1
|
Smallwood PM, Munoz-Sanjuan I, Tong P, Macke JP, Hendry SH, Gilbert DJ, Copeland NG, Jenkins NA, Nathans J. Fibroblast growth factor (FGF) homologous factors: new members of the FGF family implicated in nervous system development. Proc Natl Acad Sci U S A 1996; 93:9850-7. [PMID: 8790420 PMCID: PMC38518 DOI: 10.1073/pnas.93.18.9850] [Citation(s) in RCA: 292] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Four new members of the fibroblast growth factor (FGF) family, referred to as fibroblast growth factor homologous factors (FHFs), have been identified by a combination of random cDNA sequencing, data base searches, and degenerate PCR. Pairwise comparisons between the four FHFs show between 58% and 71% amino acid sequence identity, but each FHF shows less than 30% identity when compared with other FGFs. Like FGF-1 (acidic FGF) and FGF-2 (basic FGF), the FHFs lack a classical signal sequence and contain clusters of basic residues that can act as nuclear localization signals. In transiently transfected 293 cells FHF-1 accumulates in the nucleus and is not secreted. Each FHF is expressed in the developing and adult nervous systems, suggesting a role for this branch of the FGF family in nervous system development and function.
Collapse
|
research-article |
29 |
292 |
2
|
Cornish J, Callon KE, Naot D, Palmano KP, Banovic T, Bava U, Watson M, Lin JM, Tong PC, Chen Q, Chan VA, Reid HE, Fazzalari N, Baker HM, Baker EN, Haggarty NW, Grey AB, Reid IR. Lactoferrin is a potent regulator of bone cell activity and increases bone formation in vivo. Endocrinology 2004; 145:4366-74. [PMID: 15166119 DOI: 10.1210/en.2003-1307] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lactoferrin is an iron-binding glycoprotein present in epithelial secretions, such as milk, and in the secondary granules of neutrophils. We found it to be present in fractions of milk protein that stimulated osteoblast growth, so we assessed its effects on bone cell function. Lactoferrin produced large, dose-related increases in thymidine incorporation in primary or cell line cultures of human or rat osteoblast-like cells, at physiological concentrations (1-100 microg/ml). Maximal stimulation was 5-fold above control. Lactoferrin also increased osteoblast differentiation and reduced osteoblast apoptosis by up to 50-70%. Similarly, lactoferrin stimulated proliferation of primary chondrocytes. Purified, recombinant, human, or bovine lactoferrins had similar potencies. In mouse bone marrow cultures, osteoclastogenesis was dose-dependently decreased and was completely arrested by lactoferrin, 100 microg/ml, associated with decreased expression of receptor activator of nuclear factor-kappaB ligand. In contrast, lactoferrin had no effect on bone resorption by isolated mature osteoclasts. Lactoferrin was administered over calvariae of adult mice for 5 d. New bone formation, assessed using fluorochrome labels, was increased 4-fold by a 4-mg dose of lactoferrin. Thus, lactoferrin has powerful anabolic, differentiating, and antiapoptotic effects on osteoblasts and inhibits osteoclastogenesis. Lactoferrin is a potential therapeutic target in bone disorders such as osteoporosis and is possibly an important physiological regulator of bone growth.
Collapse
|
|
21 |
202 |
3
|
Khayat ZA, Tong P, Yaworsky K, Bloch RJ, Klip A. Insulin-induced actin filament remodeling colocalizes actin with phosphatidylinositol 3-kinase and GLUT4 in L6 myotubes. J Cell Sci 2000; 113 Pt 2:279-90. [PMID: 10633079 DOI: 10.1242/jcs.113.2.279] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the temporal reorganization of actin microfilaments by insulin and its participation in the localization of signaling molecules and glucose transporters in L6 myotubes expressing myc-tagged glucose transporter 4 (GLUT4myc). Scanning electron microscopy revealed a dynamic distortion of the dorsal cell surface (membrane ruffles) upon insulin treatment. In unstimulated cells, phalloidin-labeled actin filaments ran parallel to the longitudinal axis of the cell. Immunostaining of the p85 regulatory subunit of phosphatidylinositol 3-kinase was diffusely punctate, and GLUT4myc was perinuclear. After 3 minutes of insulin treatment, actin reorganized to form structures; these structures protruded from the dorsal surface of the myotubes by 10 minutes and condensed in the myoplasm into less prominent foci at 30 minutes. The p85 polypeptide colocalized with these structures at all time points. Actin remodeling and p85 relocalization to actin structures were prevented by cytochalasin D or latrunculin B. GLUT4myc recruitment into the actin-rich projections was also observed, but only after 10 minutes of insulin treatment. Irrespective of insulin stimulation, the majority of p85 and a portion (45%) of GLUT4 were recovered in the Triton X-100-insoluble material that was also enriched with actin. In contrast, vp165, a transmembrane aminopeptidase that morphologically colocalized with GLUT4 vesicles, was fully soluble in Triton X-100 extracts of both insulin-treated and control myotubes. Transient transfection of dominant inhibitory Rac1 (N17) into L6 myotubes prevented formation of dorsal actin structures and blocked insulin-induced GLUT4myc translocation to the cell surface. We propose that insulin-dependent formation of actin structures facilitates the association of PI3-K (p85) with GLUT4 vesicles and, potentially, the arrival of GLUT4 at the cell surface.
Collapse
|
|
25 |
164 |
4
|
|
|
49 |
132 |
5
|
Hui ACF, Wong S, Leung CH, Tong P, Mok V, Poon D, Li-Tsang CW, Wong LK, Boet R. A randomized controlled trial of surgery vs steroid injection for carpal tunnel syndrome. Neurology 2005; 64:2074-8. [PMID: 15985575 DOI: 10.1212/01.wnl.0000169017.79374.93] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Decompressive surgery and steroid injection are widely used forms of treatment for carpal tunnel syndrome (CTS) but there is no consensus on their effectiveness in comparison to each other. The authors evaluated the efficacy of surgery vs steroid injection in relieving symptoms in patients with CTS. METHODS The authors conducted a randomized, single blind, controlled trial. Fifty patients with electrophysiologically confirmed idiopathic CTS were randomized and assigned to open carpal tunnel release (25 patients) or to a single injection of steroid (25 patients). Patients were followed up at 6 and 20 weeks. The primary outcome was symptom relief in terms of the Global Symptom Score (GSS), which rates symptoms on a scale of 0 (no symptoms) to 50 (most severe). Nerve conduction studies and grip strength measurements were used as secondary outcome assessments. RESULTS At 20 weeks after randomization, patients who underwent surgery had greater symptomatic improvement than those who were injected. The mean improvement in GSS after 20 weeks was 24.2 (SD 11.0) in the surgery group vs 8.7 (SD 13.0) in the injection group (p < 0.001); surgical decompression also resulted in greater improvement in median nerve distal motor latencies and sensory nerve conduction velocity. Mean grip strength in the surgical group was reduced by 1.7 kg (SD 5.1) compared with a gain of 2.4 kg (SD 5.5) in the injection group. CONCLUSION Compared with steroid injection, open carpal tunnel release resulted in better symptomatic and neurophysiologic outcome but not grip strength in patients with idiopathic carpal tunnel syndrome over a 20-week period.
Collapse
|
|
20 |
119 |
6
|
Cornish J, MacGibbon A, Lin JM, Watson M, Callon KE, Tong PC, Dunford JE, van der Does Y, Williams GA, Grey AB, Naot D, Reid IR. Modulation of osteoclastogenesis by fatty acids. Endocrinology 2008; 149:5688-95. [PMID: 18617622 DOI: 10.1210/en.2008-0111] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Clinical studies have shown that total body fat mass is related to both bone density and fracture risk and that fat ingestion reduces bone turnover. These effects are at least partially mediated by endocrine mechanisms, but it is possible that lipids might act directly on bone. We assessed the effects of broad fractions of milk lipids in osteoblasts, bone marrow, and neonatal mouse calvariae. Several milk fractions and their hydrolysates inhibited osteoclastogenesis in bone marrow cultures, so we assessed the effects of free fatty acids in this model. Saturated fatty acids (0.1-10 microg/ml) inhibited osteoclastogenesis in bone marrow cultures and RAW264.7 cells. This effect was maximal for C14:0 to C18:0 fatty acids. The introduction of greater than 1 double bond abrogated this effect; omega3 and omega6 fatty acids had comparable low activity. Osteoblast proliferation was modestly increased by the antiosteoclastogenic compounds, ruling out a nonspecific toxic effect. Active fatty acids did not consistently change expression of receptor activator of nuclear factor-kappaB ligand or osteoprotegerin in osteoblastic cells nor did they affect the activity of key enzymes in the mevalonate pathway. However, receptors known to bind fatty acids were found to be expressed in osteoblastic (GPR120) and osteoclastic (GPR40, 41, 43, 120) cells. A synthetic GPR 40/120 agonist mimicked the inhibitory effects of fatty acids on osteoclastogenesis. These findings provide a novel link between lipid and bone metabolism, which might contribute to the positive relationship between adiposity and bone density as well as provide novel targets for pharmaceutical and nutriceutical development.
Collapse
|
|
17 |
101 |
7
|
He W, Song H, Su Y, Geng L, Ackerson BJ, Peng HB, Tong P. Dynamic heterogeneity and non-Gaussian statistics for acetylcholine receptors on live cell membrane. Nat Commun 2016; 7:11701. [PMID: 27226072 PMCID: PMC4894960 DOI: 10.1038/ncomms11701] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/20/2016] [Indexed: 12/14/2022] Open
Abstract
The Brownian motion of molecules at thermal equilibrium usually has a finite correlation time and will eventually be randomized after a long delay time, so that their displacement follows the Gaussian statistics. This is true even when the molecules have experienced a complex environment with a finite correlation time. Here, we report that the lateral motion of the acetylcholine receptors on live muscle cell membranes does not follow the Gaussian statistics for normal Brownian diffusion. From a careful analysis of a large volume of the protein trajectories obtained over a wide range of sampling rates and long durations, we find that the normalized histogram of the protein displacements shows an exponential tail, which is robust and universal for cells under different conditions. The experiment indicates that the observed non-Gaussian statistics and dynamic heterogeneity are inherently linked to the slow-active remodelling of the underlying cortical actin network.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
93 |
8
|
Abstract
A rigorous mathematical solution of the sphering of a red blood cell is obtained under the assumptions that the red cells is a fluid-filled shell and that it can swell into a perfect sphere in an appropriate hypotonic medium. The solution is valid for finite strain of the cell membrane provided that the membrane is isotropic, elastic and incompressible. The most general nonlinear elastic stress-strain law for the membrane in a state of generalized plane stress is used. A necessary condition for a red cell to be able to sphere is that its extensional stiffness follow a specific distribution over the membrane. This distribution is strongly influenced by the surface tension in the cell membrane. A unique relation exists between the extensional stiffness, pressure differential, surface tension, and the ratio of the radius of the sphere to that of the undeformed red cell. The functional dependence of this stiffness distribution on various physical parameters is presented. A critique of some current literature on red cell mechanics is presented.
Collapse
|
research-article |
57 |
93 |
9
|
Tong P, Zografi G. Solid-state characteristics of amorphous sodium indomethacin relative to its free acid. Pharm Res 1999; 16:1186-92. [PMID: 10468018 DOI: 10.1023/a:1018985110956] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE Having previously studied the amorphous properties of indomethacin (IN) as a model compound for drugs rendered amorphous during processing, we report on the formation and characterization of its sodium salt in the amorphous state and a comparison between the two systems. METHODS Sodium indomethacin (SI) was subjected to lyophilization from aqueous solution, rapid precipitation from methanol solution, and dehydration followed by grinding to produce, in each case, a completely amorphous form. The amorphous form of SI was analyzed using DSC, XRD, thermomicroscopy and FTIR. The method of scanning rate dependence of the glass transition temperature, Tg, was used to estimate the fragility of the SI system. Enthalpy relaxation experiments were carried out to probe the molecular mobility of the SI system below Tg. RESULTS The amorphous form of SI formed by different methods had a Tg equal to 121 degrees C at a scanning rate of 20 degrees C/min. This compares with a Tg for indomethacin of 45 degrees C. Estimation of fragility by the scanning rate dependence of Tg indicates no significant differences in fragility between ionized and unionized forms. Enthalpy relaxation measurements reveal very similar relaxation patterns between the two systems at the same degree of supercooling relative to their respective Tg values. CONCLUSIONS The amorphous form of SI made by various methods has a Tg that is about 75 degrees C greater than that of IN, most likely because of the greater density and hence lower free volume of SI. Yet, the change of molecular mobility as a function of temperature relative to Tg is not very different between the ionized and unionized systems.
Collapse
|
|
26 |
78 |
10
|
Baadsgaard O, Tong P, Elder JT, Hansen ER, Ho V, Hammerberg C, Lange-Vejlsgaard G, Fox DA, Fisher G, Chan LS, Voorhees JJ, Cooper KD. UM4D4+ (CDw60) T cells are compartmentalized into psoriatic skin and release lymphokines that induce a keratinocyte phenotype expressed in psoriatic lesions. J Invest Dermatol 1990; 95:275-82. [PMID: 1974570 DOI: 10.1111/1523-1747.ep12484908] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
UM4D4 (CDw60), the surface molecule of a novel antigen-independent T-cell activation pathway, was found to be highly expressed on lesional psoriatic T cells. To examine whether UM4D4 represents a T-cell activation pathway for psoriatic T cells, a T-cell line was initiated from an acute skin lesion and cloned by limiting dilution. Clonality was verified by analysis of T-cell receptor gene rearrangement. All T-cell clones tested, whether CD4+2H4+CD8-, CD4+2H4-CD8-, or CD4-CD8+CD11b-, expressed UM4D4 and were activated by the monoclonal antibody anti-UM4D4. Lesional psoriatic T-cell clones were heterogeneous in the degree of anti-UM4D4-induced proliferation and in their production of IL-2 and gamma-interferon. Lymphokines released by anti-UM4D4 activation were capable of inducing ICAM-1 and HLA-DR expression on cultured normal keratinocytes. Thus, the high expression of UM4D4 on T-cells in psoriatic skin provides an alternative mechanism for T-cell activation that may be operative in the psoriatic lesional milieu. Indeed, activation of lesional T-cells through the UM4D4 molecule resulted in release of lymphokines that directly induced keratinocytes to express a phenotype displayed in psoriatic skin lesions.
Collapse
|
|
35 |
76 |
11
|
Abstract
Insulin has diverse effects on cells, including stimulation of glucose transport, gene expression, and alterations of cell morphology. The hormone mediates these effects by activation of signaling pathways which utilize, 1) adaptor molecules such as the insulin receptor substrates (IRS), the Src and collagen homologs (Shc), and the growth factor receptor binding protein 2 (Grb2); 2) lipid kinases such as phosphatidylinositol 3-kinase (PI 3-Kinase); 3) small G proteins; and 4) serine, threonine, and tyrosine kinases. The activation of such signaling molecules by insulin is now well established, but we do not yet fully understand the mechanisms integrating these seemingly diverse pathways. Here, we discuss the involvement of the actin cytoskeleton in the propagation and regulation of insulin signals. In muscle cells in culture, insulin induces a rapid actin filament reorganization that coincides with plasma membrane ruffling and intense accumulation of pinocytotic vesicles. Initiation of these effects of insulin requires an intact actin cytoskeleton and activation of PI 3-kinase. We observed recruitment PI 3-kinase subunits and glucose transporter proteins to regions of reorganized actin. In both muscle and adipose cells, actin disassembly inhibited early insulin-induced events such as recruitment of glucose transporters to the cell surface and enhanced glucose transport. Additionally, actin disassembly inhibited more prolonged effects of insulin, including DNA synthesis and expression of immediate early genes such as c-fos. Intact actin filaments appear to be essential for mediation of early events such as association of Shc with Grb2 in response to insulin, which leads to stimulation of gene expression. Preliminary observations support a role for focal adhesion signaling complexes in insulin action. These observations suggest that the actin cytoskeleton facilitates propagation of the morphological, metabolic, and nuclear effects of insulin by regulating proper subcellular distribution of signaling molecules that participate in the insulin signaling pathway.
Collapse
|
Review |
26 |
71 |
12
|
Ho TH, Park IY, Zhao H, Tong P, Champion MD, Yan H, Monzon FA, Hoang A, Tamboli P, Parker AS, Joseph RW, Qiao W, Dykema K, Tannir NM, Castle EP, Nunez-Nateras R, Teh BT, Wang J, Walker CL, Hung MC, Jonasch E. High-resolution profiling of histone h3 lysine 36 trimethylation in metastatic renal cell carcinoma. Oncogene 2015; 35:1565-74. [PMID: 26073078 PMCID: PMC4679725 DOI: 10.1038/onc.2015.221] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 03/01/2015] [Accepted: 03/06/2015] [Indexed: 02/07/2023]
Abstract
Mutations in SETD2, a histone H3 lysine trimethyltransferase, have been identified in clear cell renal cell carcinoma (ccRCC); however it is unclear if loss of SETD2 function alters the genomic distribution of histone 3 lysine 36 trimethylation (H3K36me3) in ccRCC. Furthermore, published epigenomic profiles are not specific to H3K36me3 or metastatic tumors. To determine if progressive SETD2 and H3K36me3 dysregulation occurs in metastatic tumors, H3K36me3, SETD2 copy number (CN) or SETD2 mRNA abundance was assessed in two independent cohorts: metastatic ccRCC (n=71) and the Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma data set (n=413). Although SETD2 CN loss occurs with high frequency (>90%), H3K36me3 is not significantly impacted by monoallelic loss of SETD2. H3K36me3-positive nuclei were reduced an average of ~20% in primary ccRCC (90% positive nuclei in uninvolved vs 70% positive nuclei in ccRCC) and reduced by ~60% in metastases (90% positive in uninvolved kidney vs 30% positive in metastases) (P<0.001). To define a kidney-specific H3K36me3 profile, we generated genome-wide H3K36me3 profiles from four cytoreductive nephrectomies and SETD2 isogenic renal cell carcinoma (RCC) cell lines using chromatin immunoprecipitation coupled with high-throughput DNA sequencing and RNA sequencing. SETD2 loss of methyltransferase activity leads to regional alterations of H3K36me3 associated with aberrant RNA splicing in a SETD2 mutant RCC and SETD2 knockout cell line. These data suggest that during progression of ccRCC, a decline in H3K36me3 is observed in distant metastases, and regional H3K36me3 alterations influence alternative splicing in ccRCC.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
63 |
13
|
Ye X, Narayanan T, Tong P, Huang JS, Lin MY, Carvalho BL, Fetters LJ. Depletion interactions in colloid-polymer mixtures. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 1996; 54:6500-6510. [PMID: 9965872 DOI: 10.1103/physreve.54.6500] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
|
29 |
62 |
14
|
Tong P, Khayat ZA, Huang C, Patel N, Ueyama A, Klip A. Insulin-induced cortical actin remodeling promotes GLUT4 insertion at muscle cell membrane ruffles. J Clin Invest 2001; 108:371-81. [PMID: 11489930 PMCID: PMC209359 DOI: 10.1172/jci12348] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Insulin stimulates glucose uptake by recruiting glucose transporter 4 (GLUT4) from an intracellular compartment to the cell surface; this phenomenon is defective in type 2 diabetes. Here we examine the involvement of actin filaments in GLUT4 translocation and their possible defects in insulin resistance, using L6 myotubes expressing myc-tagged GLUT4. Insulin caused membrane ruffling, a dynamic distortion of the myotube dorsal surface. Fluorescence microscopy and immunogold staining of surface GLUT4myc coupled to backscatter electron microscopy revealed a high density of this protein in membrane ruffles. The t-SNAREs syntaxin4 and SNAP-23 were also abundant in these regions. Below the membrane, GLUT4 and the vesicular protein VAMP2, but not VAMP3, colocalized with the actin structures supporting the membrane ruffles. GLUT4myc externalization and membrane ruffles were reduced by jasplakinolide and by swinholide-A, drugs that affect actin filament stability and prevent actin branching, respectively. Insulin resistance generated by prolonged (24 hours) exposure of myotubes to high glucose and insulin diminished the acute insulin-dependent remodeling of cortical actin and GLUT4myc translocation, reminiscent of the effect of swinholide-A. We propose that GLUT4 vesicle incorporation into the plasma membrane involves insulin-dependent cortical actin remodeling and that defective actin remodeling contributes to insulin resistance.
Collapse
|
|
24 |
61 |
15
|
Bolland MJ, Tong PC, Naot D, Callon KE, Wattie DJ, Gamble GD, Cundy T. Delayed development of Paget's disease in offspring inheriting SQSTM1 mutations. J Bone Miner Res 2007; 22:411-5. [PMID: 17181397 DOI: 10.1359/jbmr.061204] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Familial Paget's disease is associated with mutations in SQSTM1. We compared the age at diagnosis and severity of Paget's disease in parents with SQSTM1 mutations to their offspring who inherited a mutation. At any given age, the offspring were less likely to be diagnosed with Paget's disease and had less severe disease than their parents. INTRODUCTION Mutations in sequestosome 1 (SQSTM1) occur in 25-50% of cases of familial Paget's disease and are thought to be disease-causing. We sought to determine whether there are differences in age at diagnosis and severity of disease in parents and their offspring who share the same genetic predisposition to Paget's disease. MATERIALS AND METHODS Eighty-four offspring from 10 families (29 index patients with Paget's disease) with mutations in SQSTM1 were approached, and 58 agreed to participate. The ubiquitin-binding domain region of SQSTM1 was sequenced, and the presence or absence of the known mutation was established. The presence of Paget's disease in offspring who had inherited an SQSTM1 mutation was determined by bone scintigraphy and measurement of serum alkaline phosphatase (ALP). RESULTS Twenty-three of 58 offspring had inherited a germline mutation in SQSTM1. The mean ALP was 77 U/liter in offspring with mutations and 72 U/liter in those without mutations (p=0.84). Scintiscans from four offspring (mean age, 45 years; mean ALP, 139 U/liter; mean skeletal involvement, 6%) showed evidence of Paget's disease but were normal in the other 19 (mean age, 44 years; mean ALP, 64 U/liter). In comparison, in the 15 parents of the 23 offspring, the mean age of diagnosis was 48 years, the mean ALP was 850 U/liter, and the mean skeletal involvement was 30%. There was a 63% reduction in the risk of being diagnosed with Paget's disease at a comparable age in the offspring compared with the parents (p=0.028). CONCLUSIONS Only 17% of offspring inheriting an SQSTM1 mutation had evidence of Paget's disease on scintigraphy, and this was diagnosed at a later age and was less extensive than in their affected parents. SQSTM1 thus shows incomplete penetrance. The data are consistent with the hypothesis that an environmental factor is important in the pathogenesis and clinical phenotype of familial Paget's disease and that exposure to this factor may be falling.
Collapse
|
Clinical Trial |
18 |
57 |
16
|
Vareesangthip K, Tong P, Wilkinson R, Thomas TH. Insulin resistance in adult polycystic kidney disease. Kidney Int 1997; 52:503-8. [PMID: 9264009 DOI: 10.1038/ki.1997.360] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Adult polycystic kidney disease (APKD) is a common hereditary disease with renal and extra-renal manifestations. There are at least three genes responsible for this disease. The polycystic kidney disease 1 (PKD1) gene product is a membrane protein involved in cell-cell and cell-matrix interactions and has a widespread tissue distribution. Abnormal membrane fluidity in erythrocytes from APKD patients is due to altered membrane proteins. Membrane fluidity of mononuclear cells is related to whole body insulin sensitivity. Insulin sensitivity might therefore be disturbed in APKD if the erythrocyte membrane abnormality is also present in other cells. Therefore, we investigated insulin sensitivity in 15 APKD patients and 20 normal subjects matched for age and sex. Insulin sensitivity was assessed by a short insulin tolerance test to derive the first-order rate constant for the disappearance of glucose (Kitt) and mononuclear leukocyte membrane fluidity was measured by fluorescence anisotropy. The Kitt value (% mmol.liter-1.min-1) was lower in APKD patients than in normal subjects [median (range) 2.2 (1.5 to 6.3) vs. 4.1 (2.0 to 5.4). P < 0.001]. Fasting plasma insulin concentrations were negatively correlated with the Kitt values (r = -0.66, P < 0.001). Core region anisotropy was significantly lower (higher fluidity) in leukocytes from APKD patients [mean (SEM) 0.164 (0.003) vs. 0.174 (0.001), P < 0.001]. Insulin sensitivity was positively correlated with the fluorescence anisotropy of the core region of leukocyte membranes (r = 0.81, P = 0.0001). In conclusion, APKD patients were insulin resistant and some patients were hyperinsulinemic, which may indicate increased cardiovascular risk. The cellular basis of the insulin resistance may be directly related to the proteins causing the disease or to the general change in membrane properties.
Collapse
|
|
28 |
56 |
17
|
Tong P, Zografi G. A study of amorphous molecular dispersions of indomethacin and its sodium salt. J Pharm Sci 2001; 90:1991-2004. [PMID: 11745758 DOI: 10.1002/jps.1150] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Amorphous solid dispersions of indomethacin (IMC) and sodium indomethacin (NaIMC) over a range of compositions were prepared by physically mixing amorphous IMC and amorphous NaIMC, as well as by coprecipitation from methanol solution. Measurement of glass transition temperatures, T(g), for the physical mixtures revealed two values indicating, as expected, phase separation. In contrast, all samples of coprecipitated materials exhibited one value of T(g), which was greater than that predicted for ideal miscibility in the formation of a molecular dispersion. Such nonideality suggests a stronger acid-salt interaction in the amorphous state than that between acid-acid and salt-salt. FTIR spectroscopic analysis provides evidence for interactions between NaIMC and IMC through a combination of hydrogen bonding and ion-dipole interactions between the carboxylic group of the acid and the carboxylate anion of the salt. The inhibition of isothermal crystallization of IMC by NaIMC only when in molecular dispersion is believed to result from the interaction between the acid and the salt, which prevents the formation of hydrogen-bonded carboxylic acid dimers for IMC, required for the formation of crystal nuclei and crystallization.
Collapse
|
|
24 |
51 |
18
|
Huang ZM, Du SH, Huang LG, Li JH, Xiao L, Tong P. Leptin promotes apoptosis and inhibits autophagy of chondrocytes through upregulating lysyl oxidase-like 3 during osteoarthritis pathogenesis. Osteoarthritis Cartilage 2016; 24:1246-53. [PMID: 26947886 DOI: 10.1016/j.joca.2016.02.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 02/16/2016] [Accepted: 02/26/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Leptin has been found highly expressed in human osteoarthritis. We aimed to explore the possible effects and mechanisms of leptin on the apoptosis and autophagy of chondrocytes during osteoarthritis pathogenesis. METHODS Gene expression profile from osteoarthritis affected and preserved cartilage were downloaded from NCBI's Gene Expression Omnibus database (GSE57218). Lysyl oxidase-like 3 (LOXL3) mRNA expression in cartilage tissues and leptin concentration in joint synovial fluid (SF) was measured in samples from 45 osteoarthritis patients and 25 healthy donors by real-time PCR and radioimmunoassay, respectively. Rat osteoarthritis model was induced by anterior cruciate ligament transection (ACLT). The expression of apoptosis regulators and autophagy markers were detected by Western blot. Cell survival and cell apoptosis were identified by CCK-8 and flow cytometry, respectively. RESULTS Re-analysis on GSE57218 indicated that LOXL3 mRNA was upregulated in osteoarthritis affected cartilage. LOXL3 mRNA was upregulated in osteoarthritis patients, which was positively correlated with SF leptin concentration. Similar results were obtained in rat osteoarthritis model. Moreover, ACLT surgery led to a significant increase in the protein levels of cleaved caspase 3, and a notable decrease in the protein levels of Bcl-2, LC3 II/LC3 I and Beclin1. Silencing of LOXL3 in ACLT and leptin treated primary chondrocytes significantly inhibited cell apoptosis, and promoted cell proliferation and autophagy. Moreover, overexpression of LOXL3 remarkably inhibited autophagy of chondrocytes via activating mTORC1. CONCLUSIONS LOXL3, a downstream of leptin, stimulated the apoptosis, but inhibited the autophagy of chondrocytes. LOXL3 is a potential therapy target for osteoarthritis.
Collapse
|
|
9 |
50 |
19
|
Mak AF, Huang DT, Zhang JD, Tong P. Deformation-induced hierarchical flows and drag forces in bone canaliculi and matrix microporosity. J Biomech 1997; 30:11-8. [PMID: 8970919 DOI: 10.1016/s0021-9290(96)00121-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Existing theories for interstitial flows in bone have only examined the contributions from different flow systems separately, such as the flows through the microporosity, the canaliculi, and the Haversian canals. An overall model encompassing the hierarchical microstructure is important to our understanding of the actual physics of flows in bone. The flow-induced drag forces and streaming electrical potentials could interact with the osteocytes to effect biological responses. A finite element model was developed to study the contributions from various hierarchical flow channels in bone. Cortical bone is modelled as a fully hydrated biphasic poroelastic material with a superposing network of one-dimensional channels radiating from the Haversian canals representing the canaliculi. Interfacial cross-flows between these one-dimensional channels and the neighbouring poroelastic matrix are driven by the pressure differences between the matrix and the channel. The model was subjected to stress fields simulating uniform compression and pure bending. The effects of the interfacial permeability and the solid content within the channels on the drag forces in the channels were assessed. Abrupt changes in these drag forces occurred as the channel solidity approached that of the microporosity. The results were quite sensitive to the interfacial permeability, i.e. the interconnectivity between the canalicular system and the matrix microporosity. This biomechanical model should be useful to the study of mechanotransduction in bone.
Collapse
|
Comparative Study |
28 |
46 |
20
|
Guo H, Tong P, Peng Y, Wang T, Liu Y, Chen J, Li Y, Tian Q, Hu Y, Zheng Y, Xiao L, Xiong W, Pan Q, Hu Z, Xia K. Homozygous loss-of-function mutation of the LEPREL1 gene causes severe non-syndromic high myopia with early-onset cataract. Clin Genet 2013; 86:575-9. [PMID: 24172257 DOI: 10.1111/cge.12309] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/11/2013] [Accepted: 10/28/2013] [Indexed: 11/28/2022]
Abstract
High myopia is a severe visual impairment which can increase the risk of retinal degeneration, subretinal hemorrhage, choroidal neovascularization, cataract and retinal detachment. We recruited an autosomal-recessive high myopia family, with affected subjects who also present early-onset cataract, retinal degeneration and other complications. Using targeted capturing and whole exome sequencing, we identified a homozygous non-sense mutation in the LEPREL1 gene which causes premature termination of the translation at the fifth amino acid (c.13C>T; p.Q5X), co-segregating with the phenotypes. LEPREL1 encodes a proline hydroxylase called prolyl 3-hydroxylase 2 (P3H2), a 2-oxoglutarate-dependent dioxygenase that hydroxylates collagens. The results show that LEPREL1 plays an important role in eye development and homozygous loss-of-function mutation of this gene can cause severely high myopia and early-onset cataract. Our study also strongly suggests that the disruption of collagen modification is one of the pathogenic mechanisms of high myopia and cataract.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
39 |
21
|
Middleton-Hardie C, Zhu Q, Cundy H, Lin JM, Callon K, Tong PC, Xu J, Grey A, Cornish J, Naot D. Deletion of aspartate 182 in OPG causes juvenile Paget's disease by impairing both protein secretion and binding to RANKL. J Bone Miner Res 2006; 21:438-45. [PMID: 16491292 DOI: 10.1359/jbmr.051104] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 10/13/2005] [Accepted: 11/11/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED Mutations in the OPG gene cause idiopathic hyperphosphatasia. We characterized the effects of one such mutation and found that the mutant OPG is poorly secreted and has reduced biological activity compared with the wildtype protein. Therefore, correct structure and cellular processing of OPG is essential for normal bone remodeling. INTRODUCTION Inactivating mutations in osteoprotegerin (OPG) cause juvenile Paget's disease (JPD). We recently reported a family with JPD in which affected members were homozygous for an in-frame mutation resulting in the deletion of aspartate 182 in OPG. Here we report the structural and functional characterization of the OPGdeltaD182 mutant protein. MATERIALS AND METHODS Inhibition of osteoclastogenesis by the recombinant OPG proteins was studied in a murine bone marrow culture. Binding of wildtype and mutant OPG to RANKL was measured in two experimental systems: glutathione-S-transferase (GST) pull-down assay and surface plasmon resonance. Site-directed mutagenesis was used to study the glycosylation of OPGdeltaD182 in two potential glycosylation sites adjacent to the deleted aspartate residue at position 182. ELISA and Western blots were used to determine OPG concentrations in cell lysates and conditioned media from transiently transfected cells. RESULTS OPGdeltaD182 inhibited the generation of osteoclasts less effectively than the wildtype protein and had a reduced ability to bind to RANKL. The apparent higher molecular weight of OPGdeltaD182 compared with the wildtype is a result of hyperglycosylation of asparagine residues at positions 178 and 183. Glycosylation at N183 has the potential to disrupt OPG structure by interfering with disulphide bond formation and correct protein folding. Transient transfection experiments in SaOS2 cells suggest that OPGdeltaD182 is retained within the cell, a typical response to unstable or incorrect protein folding. CONCLUSIONS Taken together, these data suggest that the deletion of aspartate 182 impairs both the secretion and activity of OPG, which in turn provides an explanation for the increased osteoclastogenesis and high bone turnover observed in JPD patients with this mutation.
Collapse
|
|
19 |
37 |
22
|
Chan J, So W, Ko G, Tong P, Yang X, Ma R, Kong A, Wong R, Le Coguiec F, Tamesis B, Wolthers T, Lyubomirsky G, Chow P. The Joint Asia Diabetes Evaluation (JADE) Program: a web-based program to translate evidence to clinical practice in Type 2 diabetes. Diabet Med 2009; 26:693-9. [PMID: 19573118 DOI: 10.1111/j.1464-5491.2009.02751.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS The Joint Asia Diabetes Evaluation (JADE) Program is the first web-based program incorporating a comprehensive risk engine, care protocols, clinical decision and self-management support to improve ambulatory diabetes care. The aim was to validate the risk stratification system of the JADE Program using a large prospective cohort. METHODS The JADE interactive risk engine stratifies patients into different risk levels using results from an annual comprehensive assessment of complications and risk factors. We used a prospective registry consisting of 7534 Type 2 diabetic patients [45.6% men, median (range) age 57 years (13-92)] to perform internal validation of the risk engine. RESULTS The JADE Risk Engine categorized patients into four risk levels (from low to high): level 1, n = 4520 (6%); level 2, n = 1468 (19.5%); level 3, n = 4476 (59.4%); and level 4, n = 1138 (15.1%). After a median follow-up period of 5.5 years (mean +/- sd 5.4 +/- 2.81 years), 763 (10.1%) died, 1129 (14.9%) developed cardiovascular disease (CVD), 282 (3.7%) developed end-stage renal disease and 1400 (18.6%) had at least one of these events. Compared with risk level 1, levels 2, 3 and 4 were associated with 2.8-, 4.7- and 8.6-fold increased risk of clinical end-points. Risk levels 3 and 4 were, respectively, associated with 2.2- and 3.9-fold increased risk for all-cause death and 4.8- and 12.1-fold increased CVD risks. CONCLUSION Based on results from a comprehensive assessment, the JADE Risk Engine successfully categorizes patients into different risk levels to guide clinical management.
Collapse
|
Validation Study |
16 |
37 |
23
|
Ye X, Narayanan T, Tong P, Huang JS. Neutron scattering study of depletion interactions in a colloid-polymer mixture. PHYSICAL REVIEW LETTERS 1996; 76:4640-4643. [PMID: 10061342 DOI: 10.1103/physrevlett.76.4640] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
|
29 |
36 |
24
|
Croft M, Tong P, Fuentes D, Hambridge T. Australian survey of acrylamide in carbohydrate-based foods. ACTA ACUST UNITED AC 2004; 21:721-36. [PMID: 15370822 DOI: 10.1080/02652030412331272458] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A method was developed and validated for the determination of acrylamide in carbohydrate-based foods. Solid-phase extraction employing a mixed-bed anion and cation exchange cartridge in series with a C18 extraction disk was used to clean-up water extracts of food samples before analysis by liquid chromatography coupled with tandem mass spectrometry detection. The limit of detection was calculated as approximately 25 microg kg(-1) and the limit of reporting was 50 microg kg(-1). The average method recovery for 84 samples from a range of matrices reporting was 99% with a relative standard deviation of 11.2%. A survey was conducted of 112 samples of carbohydrate-based foods composited from 547 products available in the Australian market. The analytical results were used in conjunction with Australian food consumption data derived from the 1995 National Nutrition Survey (NNS) to prepare preliminary dietary exposure estimates of Australians to acrylamide through only the food groups examined. Mean dietary exposure to acrylamide resulting from consumption of the foods tested, for Australians aged 2 years and above, was estimated as 22-29 microg day(-1) (equivalent to 0.4-0.5 microg kg(-1) bodyweight day(-1)) and between 73 and 80 microg day(-1) (1.4 and 1.5 microg kg(-1) bodyweight day(-1)) for 95th percentile consumers. Young children (2-6 years) consuming acrylamide-containing foods had a higher acrylamide exposure on a per kilogram bodyweight basis (mean 1.0-1.3 microg kg(-1) bodyweight day(-1)). The estimated exposure of Australians to acrylamide is similar to that estimated for other countries.
Collapse
|
|
21 |
35 |
25
|
Tong P, Thomas T, Berrish T, Humphriss D, Barriocanal L, Stewart M, Walker M, Wilkinson R, Alberti KG. Cell membrane dynamics and insulin resistance in non-insulin-dependent diabetes mellitus. Lancet 1995; 345:357-8. [PMID: 7845118 DOI: 10.1016/s0140-6736(95)90343-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Insulin resistance in non-insulin-dependent diabetes mellitus (NIDDM) could be related to changes in cell membrane properties. We measured insulin sensitivity and mononuclear leucocyte membrane fluidity by fluorescence polarisation in fifteen NIDDM patients and twenty-one normal subjects. Core-region anisotropy was significantly lower in leucocytes from diabetic subjects (mean 0.164 vs 0.174, p < 0.001). Insulin sensitivity was positively correlated with such anisotropy before and after acute in-vitro insulin treatment. There was no difference in superficial membrane anisotropy. This study suggests that altered membrane dynamics in NIDDM may contribute to insulin resistance.
Collapse
|
|
30 |
33 |