in the defence against pathogens in invertebrates and vertebrates. In vertebrates, particularly in mammals, it has been established that the coagulation system participates in the entrapment of pathogens and activation of the early immune response. However, functional studies investigating the importance of the fish coagulation system in host defence against pathogens are scarce. In the present study, injection of turbot (Scopthalamus maximus) with the pathogenic ciliate Philasterides dicentrarchi led to the formation of macroscopic intraperitoneal clots in the fish. The clots contained abundant, immobilized ciliates, many of which were lysed. We demonstrated that the plasma clots immobilize and kill the ciliates in vitro. To test the importance of plasma clotting in ciliate killing, we inhibited the process by adding a tetrapeptide known to inhibit fibrinogen/thrombin clotting in mammals. Plasma tended to kill P. dicentrarchi slightly faster when clotting was inhibited by the tetrapeptide, although the total mortality of ciliates was similar. We also found that kaolin, a particulate activator of the intrinsic pathway in mammals, accelerates plasma clotting in turbot. In addition, PMA-stimulated neutrophils, living ciliates and several ciliate components such as cilia, proteases and DNA also displayed procoagulant activity in vitro. Injection of fish with the ciliates generated the massive release of neutrophils to the peritoneal cavity, with formation of large aggregates in those fish with live ciliates in the peritoneum. We observed, by SEM, numerous fibrin-like fibres in the peritoneal exudate, many of which were associated with peritoneal leukocytes and ciliates. Expression of the CD18/CD11b gene, an integrin associated with cell adhesion and the induction of fibrin formation, was upregulated in the peritoneal leukocytes. In conclusion, the findings of the present study show that P. dicentrarchi induces the formation of plasma clots and that the fish coagulation system may play an important role in immobilizing and killing this parasite.
Collapse
|
|
7 |
4 |
11
|
Monteiro M, Perdiguero P, Couto A, Serra CR, Pereiro P, Novoa B, Figueras A, Ribeiro L, Pousão-Ferreira P, Tafalla C, Oliva-Teles A, Enes P, Secombes CJ, Díaz-Rosales P. Comprehensive transcriptome profiling and functional analysis of the meagre (Argyrosomus regius) immune system. FISH & SHELLFISH IMMUNOLOGY 2022; 123:506-520. [PMID: 35351613 DOI: 10.1016/j.fsi.2022.03.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Meagre (Argyrosomus regius) belongs to the family Sciaenidae and is a promising candidate for Mediterranean aquaculture diversification. As a relatively recent species in aquaculture, the physiological consequences of the immune system activation in meagre are understudied. Spleen, as a primary lymphoid organ has an essential role in meagre immune and inflammatory responses. In this study, we have evaluated the in vivo effects of lipopolysaccharide (LPS) on the spleen transcriptome of meagre by RNA-seq analysis at 4 and 24 h after injection.
Collapse
|
|
3 |
1 |
12
|
Arroyo Pereiro P, Muñoz-Vendrell A, León Moreno I, Bau L, Matas E, Romero-Pinel L, Martínez Yélamos A, Martínez Yélamos S, Andrés-Benito P. Baseline serum neurofilament light chain levels differentiate aggressive from benign forms of relapsing-remitting multiple sclerosis: a 20-year follow-up cohort. J Neurol 2024; 271:1599-1609. [PMID: 38085343 PMCID: PMC10973070 DOI: 10.1007/s00415-023-12135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 03/28/2024]
Abstract
BACKGROUND AND OBJECTIVES Serum biomarkers are emerging as useful prognostic tools for multiple sclerosis (MS); however, long-term studies are lacking. We aimed to evaluate the long-term prognostic value of the serum levels of neurofilament light chain (NfL), total tau, glial fibrillary acidic protein (GFAP), and chitinase 3-like-1 (CHI3L1) measured close to the time of MS onset. METHODS In this retrospective, exploratory, observational, case and controls study, patients with relapsing-remitting MS (RRMS) with available baseline serum samples and prospectively follow-up in our MS unit for a long time were selected based on their clinical evolution to form two groups: (1) a benign RRMS (bRRMS) group, defined as patients with an Expanded Disability Status Scale (EDSS) score of ≤ 3 at ≥ 10 years of follow-up; (2) an aggressive RRMS (aRRMS) group, defined as patients with an EDSS score of ≥ 6 at ≤ 15 years of follow-up. An age-matched healthy control (HC) group was selected. NfL, total tau, and GFAP serum levels were quantified using a single-molecule array (SIMOA), and CHI3L1 was quantified using ELISA. RESULTS Thirty-one patients with bRRMS, 19 with aRRMS, and 10 HC were included. The median follow-up time from sample collection was 17.74 years (interquartile range, 14.60-20.37). Bivariate and multivariate analyses revealed significantly higher NfL and GFAP levels in the aRRMS group than in the bRRMS group. A receiver operating characteristic curve analysis identified serum NfL level as the most efficient marker for distinguishing aRRMS from bRRMS. DISCUSSION This proof-of-concept study comparing benign and aggressive RRMS groups reinforces the potential role of baseline NfL serum levels as a promising long-term disability prognostic marker. In contrast, serum GFAP, total tau, and CHI3L1 levels demonstrated a lower or no ability to differentiate between the long-term outcomes of RRMS.
Collapse
|
Observational Study |
1 |
|