1
|
Moronta J, Smaldini PL, Docena GH, Añón MC. Peptides of amaranth were targeted as containing sequences with potential anti-inflammatory properties. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.12.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
|
9 |
44 |
2
|
Chen L, Deshpande M, Grisotto M, Smaldini P, Garcia R, He Z, Gulko PS, Lira SA, Furtado GC. Skin expression of IL-23 drives the development of psoriasis and psoriatic arthritis in mice. Sci Rep 2020; 10:8259. [PMID: 32427877 PMCID: PMC7237669 DOI: 10.1038/s41598-020-65269-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/28/2020] [Indexed: 02/08/2023] Open
Abstract
Psoriasis (PS) is a chronic skin inflammation. Up to 30% of the patients with PS develop psoriatic arthritis (PsA), a condition characterized by inflammatory arthritis that affects joints or entheses. Although there is mounting evidence for a critical role of interleukin-23 (IL-23) signaling in the pathogenesis of both PS and PsA, it remains unclear whether IL-23-induced skin inflammation drives joint disease. Here, we show that mice expressing increased levels of IL-23 in the skin (K23 mice) develop a PS-like disease that is characterized by acanthosis, parakeratosis, hyperkeratosis, and inflammatory infiltrates in the dermis. Skin disease preceded development of PsA, including enthesitis, dactylitis, and bone destruction. The development of enthesitis and dactylitis was not due to high circulating levels of IL-23, as transgenic animals and controls had similar levels of this cytokine in circulation. IL-22, a downstream cytokine of IL-23, was highly increased in the serum of K23 mice. Although IL-22 deficiency did not affect skin disease development, IL-22 deficiency aggravated the PsA-like disease in K23 mice. Our results demonstrate a central role for skin expressed IL-23 in the initiation of PS and on pathogenic processes leading to PsA.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
28 |
3
|
Smaldini P, Curciarello R, Candreva A, Rey MA, Fossati CA, Petruccelli S, Docena GH. In vivo Evidence of Cross-Reactivity between Cows Milk and Soybean Proteins in a Mouse Model of Food Allergy. Int Arch Allergy Immunol 2012; 158:335-46. [DOI: 10.1159/000333562] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 09/21/2011] [Indexed: 11/19/2022] Open
|
|
13 |
26 |
4
|
Curciarello R, Smaldini PL, Candreva AM, González V, Parisi G, Cauerhff A, Barrios I, Blanch LB, Fossati CA, Petruccelli S, Docena GH. Targeting a cross-reactive Gly m 5 soy peptide as responsible for hypersensitivity reactions in a milk allergy mouse model. PLoS One 2014; 9:e82341. [PMID: 24416141 PMCID: PMC3886974 DOI: 10.1371/journal.pone.0082341] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/29/2013] [Indexed: 11/18/2022] Open
Abstract
Background Cross-reactivity between soybean allergens and bovine caseins has been previously reported. In this study we aimed to map epitopes of the major soybean allergen Gly m 5 that are co-recognized by casein specific antibodies, and to identify a peptide responsible for the cross-reactivity. Methods Cow's milk protein (CMP)-specific antibodies were used in different immunoassays (immunoblotting, ELISA, ELISA inhibition test) to evaluate the in vitro recognition of soybean proteins (SP). Recombinant Gly m 5 (α), a truncated fragment containing the C-terminal domain (α-T) and peptides of α-T were obtained and epitope mapping was performed with an overlapping peptide assay. Bioinformatics tools were used for epitope prediction by sequence alignment, and for modelling the cross-recognized soy proteins and peptides. The binding of SP to a monoclonal antibody was studied by surface Plasmon resonance (SPR). Finally, the in vivo cross-recognition of SP was assessed in a mouse model of milk allergy. Results Both α and α-T reacted with the different CMP-specific antibodies. α-T contains IgG and IgE epitopes in several peptides, particularly in the peptide named PA. Besides, we found similar values of association and dissociation constants between the α-casein specific mAb and the different milk and soy components. The food allergy mouse model showed that SP and PA contain the cross-reactive B and T epitopes, which triggered hypersensitivity reactions and a Th2-mediated response on CMP-sensitized mice. Conclusions Gly m 5 is a cross-reactive soy allergen and the α-T portion of the molecule contains IgG and IgE immunodominant epitopes, confined to PA, a region with enough conformation to be bound by antibodies. These findings contribute to explain the intolerance to SP observed in IgE-mediated CMA patients, primarily not sensitised to SP, as well as it sets the basis to propose a mucosal immunotherapy for milk allergy using this soy peptide.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
18 |
5
|
Asuaje A, Smaldini P, Martín P, Enrique N, Orlowski A, Aiello EA, Gonzalez León C, Docena G, Milesi V. The inhibition of voltage-gated H + channel (HVCN1) induces acidification of leukemic Jurkat T cells promoting cell death by apoptosis. Pflugers Arch 2016; 469:251-261. [PMID: 28013412 DOI: 10.1007/s00424-016-1928-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 11/26/2022]
Abstract
Cellular energetic deregulation is widely known to produce an overproduction of acidic species in cancer cells. This acid overload must be counterbalanced with a high rate of H+ extrusion to maintain cell viability. In this sense, many H+ transporters have been reported to be crucial for cell survival and proposed as antineoplastic target. By the way, voltage-gated proton channels (Hv1) mediate highly selective H+ outward currents, capable to compensate acid burden in brief periods of time. This structure is canonically described acting as NADPH oxidase counterbalance in reactive oxygen species production. In this work, we show, for the first time in a oncohematologic cell line, that inhibition of Hv1 channels by Zn2+ and the more selective blocker 2-(6-chloro-1H-benzimidazol-2-yl)guanidine (ClGBI) progressively decreases intracellular pH in resting conditions. This acidification is evident minutes after blockade and progresses under prolonged exposure (2, 17, and 48 h), and we firstly demonstrate that this is followed by cell death through apoptosis (annexin V binding). Altogether, these results contribute strong evidence that this channel might be a new therapeutic target in cancer.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
18 |
6
|
Muglia CI, Papa Gobbi R, Smaldini P, Orsini Delgado ML, Candia M, Zanuzzi C, Sambuelli A, Rocca A, Toscano MA, Rabinovich GA, Docena GH. Inflammation Controls Sensitivity of Human and Mouse Intestinal Epithelial Cells to Galectin-1. J Cell Physiol 2015; 231:1575-85. [DOI: 10.1002/jcp.25249] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/10/2015] [Indexed: 12/26/2022]
|
|
10 |
17 |
7
|
Ibañez AE, Smaldini P, Coria LM, Delpino MV, Pacífico LGG, Oliveira SC, Risso GS, Pasquevich KA, Fossati CA, Giambartolomei GH, Docena GH, Cassataro J. Unlipidated outer membrane protein Omp16 (U-Omp16) from Brucella spp. as nasal adjuvant induces a Th1 immune response and modulates the Th2 allergic response to cow's milk proteins. PLoS One 2013; 8:e69438. [PMID: 23861971 PMCID: PMC3703917 DOI: 10.1371/journal.pone.0069438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 06/13/2013] [Indexed: 01/18/2023] Open
Abstract
The discovery of novel mucosal adjuvants will help to develop new formulations to control infectious and allergic diseases. In this work we demonstrate that U-Omp16 from Brucella spp. delivered by the nasal route (i.n.) induced an inflammatory immune response in bronchoalveolar lavage (BAL) and lung tissues. Nasal co-administration of U-Omp16 with the model antigen (Ag) ovalbumin (OVA) increased the amount of Ag in lung tissues and induced OVA-specific systemic IgG and T helper (Th) 1 immune responses. The usefulness of U-Omp16 was also assessed in a mouse model of food allergy. U-Omp16 i.n. administration during sensitization ameliorated the hypersensitivity responses of sensitized mice upon oral exposure to Cow's Milk Protein (CMP), decreased clinical signs, reduced anti-CMP IgE serum antibodies and modulated the Th2 response in favor of Th1 immunity. Thus, U-Omp16 could be used as a broad Th1 mucosal adjuvant for different Ag formulations.
Collapse
|
research-article |
12 |
14 |
8
|
Moronta J, Smaldini PL, Fossati CA, Añon MC, Docena GH. The anti-inflammatory SSEDIKE peptide from Amaranth seeds modulates IgE-mediated food allergy. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
|
9 |
13 |
9
|
Smaldini PL, Stanford J, Romanin DE, Fossati CA, Docena GH. Down-regulation of NF-κB signaling by Gordonia bronchialis prevents the activation of gut epithelial cells. Innate Immun 2013; 20:626-38. [PMID: 24055879 DOI: 10.1177/1753425913503577] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 08/09/2013] [Indexed: 02/02/2023] Open
Abstract
The immunomodulatory power of heat-killed Gordonia bronchialis was studied on gut epithelial cells activated with pro-inflammatory stimuli (flagellin, TNF-α or IL-1β). Light emission of luciferase-transfected epithelial cells and mRNA expression of IL-1β, TNF-α, IL-6, CCL20, IL-8 and MCP-1 were measured. NF-κB activation was assessed by immunofluorescence and immunoblotting, and induction of reactive oxygen species (ROS) was evaluated. In vivo inhibitory properties of G. bronchialis were studied with ligated intestinal loop assay and in a mouse model of food allergy. G. bronchialis promoted the down-regulation of the expression of CCL20 and IL-1β on activated epithelial cells in a dose-dependent manner. A concomitant blocking of nuclear p65 translocation with increased production of ROS was found. In vivo experiments confirmed the inhibition of CCL20 expression and the suppression of IgE sensitization and hypersensitivity symptoms in the food allergy mouse model. In conclusion, heat-killed G. bronchialis inhibited the activation of NF-κB pathway in human epithelial cells, and suppressed the expression of CCL20. These results indicate that G. bronchialis may be used to modulate the initial steps of innate immune activation, which further suppress the allergic sensitization. This approach may be exploited as a therapy for intestinal inflammation.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
11 |
10
|
He Z, Chen L, Chen G, Smaldini P, Bongers G, Catalan-Dibene J, Furtado GC, Lira SA. Interleukin 1 beta and Matrix Metallopeptidase 3 Contribute to Development of Epidermal Growth Factor Receptor-Dependent Serrated Polyps in Mouse Cecum. Gastroenterology 2019; 157:1572-1583.e8. [PMID: 31470007 PMCID: PMC7006742 DOI: 10.1053/j.gastro.2019.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 08/02/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Transgenic mice (HBUS) that express the epidermal growth factor receptor (EGFR) ligand HBEGF (heparin-binding epidermal growth factor-like growth factor) and a constitutively active G protein-coupled receptor (US28) in intestinal epithelial cells develop serrated polyps in the cecum. Development of serrated polyps depends on the composition of the gut microbiota and is associated with bacterial invasion of the lamina propria, accompanied by induction of inflammation and up-regulation of interleukin 1 beta (IL1B) and matrix metalloproteinase (MMP) 3 in the cecum. We investigated the mechanisms by which these changes contribute to development of serrated polyps. METHODS We performed studies with C57BL/6 (control) and HBUS mice. To accelerate polyp development, we increased the exposure of the bacteria to the lamina propria by injecting HBUS mice with diphtheria toxin, which binds transgenic HBEGF expressed by the epithelial cells and causes apoptosis. Mice were given injections of IL1B-neutralizing antibody and the MMP inhibitor N-isobutyl-N-(4-methoxyphenylsulfonyl)glycyl hydroxamic acid. Intestinal tissues were collected from mice and analyzed by histology, reverse-transcription polymerase chain reaction, enzyme-linked immunosorbent assay, immunofluorescence, and flow cytometry. We examined fibroblast subsets in polyps using single-cell RNA sequencing. RESULTS Administration of diphtheria toxin to HBUS mice accelerated development of serrated polyps (95% of treated mice developed polyps before 100 days of age, compared with 53% given vehicle). IL1B stimulated subsets of platelet-derived growth factor receptor alpha+ (PDGRFA+) fibroblasts isolated from cecum, resulting in increased expression of MMP3. Neutralizing antibodies against IL1B or administration of the MMP inhibitor reduced the number of serrated polyps that formed in the HBUS mice. Single-cell RNA sequencing analysis showed subsets of fibroblasts in serrated polyps that express genes that regulate matrix fibroblasts and inflammation. CONCLUSIONS In studies of mice, we found that barrier breakdown and expression of inflammatory factors contribute to development of serrated polyps. Subsets of cecal PDGFRA+ fibroblasts are activated by release of IL1B from myeloid cells during the early stages of serrated polyp development. MMP3 produced by PDGFRA+ fibroblasts is important for serrated polyp development. Our findings confirm the functions of previously identified serrated polyp-associated molecules and indicate roles for immune and stromal cells in serrated polyp development.
Collapse
|
research-article |
6 |
8 |
11
|
Di Claudio F, Muglia CI, Smaldini PL, Orsini Delgado ML, Trejo FM, Grigera JR, Docena GH. Use of a Collagen Membrane to Enhance the Survival of Primary Intestinal Epithelial Cells. J Cell Physiol 2017; 232:2489-2496. [PMID: 27626762 DOI: 10.1002/jcp.25594] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/12/2016] [Indexed: 12/24/2022]
Abstract
Intestinal epithelial cell culture is important for biological, functional, and immunological studies. Since enterocytes have a short in vivo life span due to anoikis, we aimed to establish a novel and reproducible method to prolong the survival of mouse and human cells. Cells were isolated following a standard procedure, and cultured on ordered-cow's collagen membranes. A prolonged cell life span was achieved; cells covered the complete surface of bio-membranes and showed a classical enterocyte morphology with high expression of enzymes supporting the possibility of cryopreservation. Apoptosis was dramatically reduced and cultured enterocytes expressed cytokeratin and LGR5 (low frequency). Cells exposed to LPS or flagellin showed the induction of TLR4 and TLR5 expression and a functional phenotype upon exposure to the probiotic Bifidobacterium bifidum or the pathogenic Clostridium difficile. The secretion of the homeostatic (IL-25 and TSLP), inhibitory (IL-10 and TGF-β), or pro-inflammatory mediators (IL-1β and TNF) were induced. In conclusion, this novel protocol using cow's collagen-ordered membrane provides a simple and reproducible method to maintain intestinal epithelial cells functional for cell-microorganism interaction studies and stem cell expansion. J. Cell. Physiol. 232: 2489-2496, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
|
Journal Article |
8 |
7 |
12
|
Candreva ÁM, Smaldini PL, Cauerhff A, Petruccelli S, Docena GH. A novel approach to ameliorate experimental milk allergy based on the oral administration of a short soy cross-reactive peptide. Food Chem 2020; 346:128926. [PMID: 33484948 DOI: 10.1016/j.foodchem.2020.128926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/05/2020] [Accepted: 12/20/2020] [Indexed: 02/04/2023]
Abstract
Food allergy is on the rise, and preventive/therapeutic procedures are needed. We explored a preventive protocol for milk allergy with the oral administration of a Gly-m-Bd-30K soy-derived peptide that contains cross-reactive epitopes with bovine caseins. B/T-cross-reactive epitopes were mapped using milk-specific human sera and monoclonal antibodies on overlapping and recombinant peptides of Gly-m-Bd-30K by SPOT and cell proliferation assays. Bioinformatics tools were used to characterize epitopes on the 3D-modelled molecule, and to predict the binding to HLA alleles. The peptide was orally administrated to mice that were then IgE-sensitized to milk proteins. Immunodominant B-epitopes were mainly located on the surface of the Nt-fragment. The use of a soy-peptide-containing an immunodominant cross-reactive T-epitope, along with a single B epitope, prevents IgE-mediated milk sensitization through the induction of Th1-mediated immunity and induction of blocking IgG. The use of a safe soy-peptide may represent a promising alternative for preventing milk allergy.
Collapse
|
Journal Article |
5 |
4 |
13
|
Asuaje A, Martín P, Enrique N, Zegarra LAD, Smaldini P, Docena G, Milesi V. Diphenhydramine inhibits voltage-gated proton channels (Hv1) and induces acidification in leukemic Jurkat T cells- New insights into the pro-apoptotic effects of antihistaminic drugs. Channels (Austin) 2018; 12:58-64. [PMID: 28514187 PMCID: PMC5972794 DOI: 10.1080/19336950.2017.1331799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 12/22/2022] Open
Abstract
An established characteristic of neoplastic cells is their metabolic reprogramming, known as the Warburg effect, with greater reliance on energetically less efficient pathways (such as glycolysis and pentose phosphate shunt) compared with oxidative phosphorylation. This results in an overproduction of acidic species that must be extruded to maintain intracellular homeostasis. We recently described that blocking the proton currents in leukemic cells mediated by Hv1 ion channels triggers a marked intracellular acidification and apoptosis induction. Moreover, histamine H1-receptor antagonists were found to induce apoptosis in tumoral cells but the mechanism is still unclear. By using Jurkat T cells, we now show how diphenhydramine inhibits Hv1 mediated currents, inducing a drop in intracellular pH and cellular viability. This provides evidence of a new target structure responsible of the known pro-apoptotic action of antihistaminic drugs.
Collapse
|
addendum |
7 |
2 |
14
|
Orsini Delgado ML, Sambuelli A, Negreira S, Gil A, D Elia L, Smaldini PL, Docena GH. Volcanic ash-driven worsening of mucosal inflammation in an experimental colitis model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118351. [PMID: 34637830 DOI: 10.1016/j.envpol.2021.118351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Particulate matter exposure and related chemical changes in drinking water have been associated with health problems and inflammatory disorders. This study aimed to examine the effect of orally administered ash-water dilution on the gut of mice under normal and inflammatory conditions. Balb/c mice received ash-released soluble and dust-suspended components in the drinking water for 14 days. On day 7, animals were intrarectally instilled with TNBS in ethanol or flagellin from Salmonella typhimurium in PBS. At sacrifice, colon segments were collected and histologic damage, mRNA expression and cytokine levels in tissue were evaluated. In addition, these parameters were also evaluated in IL-10 null mice. We found that mice that received 5% w. fine-ash dilution in the drinking water worsened colitis signs. Weight loss, shortening of the colon, tissue edema with mucosa and submucosa cell infiltration and production of pro-inflammatory cytokines and chemokines were enhanced compared to control mice. A more pronounced inflammation was observed in IL-10 null mice. In addition, markers of NLRP3-dependent inflammasome activation were found in animals exposed to ash. In conclusion, ingestion of contaminated water with dust-suspended particulate matter enhanced the inflammatory response in the gut, probably due to alteration of the gut barrier and promoting an intense contact with the luminal content. This study critically appraises the response for fine particulate matter in uncommon illnesses reported for volcanic ash pollution. We suggest actions to enable better prediction and assessment the health impacts of volcanic eruptions.
Collapse
|
|
3 |
|
15
|
Marrugo Padilla A, Rizzo G, Smaldini PL, Vaccaro J, Méndez Cuadro D, Rodríguez Cavallo E, Docena GH. Carbonylation induced by antibiotic and pesticide residues on casein increases its IgE binding and allergenicity. Free Radic Res 2022; 56:28-39. [DOI: 10.1080/10715762.2022.2032020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
|
3 |
|
16
|
Apuzzo E, Agazzi M, Herrera SE, Picco A, Rizzo G, Chavero C, Bianchi D, Smaldini P, Cortez ML, Marmisollé WA, Padula G, Seoane A, Alomar ML, Denofrio MP, Docena G, Azzaroni O. Poly(allylamine)-tripolyphosphate Ionic Assemblies as Nanocarriers: Friend or Foe? ACS APPLIED BIO MATERIALS 2023; 6:4714-4727. [PMID: 37863908 DOI: 10.1021/acsabm.3c00489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Designing effective drug nanocarriers that are easy to synthesize, robust, and nontoxic is a significant challenge in nanomedicine. Polyamine-multivalent molecule nanocomplexes are promising drug carriers due to their simple and all-aqueous manufacturing process. However, these systems can present issues of colloidal instability over time and cellular toxicity due to the cationic polymer. In this study, we finely modulate the formation parameters of poly(allylamine-tripolyphosphate) complexes to jointly optimize the robustness and safety. Polyallylamine was ionically assembled with tripolyphosphate anions to form liquid-like nanocomplexes with a size of around 200 nm and a zeta potential of -30 mV. We found that nanocomplexes exhibit tremendous long-term stability (9 months of storage) in colloidal dispersion and that they are suitable as protein-loading agents. Moreover, the formation of nanocomplexes induced by tripolyphosphate anions produces a switch-off in the toxicity of the system by altering the overall charge from positive to negative. In addition, we demonstrate that nanocomplexes can be internalized by bone-marrow-derived macrophage cells. Altogether, these nanocomplexes have attractive and promising properties as delivery nanoplatforms for potential therapies based on the immune system activation.
Collapse
|
|
2 |
|
17
|
Smaldini PL, Trejo FM, Rizzo GP, Comerci DJ, Kampinga J, Docena GH. Mucosal Immunoregulatory Properties of Tsukamurella inchonensis to Reverse Experimental Food Allergy. Front Immunol 2021; 12:641597. [PMID: 33995359 PMCID: PMC8120237 DOI: 10.3389/fimmu.2021.641597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/19/2021] [Indexed: 11/22/2022] Open
Abstract
The intestinal mucosa is lined by epithelial cells, which are key cells to sustain gut homeostasis. Food allergy is an immune-mediated adverse reaction to food, likely due to defective regulatory circuits. Tsukamurella inchonensis is a non-pathogenic bacterium with immunomodulatory properties. We hypothesize that the anti-inflammatory effect of dead T. inchonensis on activated epithelial cells modulates milk allergy through the restoration of tolerance in a mouse model. Epithelial cells (Caco-2 and enterocytes from mouse gut) and macrophages were stimulated with T. inchonensis and induction of luciferase under the NF-κB promoter, ROS and cytokines production were studied. Balb/c mice were mucosally sensitized with cow´s milk proteins plus cholera toxin and orally challenged with the allergen to evidence hypersensitivity symptoms. After that, mice were orally administered with heat-killed T. inchonensis as treatment and then challenged with the allergen. The therapeutic efficacy was in vivo (clinical score and cutaneous test) and in vitro (serum specific antibodies and cytokines-ELISA, and cell analysis-flow cytometry) evaluated. Heat-killed T. inchonensis modulated the induction of pro-inflammatory chemokines, with an increase in anti-inflammatory cytokines by intestinal epithelial cells and by macrophages with decreased OX40L expression. In vivo, oral administration of T. inchonensis increased the frequency of lamina propria CD4+CD25+FoxP3+ T cells, and clinical signs were lower in T. inchonensis-treated mice compared with milk-sensitized animals. In vivo depletion of Tregs (anti-CD25) abrogated T. inchonensis immunomodulation. In conclusion, these bacteria suppressed the intestinal inflammatory immune response to reverse food allergy.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
|
18
|
Rizzo GP, Sanches RC, Chavero C, Bianchi DS, Apuzzo E, Herrera SE, Agazzi ML, Cortez ML, Marmisollé WA, Keitelman IA, Trevani AS, Oliveira SC, Azzaroni O, Smaldini PL, Docena GH. Poly(allylamine)/tripolyphosphate nanocomplex coacervate as a NLRP3-dependent systemic adjuvant for vaccine development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601578. [PMID: 39005275 PMCID: PMC11244956 DOI: 10.1101/2024.07.01.601578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Nanotechnology plays a crucial role in vaccine development. It allows the design of functional nanoparticles (NPs) that can act both as antigen carriers and as adjuvants to enhance the immune response. The present study aims to evaluate complex coacervate-like NPs composed of poly(allylamine hydrochloride) (PAH) and tripolyphosphate (TPP) as a safe vehicle and adjuvant for systemic vaccines. We investigated the activation of different antigen-presenting cells (APCs) with NPs and their adjuvanticity in Balbc/c and different KO mice that were intraperitoneally immunized with NP-OVA. We found that NPs increased the expression of CD86 and MHCII and promoted the production and secretion of interleukin-1β (IL-1β) and IL-18 through the inflammasome NLRP3 when macrophages and dendritic cells were co-incubated with LPS and NPs. We evidenced an unconventional IL-1β release through the autophagosome pathway. The inhibition of autophagy with 3-methyladenine reduced the LPS/NPs-induced IL-1β secretion. Additionally, our findings showed that the systemic administration of mice with NP-OVA triggered a significant induction of serum OVA-specific IgG and IgG2a, an increased secretion of IFN-γ by spleen cells, and high frequencies of LT CD4 + IFN-γ + and LT CD8 + IFN-γ + . Our findings show that NPs promoted the inflammasome activation of innate cells with Th1-dependent adjuvant properties, making them valuable for formulating novel preventive or therapeutic vaccines for infectious and non-infectious diseases.
Collapse
|
Preprint |
1 |
|