1
|
Varna D, Geromichalos GD, Dalezis P, Hatzidimitriou AG, Psomas G, Zachariadis G, Psatha K, Aivaliotis M, Papi R, Trafalis D, Angaridis PA. Amine-substituted heterocyclic thioamide Cu(I) and Ag(I) complexes as effective anticancer and antibacterial agents targeting the periplasm of E. coli bacteria. Eur J Med Chem 2024; 277:116746. [PMID: 39146831 DOI: 10.1016/j.ejmech.2024.116746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/31/2024] [Accepted: 08/03/2024] [Indexed: 08/17/2024]
Abstract
Metal complexes showing dual activity against cancer and bacterial infections are currently the focus of significant interest for their potential in treating life-threatening diseases. Aiming to investigate the impact of ligand substituents on these bioactivity properties of Group 11 d10 metal complexes, we herein present a series of mononuclear Cu(I) and Ag(I) complexes featuring the bis-NH2-substituted heterocyclic thioamide dap2SH (=4,6-diaminopyrimidine-2-thione), namely [AgCl(dap2SH)(PPh3)2] (1), [CuBr(dap2SH)(PPh3)2] (2), [CuBr(dap2SH)(xantphos)] (3), [Ag(dap2S)(xantphos)] (4), and [Cu(dap2S)(xantphos)] (5) (xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene). Complexes were characterized by means of different physicochemical methods (i.e., single crystal X-ray diffraction as well as FTIR, NMR, UV-Vis and fluorescence spectroscopy), and studied in-vitro for their antibacterial and anticancer activity against a variety of bacterial strains and cancer cell lines. Complexes 1-3 effectively inhibited both Gram (+) and Gram (-) bacterial growth, while cellular uptake studies for the most potent complex 1 against E. coli bacteria revealed the accumulation of Ag(I) ions in the periplasm of the bacteria. A high anti-proliferative effect was observed for 1 and 5 against A549, MCF7 and PC3 cancer cell lines, with 1 being capable of inducing apoptosis in A549 cells, as suggested by flow cytometry analysis. DNA interaction studies revealed the capacity of 1 to intercalate between base-pairs of CT DNA. All complexes had a moderate-to-high capacity to scavenge free radicals preventing oxidative stress. Molecular docking calculations, in combination with the experimentally obtained data, provided insights for potential mechanisms of the bioactivity of the complexes.
Collapse
|
2
|
Barla I, Dagla IV, Daskalopoulou A, Panagiotopoulou M, Kritikaki M, Dalezis P, Thomaidis N, Tsarbopoulos A, Trafalis D, Gikas E. Metabolomics highlights biochemical perturbations occurring in the kidney and liver of mice administered a human dose of colistin. Front Mol Biosci 2024; 11:1338497. [PMID: 39050734 PMCID: PMC11266156 DOI: 10.3389/fmolb.2024.1338497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/23/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction: Colistin (CMS) is used for the curation of infections caused by multidrug-resistant bacteria. CMS is constrained by toxicity, particularly in kidney and neuronal cells. The recommended human doses are 2.5-5 mg/kg/day, and the toxicity is linked to higher doses. So far, the in vivo toxicity studies have used doses even 10-fold higher than human doses. It is essential to investigate the impact of metabolic response of doses, that are comparable to human doses, to identify biomarkers of latent toxicity. The innovation of the current study is the in vivo stimulation of CMS's impact using a range of CMS doses that have never been investigated before, i.e., 1 and 1.5 mg/kg. The 1 and 1.5 mg/kg, administered in mice, correspond to the therapeutic and toxic human doses, based on previous expertise of our team, regarding the human exposure. The study mainly focused on the biochemical impact of CMS on the metabolome, and on the alterations provoked by 50%-fold of dose increase. The main objectives were i) the comprehension of the biochemical changes resulting after CMS administration and ii) from its dose increase; and iii) the determination of dose-related metabolites that could be considered as toxicity monitoring biomarkers. Methods: The in vivo experiment employed two doses of CMS versus a control group treated with normal saline, and samples of plasma, kidney, and liver were analysed with a UPLC-MS-based metabolomics protocol. Both univariate and multivariate statistical approaches (PCA, OPLS-DA, PLS regression, ROC) and pathway analysis were combined for the data interpretation. Results: The results pointed out six dose-responding metabolites (PAA, DA4S, 2,8-DHA, etc.), dysregulation of renal dopamine, and extended perturbations in renal purine metabolism. Also, the study determined altered levels of liver suberylglycine, a metabolite linked to hepatic steatosis. One of the most intriguing findings was the detection of elevated levels of renal xanthine and uric acid, that act as AChE activators, leading to the rapid degradation of acetylcholine. This evidence provides a naïve hypothesis, for the potential association between the CMS induced nephrotoxicity and CMS induced 39 neurotoxicity, that should be further investigated.
Collapse
|
3
|
Varna D, Geromichalos G, Gioftsidou DK, Tzimopoulos D, Hatzidimitriou AG, Dalezis P, Papi R, Trafalis D, Angaridis PA. N-heterocyclic-carbene vs diphosphine auxiliary ligands in thioamidato Cu(I) and Ag(I) complexes towards the development of potent and dual-activity antibacterial and apoptosis-inducing anticancer agents. J Inorg Biochem 2024; 252:112472. [PMID: 38215535 DOI: 10.1016/j.jinorgbio.2023.112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024]
Abstract
Group 11 metal complexes exhibit promising antibacterial and anticancer properties which can be further enhanced by appropriate ligands. Herein, a series of mononuclear thioamidato Cu(I) and Ag(I) complexes bearing either a diphosphine (P^P) or a N-heterocyclic carbene (NHC) auxiliary ligand (L) was synthesized, and the impact of the co-ligand L on the in vitro antibacterial and anticancer properties of their complexes was assessed. All complexes effectively inhibited the growth of various bacterial strains, with the NHC-Cu(I) complex found to be particularly effective against the Gram (+) bacteria (IC50 = 1-4 μg mL-1). Cytotoxicity studies against various human cancer cells revealed their high anticancer potency and the superior activity of the NHC-Ag(I) complex (IC50 = 0.95-4.5 μΜ). Flow cytometric analysis on lung and breast cancer cells treated with the NHC-Ag(I) complex suggested an apoptotic cell-death pathway; molecular docking calculations provided mechanistic insights, proving the capacity of the complex to bind on apoptosis-regulating proteins and affect their functionalities.
Collapse
|
4
|
Varna D, Geromichalou E, Karlioti G, Papi R, Dalezis P, Hatzidimitriou AG, Psomas G, Choli-Papadopoulou T, Trafalis DT, Angaridis PA. Inhibition of Cancer Cell Proliferation and Bacterial Growth by Silver(I) Complexes Bearing a CH 3-Substituted Thiadiazole-Based Thioamide. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010336. [PMID: 36615533 PMCID: PMC9823356 DOI: 10.3390/molecules28010336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
Ag(I) coordination compounds have recently attracted much attention as antiproliferative and antibacterial agents against a wide range of cancer cell lines and pathogens. The bioactivity potential of these complexes depends on their structural characteristics and the nature of their ligands. Herein, we present a series of four Ag(I) coordination compounds bearing as ligands the CH3-substituted thiadiazole-based thioamide 5-methyl-1,3,4-thiadiazole-2-thiol (mtdztH) and phosphines, i.e., [AgCl(mtdztH)(PPh3)2] (1), [Ag(mtdzt)(PPh3)3] (2), [AgCl(mtdztH)(xantphos)] (3), and [AgmtdztH)(dppe)(NO3)]n (4), where xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene and dppe = 1,2-bis(diphenylphosphino)ethane, and the assessment of their in vitro antibacterial and anti-cancer efficiency. Among them, diphosphine-containing compounds 3 and 4 were found to exhibit broad-spectrum antibacterial activity characteristics against both Gram-(+) and Gram-(-) bacterial strains, showing high in vitro bioactivity with IC50 values as low as 4.6 μΜ. In vitro cytotoxicity studies against human ovarian, pancreatic, lung, and prostate cancer cell lines revealed the strong cytotoxic potential of 2 and 4, with IC50 values in the range of 3.1-24.0 μΜ, while 3 and 4 maintained the normal fibroblast cells' viability at relatively higher levels. Assessment of these results, in combination with those obtained for analogous Ag(I) complexes bearing similar heterocyclic thioamides, suggest the pivotal role of the substituent groups of the thioamide heterocyclic ring in the antibacterial and anti-cancer efficacy of the respective Ag(I) complexes. Compounds 1-4 exhibited moderate in vitro antioxidant capacity for free radicals scavenging, as well as reasonably strong ability to interact with calf-thymus DNA, suggesting the likely implication of these properties in their bioactivity mechanisms. Complementary insights into the possible mechanism of their anti-cancer activity were provided by molecular docking calculations, exploring their ability to bind to the overexpressed fibroblast growth factor receptor 1 (FGFR1), affecting cancer cells' functionalities.
Collapse
|
5
|
Tsanakopoulou M, Dalezis P, Karakousi C, Schina D, Trafalis D, Malamidou‐Xenikaki E, Sarli V. Synthesis and Cytotoxic Effects of 3,6‐Bis‐indolyl 2,5‐Dihydroxybenzoquinone Acetates. ChemistrySelect 2022. [DOI: 10.1002/slct.202202060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
6
|
Varna D, Geromichalou E, Hatzidimitriou AG, Papi R, Psomas G, Dalezis P, Aslanidis P, Choli-Papadopoulou T, Trafalis DT, Angaridis PA. Silver(I) complexes bearing heterocyclic thioamide ligands with NH 2 and CF 3 substituents: effect of ligand group substitution on antibacterial and anticancer properties. Dalton Trans 2022; 51:9412-9431. [PMID: 35674362 DOI: 10.1039/d2dt00793b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, there has been an increasing interest in the study of Ag(I) coordination compounds as potent antibacterial and anticancer agents. Herein, a series of Ag(I) complexes bearing phosphines and heterocyclic thioamide ligands with highly electronegative NH2- and CF3-group substituents, i.e. [AgCl(atdztH)(xantphos)] (1), [Ag(μ-atdztH)(DPEphos)]2(NO3)2 (2), [Ag(atdzt)(PPh3)3] (3), [Ag(μ-atdzt)(DPEphos)]2 (4), and [Ag(μ-mtft)(DPEphos)]2 (5), where atdztH = 5-amino-1,3,4-thiadiazole-2-thiol, mtftH = 4-methyl-5-(trifluoromethyl)-1,2,4-triazol-3-thiol, xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, and DPEphos = bis(2-diphenylphosphino-phenyl)ether, were synthesized, and their in vitro antibacterial and anticancer properties were evaluated. Complexes 1-4 bearing the NH2-substituted thioamide exhibited moderate-to-high activity against S. aureus, B. subtilis, B. cereus and E. coli bacterial strains. A high antiproliferative activity was also observed for 1-3 against SKOV-3, Hup-T3, DMS114 and PC3 cancer cell lines (IC50 = 4.0-11.7 μM), as well as some degree of selectivity against MRC-5 normal cells. Interestingly, 5 bearing the CF3-substituted thioamide is completely inactive in all bioactivity studies. Binding of 1-3 to drug-carrier proteins BSA and HSA is reasonably strong for their uptake and subsequent release to possible target sites. The three complexes show a significant in vitro antioxidant ability for scavenging free radicals, suggesting likely implication of this property in the mechanism of their bioactivity, but a low potential to destroy the double-strand structure of CT-DNA by intercalation. Complementary insights into possible bioactivity mechanisms were provided by molecular docking calculations, exploring the ability of complexes to bind to bacterial DNA gyrase, and to the overexpressed in the aforementioned cancer cells Fibroblast Growth Factor Receptor 1, affecting their functionalities.
Collapse
|
7
|
Geromichalou EG, Trafalis DT, Dalezis P, Malis G, Psomas G, Geromichalos GD. In silico study of potential antiviral activity of copper(II) complexes with non-steroidal anti-inflammatory drugs on various SARS-CoV-2 target proteins. J Inorg Biochem 2022; 231:111805. [PMID: 35334392 PMCID: PMC8930182 DOI: 10.1016/j.jinorgbio.2022.111805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022]
Abstract
In silico molecular docking studies, in vitro toxicity and in silico predictions on the biological activity profile, pharmacokinetic properties, drug-likeness, ADMET (absorption, distribution, metabolism, excretion, and toxicity) physicochemical pharmacokinetic data, and target proteins and toxicity predictions were performed on six copper(II) complexes with the non-steroidal anti-inflammatory drugs ibuprofen, loxoprofen, fenoprofen and clonixin as ligands, in order to investigate the ability of these complexes to interact with the key therapeutic target proteins of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) 3C-like cysteine main protease (3CLpro/Mpro), viral papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp), and non-structural proteins (Nsps) Nsp16-Nsp10 2'-O-methyltransferase complex, and their capacity to act as antiviral agents, contributing thus to understanding the role they can play in the context of coronavirus 2019 (COVID-19) pandemic. Cytotoxic activity against five human cancer and normal cell lines were also evaluated.
Collapse
|
8
|
Leonidis G, Dalezis P, Trafalis D, Beis D, Giardoglou P, Koukiali A, Sigala I, Nikolakaki E, Sarli V. Synthesis and Biological Evaluation of a c(RGDyK) Peptide Conjugate of SRPIN803. ACS OMEGA 2021; 6:28379-28393. [PMID: 34723035 PMCID: PMC8552469 DOI: 10.1021/acsomega.1c04576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
In the present study, SRPIN803 and c(RGDyK)-SRPIN803 hybrid compounds were efficiently synthesized and evaluated for their stability in human plasma and buffers of pH 7.4 and 5.2. The hybrids were mainly cytostatic against a panel of tested cancer cells, whereas one c(RGDyK)-SRPIN803 hybrid, geo35, was the most active compound in this screen and was cytotoxic against cell lines MCF7 and MRC5 with IC50 values of 61 and 63 μM, respectively. SRPIN803 and geo35 exhibited antiangiogenic activity in zebrafish embryos, and this effect was dose-dependent. Although c(RGDyK)-SRPIN803 hybrid compounds were found less potent compared to SRPIN803, they have shown activities interesting enough to illustrate the potential of this approach for the development of a new class of antiangiogenic compounds.
Collapse
|
9
|
Sagredou S, Dalezis P, Nikoleousakos N, Nikolaou M, Voura M, Almpanakis K, Panayiotidis MI, Sarli V, Trafalis DT. 3,6-Disubstituted 1,2,4-Triazolo[3,4- b]Thiadiazoles with Anticancer Activity Targeting Topoisomerase II Alpha. Onco Targets Ther 2020; 13:7369-7386. [PMID: 32801761 PMCID: PMC7395825 DOI: 10.2147/ott.s254856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/30/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Topoisomerase IIα (topIIα) maintains the topology of DNA in order to ensure the proper functioning of numerous DNA processes. Inhibition of topIIα leads to the killing of cancer cells thus constituting such inhibitors as useful tools in cancer therapeutics. Triazolo[3,4-b]thiadiazole derivatives are known for their wide range of pharmacological activities while previous studies have documented their in vitro anticancer activity. The purpose of the current study was to investigate if these chemical compounds can act as topIIα inhibitors in cell-free and cell-based systems. MATERIALS AND METHODS The MTT assay was performed in DLD-1, HT-29, and LoVo cancer cells so as to evaluate the antiproliferative activity of KA25, KA26, and KA39 triazolo[3,4-b]thiadiazole derivatives. The KA39 compound was tested as a potential topIIα inhibitor using the plasmid-based topoisomerase II drug screening kit. The inhibitory effect of the three derivatives on topIIα phosphorylation was studied in HT-29 and LoVo cancer cells according to Human Phospho-TOP2A/Topoisomerase II Alpha Cell-Based Phosphorylation ELISA Kit. Moreover, flow cytometry was utilized in order to explore apoptotic induction and cell cycle growth arrest, upon treatment with KA39, in DLD-1 and HT-29 cells, respectively. In silico studies were also carried out for further investigation. RESULTS All three triazolo[3,4-b]thiadiazole derivatives showed an in vitro antiproliferative effect with the KA39 compound being the most potent one. Our results indicated that KA39 induced both early and late apoptosis as well as cell cycle growth arrest in S phase. In addition, the compound blocked the relaxation of supercoiled DNA while it also inhibited topIIα phosphorylation (upon treatment; P<0.001). CONCLUSION Among the three triazolo[3,4-b]thiadiazole derivatives, KA39 was shown to be the most potent anticancer agent and catalytic inhibitor of topIIα phosphorylation as well.
Collapse
|
10
|
Anastasiadou D, Geromichalou E, Tsavea E, Psomas G, Hatzidimitriou AG, Kalogiannis S, Geromichalos G, Trafalis D, Dalezis P, Aslanidis P. Silver complexes with heterocyclic thioamide and tertiary arylphosphane ligands: Synthesis, crystal structures, in vitro and in silico antibacterial and cytotoxic activity, and interaction with DNA. J Inorg Biochem 2020; 210:111167. [PMID: 32653633 DOI: 10.1016/j.jinorgbio.2020.111167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 11/19/2022]
Abstract
Herein we report on the synthesis and molecular structures of six silver(I) mixed-ligand complexes containing a heterocyclic thioamide [4-phenyl-imidazole-2-thione (phimtH) or 2,2,5,5-tetramethyl-imidazolidine-4-thione (tmimdtH)] and a tertiary arylphosphane [triphenylphosphine (PPh3), tri-o-tolylphosphane (totp)] or diphosphane [(1,2-bis(diphenylphosphano)ethane (dppe), bis(2-diphenylphosphano-phenyl)ether (DPEphos) or 4,5-bis(diphenylphosphano)-9,9-dimethylxanthene) (xantphos)]. The interaction of the compounds with calf-thymus DNA (CT DNA), as monitored directly via UV-vis spectroscopy and DNA-viscosity measurements and indirectly via its competition with ethidium bromide for DNA-intercalation sites, is suggested to take place via an intercalative mode. The new complexes show selective significant in vitro antibacterial activity against four bacterial strains. The antiproliferative effects and cytostatic efficacies of the complexes against four human cancer cell lines were evaluated. The best cytostatic and cytotoxic activity was appeared for the complexes bearing the phimtH moiety. In order to explain the described in vitro activity of the complexes, and to approach a possible mechanism of action, molecular docking studies were adopted on the crystal structure of CT DNA, DNA-gyrase, human estrogen receptor alpha and a cell-cycle specific target protein, human cyclin-dependent kinase 6.
Collapse
|
11
|
Dalezis P, Geromichalou E, Polonifi A, Sagredou S, Nikoleousakos N, Nikolaou M, Sarli V, Panayiotidis MI, Trafalis DT. Azasteroid Alkylators as Dual Inhibitors of AKT and ERK Signaling for the Treatment of Ovarian Carcinoma. Cancers (Basel) 2020; 12:cancers12051263. [PMID: 32429466 PMCID: PMC7281072 DOI: 10.3390/cancers12051263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/10/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Previous findings show that lactam steroidal alkylating esters display improved therapeutic efficacy with reduced toxicity. The aim of this study was to evaluate the anticancer activity of two newly synthesized aza-steroid alkylators (ENGA-L06E and ENGA-L08E) against human ovarian carcinoma cells, and consequently, the dual inhibition of RAS/PI3K/AKT and RAS/RAF/MEK/ERK signaling pathways, both of which are closely associated with ovarian cancer; (2) Methods: The in vitro cytostatic and cytotoxic effects of ENGA-L06E and ENGA-L08E were evaluated in a panel of five human ovarian cancer cell lines, as well as in in vivo studies. ENGA-L06E and ENGA-L08E, in addition to another two aniline-mustard alkylators, POPAM and melphalan (L-PAM), were utilized in order to determine the acute toxicity and antitumor efficacy on two human ovarian xenograft models. Also, in silico studies were performed in order to investigate the dual inhibition of ENGA-L06E and ENGA-L08E on RAS/PI3K/AKT and RAS/RAF/MEK/ERK signaling pathways; (3) Results: Both, in vitro and in vivo studies demonstrated that ENGA-L06E and ENGA-L08E were significantly more effective with a lower toxicity profile in comparison to POPAM and L-PAM alkylators. Moreover, in silico studies demonstrated that the two new aza-steroid alkylators could act as efficient inhibitors of the phosphorylation of AKT and ERK1/2 molecules; and (4) Conclusions: Both ENGA-L06E and ENGA-L08E demonstrated high anticancer activity through the inhibition of the PI3K-AKT and KRAS-ERK signaling pathways against human ovarian carcinoma, and thus constituting strong evidence towards further clinical development.
Collapse
|
12
|
Chatzisideri T, Thysiadis S, Katsamakas S, Dalezis P, Sigala I, Lazarides T, Nikolakaki E, Trafalis D, Gederaas O, Lindgren M, Sarli V. Synthesis and biological evaluation of a Platinum(II)-c(RGDyK) conjugate for integrin-targeted photodynamic therapy. Eur J Med Chem 2017; 141:221-231. [DOI: 10.1016/j.ejmech.2017.09.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 01/10/2023]
|
13
|
Tsovaltzi E, Malamidou-Xenikaki E, Dalezis P, Hatzidimitriou A, Lazarides T, Trafalis D, Sarli V. Synthesis and analysis of the anticancer activity of Ru( ii) complexes incorporating 2-hydroxymethylidene-indene-1,3-dione ligands. NEW J CHEM 2017. [DOI: 10.1039/c7nj02162c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Piano-stool Ru(ii) complexes incorporating 2-hydroxymethylidene-indene-1,3-dione ligands exhibit promising anticancer activity against four human ovarian cancer cell lines.
Collapse
|
14
|
Trafalis D, Geromichalou E, Dalezis P, Nikoleousakos N, Sarli V. Synthesis and evaluation of new steroidal lactam conjugates with aniline mustards as potential antileukemic therapeutics. Steroids 2016; 115:1-8. [PMID: 27473822 DOI: 10.1016/j.steroids.2016.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/04/2016] [Accepted: 07/23/2016] [Indexed: 12/01/2022]
Abstract
Alkylating agents are still nowadays one of the most important classes of cytotoxic drugs, which display a wide range of therapeutic use for the treatment of various cancers. We have synthesized and tested four hybrid homo-azasteroidal alkylating esters for antileukemic activity against five sensitive to alkylating agents human leukemia cell lines in vitro and against P388 murine leukemia in vivo. Comparatively, melphalan and 3-(4-(bis(2-chloroethyl)amino)phenoxy)propanoic acid (POPAM) were also examined. All the homo-aza-steroidal alkylators showed relatively lower acute toxicity, very promising and antileukemic activity both in vitro and in vivo.
Collapse
|
15
|
Dalezis P, Geromichalos GD, Trafalis DT, Pissimissis N, Panagiotopoulou D, Galaktidou G, Papageorgiou E, Papageorgiou A, Daifoti Z, Lymperi M, Koutsilieris M. Dexamethasone plus octreotide regimen increases anticancer effects of docetaxel on TRAMP-C1 prostate cancer model. In Vivo 2012; 26:75-86. [PMID: 22210719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
AIM The aim of this study was to evaluate whether the neoadjuvant use of the dexamethasone (DEX) plus octreotide (OCT) regimen can improve the direct anticancer effects of docetaxel (DOC) in the TRAMP-C1 prostate cancer model. MATERIALS AND METHODS TRAMP-C1 cells were first characterized for the expression of SSTR1-5 and then were inoculated onto the femur of C57Bl mice. Investigation protocols employed TRAMP-C1 cell proliferation and invasion assays, analysis of radiographic images of the bone lesions and overall survival of the diseased animals. RESULTS The triple combination treatment scheme showed significant anticancer effects, in both proliferation and invasion assays, compared to any single agent treatment scheme. DOC treatment following the neoadjuvant administration of DEX plus OCT regimen improved significantly the anticancer effects both on the grading of the bone lesions and on the overall survival of the diseased animals. CONCLUSION Our data suggest that the neoadjuvant administration of DEX plus OCT regimen can improve the anticancer effects of DOC on the TRAMP-C1 model.
Collapse
|
16
|
Voulgaris E, Pentheroudakis G, Pappa L, Bafa M, Goussia A, Dalezis P, Tsombanidou C, Geromichalos G, Papageorgiou A, Koutsilieris M, Malamou-Mitsi V, Pavlidis N. Positive urinary cytology in patients with lung cancer in the absence of obvious urine tract metastases. Lung Cancer 2011; 73:51-8. [DOI: 10.1016/j.lungcan.2010.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 10/10/2010] [Accepted: 10/24/2010] [Indexed: 11/28/2022]
|
17
|
Geromichalos GD, Geromichalou E, Camoutsis C, Kontos M, Dalezis P, Papageorgiou A, Grivas AA, Tsigris C, Trafalis DT. In silico/in vitro study of hybrid D-modified steroidal alkylator anticancer activity using uridine phosphorylase as target protein. Anticancer Res 2011; 31:831-842. [PMID: 21498703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
BACKGROUND In order to reduce toxicity and to enhance anticancer activity of nitrogen mustards, three hybrid steroidal esters were synthesized and tested in vitro against human pancreatic cancer cells expressing uridine phosphorylase (UPase). The inhibition potency against a target protein implicated in the chemotherapy of solid tumors, such as UPase, is of fundamental importance in the design and synthesis of new anticancer drugs. MATERIALS AND METHODS MTT colorimetric assay and molecular docking were employed for the in vitro and in silico drug evaluation, respectively. RESULTS A difference in cell sensitivity was found, which followed the known different UPase expression in the cell lines. Molecular docking studies on UPase protein, revealed the tested compounds to be bound to the binding cavity of the protein, with different affinity. Between the two D-modified compounds, the D-homo-aza (lactam)-hybrid compound (C2) was found to interact with the protein in a more efficient way. CONCLUSION The molecular docking data were in accordance with the in vitro results, where the lactam steroid alkylator showed significantly higher cytostatic and cytotoxic activity than the non-D-modified compounds, which also correlated with the level of UPase expression in the pancreatic cancer cells.
Collapse
|
18
|
Papageorgiou A, Mourelatos C, Geromichalos G, Geromichalou E, Dalezis P, Lialiaris T. Antitumour and cytogenetic effects of modified steroidal derivatives of propenoic acid: in vivo/in vitro studies. Anticancer Res 2010; 30:4201-4204. [PMID: 21036741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
BACKGROUND Modified steroidal derivatives (PK11-PK14) of p-bis(2-chloroethyl)aminophenyl propenate (PK15) were used to study their antitumour activity on Lewis lung carcinoma (LLC) and their effect on sister chromatid exchanges (SCEs) and human lymphocyte proliferation kinetics. MATERIALS AND METHODS LLC was tested in this study. C57BL mice were used for in vivo chemotherapy evaluation and the antitumour activity was assessed. Lymphocyte cultures were used to study the genotoxic effect in vitro. RESULTS PK15 and PK11 were the most effective against LLC, causing significant inhibition of tumour growth. PK11 and PK15 induced significant increase in SCE rates. A correlation was observed between the cytogenetic effect and the antitumour effectiveness. CONCLUSION The order of the antitumour effectiveness of PK11-PK15 resembled the order of the cytogenetic damage induced by the same compounds in vitro.
Collapse
|
19
|
Papageorgiou AD, Dalezis P, Mourelatos C, Lioutas K, Sahpazidou D, Geromichalou E, Geromichalos G, Lialiaris T, Athanasiadou P, Athanasiadis P. Preclinical evaluation of amiodarone for the treatment of murine leukemia P388. In vivo and in vitro investigation. JOURNAL OF B.U.ON. : OFFICIAL JOURNAL OF THE BALKAN UNION OF ONCOLOGY 2010; 15:568-571. [PMID: 20941829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
PURPOSE The purpose of the present study was the investigation of antileukemic effect of amiodarone in leukemia P388 BDF1 bearing mice and its genotoxic and cytostatic effect in cultured normal human lymphocytes. METHODS Leukemia P388 was used in this study. BDF1 mice were used for chemotherapy evaluation in vivo. The antitumor activity was assessed by the oncostatic parameter T/C, representing the increase of life span of drug-treated animals vs. controls. Lymphocyte cultures were used to study the genotoxic and cytostatic effect in vitro, expressed by enhanced sister chromatid exchange (SCE) and reduced proliferation rate indices (PRIS). RESULTS Amiodarone was found to exert antileukemic potency against leukemia P388 bearing mice at all three different treatment schedules used, yielding T/C values of 155%, 163% with one cure and 230%. In the in vitro cytogenic experiments, significant increase of SCE rates by amiodarone was observed at 0.2 μM, while at the same concentration significant suppression of PRIS was achieved. CONCLUSION According to the National Cancer Institute (NCI), a compound is characterized as potential chemotherapeutic deserving further evaluation if it produces T/C values≥125%. On the other hand the SCE assay has predictive value as a clinical assay for drugs exhibiting a strong correlation between cell killing and induction of SCEs. Further studies are warranted to clarify the structure-activity relationship of amiodarone.
Collapse
|
20
|
Papageorgiou A, Stergiou E, Dalezis P, Chrysogelou E, Geromichalou E, Geromichalos G, Stergiou I. 1218 In vivo antitumor activity of platinum(II) complexes with thiosemicarbazones derived from 2-formyl and 2-acetyl pyridine and containing ring incorporated at N(4)-position. EJC Suppl 2009. [DOI: 10.1016/s1359-6349(09)70430-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Kovala-Demertzi D, Papageorgiou A, Papathanasis L, Alexandratos A, Dalezis P, Miller JR, Demertzis MA. In vitro and in vivo antitumor activity of platinum(II) complexes with thiosemicarbazones derived from 2-formyl and 2-acetyl pyridine and containing ring incorporated at N(4)-position: Synthesis, spectroscopic study and crystal structure of platinum(II) complexes with thiosemicarbazones, potential anticancer agents. Eur J Med Chem 2009; 44:1296-302. [DOI: 10.1016/j.ejmech.2008.08.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 08/12/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
|
22
|
Kovala-Demertzi D, Alexandratos A, Papageorgiou A, Yadav PN, Dalezis P, Demertzis MA. Synthesis, characterization, crystal structures, in vitro and in vivo antitumor activity of palladium(II) and zinc(II) complexes with 2-formyl and 2-acetyl pyridine N(4)-1-(2-pyridyl)-piperazinyl thiosemicarbazone. Polyhedron 2008. [DOI: 10.1016/j.poly.2008.04.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Geromichalos GD, Trafalis DT, Katsoulos GA, Papageorgiou A, Dalezis P, Triandafillidis EB, Hadjikostas CC, Athanassiou A. Synergistic interaction between a mixed ligand copper (II) chelate complex and two anticancer agents in T47D human breast cancer cells in vitro. JOURNAL OF B.U.ON. : OFFICIAL JOURNAL OF THE BALKAN UNION OF ONCOLOGY 2006; 11:469-76. [PMID: 17309179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
PURPOSE We have developed a copper(II) chelate complex with a tridentate ONN-Schiff ligand and the anion of salicylate, showing a potent cytotoxic activity against a panel of human and murine cancer cell lines. In this experiment we have explored the combination effect between Cu(SalNEt(2))salicylate (Cu-Sal) complex and two widely used drugs in cancer chemotherapy, bleomycin (BLM) and 5-fluorouracil (5-FU), against T47D human breast cancer cells. Previous theoretical quantum-chemical studies of this complex and ass adducts with biological molecules elucidated the underlying mechanism of action of this complex. MATERIALS AND METHODS Cells grown in adherence in 96-well microplates were exposed simultaneously to both agents for 48 h. During cytotoxicity was assessed via the XTT colorimetric assay. The combined drug interaction was assessed with the median-effect analysis and the combination index (CI). RESULTS Concurrent treatment of cells with Cu-Sal complex and the chemotherapeutic drugs BLM and 5-FU and the antioxidant agent ascorbic acid (AsA) resulted mainly in synergistic interaction for most concentration ratios. CONCLUSION Cu-Sal complex interacts synergistically with the chemotherapeutic drugs for most schedules of administration. These findings call for prompting to search for possible interaction of this complex with other cellular elements of fundamental importance in cell proliferation.
Collapse
|
24
|
Dalezis P, Geromichalos GD, Voyatzi S, Trafalis D, Athanassiou AE, Koutsilieris M, Papageorgiou A. Combinational effect of topotecan and octreotide on murine leukemia cells in vivo and in vitro. JOURNAL OF B.U.ON. : OFFICIAL JOURNAL OF THE BALKAN UNION OF ONCOLOGY 2006; 11:323-7. [PMID: 17309157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
PURPOSE The activity of topotecan (TPT) against a number of hematological malignancies is now notably increased. TPT is a drug which inhibits the DNA enzyme topoisomerase I (topo I), thereby leading to the induction of tumor cell apoptosis. On the other hand, octreotide (OCT) is a synthetic analogue of somatostatin, which can induce apoptosis and antiproliferative effects on various human tumor cell lines, human xenografts and animal tumors, as well as on lymphoproliferative neoplasms. Hereby, we studied the effects of TPT and OCT, and their combination in the treatment of the rodent P388 lymphocytic leukemia, in vitro and in vivo. MATERIALS AND METHODS Cell cultures of P388 lymphocytic leukemia cells, as well as BDF1 male and female mice implanted with the P388 leukemia cells, were used for the in vitro and in vivo evaluation of the antineoplastic activity of OCT and TPT. RESULTS A significant increase of antileukemic activity of the combined treatment with both TPT and OCT was demonstrated. These results suggest that OCT enhances the effectiveness of TPT in the treatment of leukemia. CONCLUSION Our results indicate that the combination of OCT with TPT in the treatment of hematological neoplasias is effective, and represents an interesting addition to the future therapeutic options, because os its mechanism of action and its toxicity profile.
Collapse
|
25
|
Trafalis DTP, Geromichalos GD, Bountouroglou N, Koumbi D, Kontos M, Sougias D, Dalezis P, Karamanakos P, Papageorgiou A, Camoutsis C, Athanassiou AE. A preclinical survey on the efficacy of lactandrate in the treatment of colon carcinoma. JOURNAL OF B.U.ON. : OFFICIAL JOURNAL OF THE BALKAN UNION OF ONCOLOGY 2005; 10:227-34. [PMID: 17343334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
PURPOSE There has been a recent and dramatic increase in the pace of drug development for colorectal cancer which holds promise to further improve curative therapy. We tested lactandrate, an alkylating ester of D-lactam androsterone, for antineoplastic activity against colon adenocarcinoma in vitro and in vivo. MATERIALS AND METHODS The cytostatic and cytotoxic activity of lactandrate were evaluated in vitro against 9 human colon adenocarcinoma cell lines. The in vitro testing was performed with the sulforhodamine B (SRB) colorimetric assay and the mean concentrations of each drug that generated 50% (GI50) or total (100%) growth inhibition (TGI), as well as the drug concentrations that produced cytotoxicity against 50% of the cultured cells (IC50) were calculated. The in vivo antitumour effect was determined against two rodent colon carcinomas, the Colon 26 and the relatively chemoresistant Colon 38 carcinoma, as well as against the human xenograft CX-1 colon carcinoma. RESULTS Lactandrate displayed a satisfactory activity against the 9 human colon cancer cell lines, inducing significant growth inhibition and cytotoxicity. Lactandrate induced antiproliferative activity against colon cancer cell lines linearly correlated with the carcinoembryonic antigen (CEA) production. There was a non-linear polynomial correlation between CEA production and the cytotoxic effect of lactandrate. The more differentiated cell lines DLD-1 and HCC2998 appeared more resistant to the cytostatic effect of lactandrate. In vivo, the compound produced a significant antitumour activity against Colon 26 and Colon 38, as well as a moderate antitumour effect against CX-1 colon carcinoma. CONCLUSION Preclinical research supports the high in vitro and in vivo antitumour potential of lactandrate against colon carcinoma. Therefore, lactandrate represents an important candidate drug for further clinical development.
Collapse
|