1
|
Neves PCDC, Matos DCDS, Marcovistz R, Galler R. TLR expression and NK cell activation after human yellow fever vaccination. Vaccine 2009; 27:5543-9. [PMID: 19647065 DOI: 10.1016/j.vaccine.2009.07.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 07/03/2009] [Accepted: 07/10/2009] [Indexed: 11/15/2022]
Abstract
The yellow fever vaccine is very effective with a single injection conferring protection for at least 10 years. Recent evidence suggests that the innate immune cells activated through Toll-like receptors (TLRs), are critical determinants of the robustness of the adaptive response. Therefore, we investigated the NK cell status in eight healthy volunteers after vaccination with YF 17DD virus. Shortly after vaccination, we observed increased expression of TLR-3 and TLR-9 in NK cells and markers such as CD69, HLA-DP-DQ-DR, CD38 and CD16. The up-regulation of CD69 was positively correlated with the presence of TLRs throughout the post-vaccination period and the circulating IFN-gamma was significantly augmented. These results suggest that TLRs may play an important role in NK cell activation during the immune response to vaccination, indicating a potential role for NK cells in helping the development of long-lasting protective memory.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
49 |
2
|
dos Santos DCM, da Silva Gomes Martinho JM, Pacheco-Moreira LF, Carvalho Viana de Araújo C, Caroli-Bottino A, Pannain VL, Soares Trinta K, Gandini M, da Costa Neves PC, de Souza Matos DC, Gonçalves Caputo LF, Pelajo-Machado M, Alves Pinto M. Eosinophils involved in fulminant hepatic failure are associated with high interleukin-6 expression and absence of interleukin-5 in liver and peripheral blood. Liver Int 2009; 29:544-51. [PMID: 19323781 DOI: 10.1111/j.1478-3231.2008.01872.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Although eosinophils are considered to play an important role in the pathogenesis of various parasitic, allergic and autoimmune digestive diseases, their role in fulminant hepatic failure (FHF) is unknown. Our contribution was to identify and quantify eosinophils and cytokine levels [interleukin (IL)-6, IL-5 and macrophage inflammatory protein (MIP)-1alpha] in liver parenchyma and peripheral blood from FHF patients at pre- and post-transplantation steps. METHODS Histochemical methods were used to identify/quantify eosinophils in liver samples. Liver and plasma cytokine levels were quantified using immunofluorescence methods. RESULTS Fulminant hepatic failure patients showed a high number of intrahepatic eosinophils concomitant with an increased expression of IL-6, besides the IL-6-positive eosinophils associated with the lack of IL-5. Also, an increased number of eosinophils and soluble IL-6 and MIP-1alpha with a low expression of IL-5 in peripheral blood at the pretransplantation step was observed. CONCLUSIONS The increased number of intrahepatic eosinophils, besides the high production of IL-6, may be involved in liver dysfunction. In addition, the low presence of IL-5 in liver and peripheral blood may represent a particular pattern of eosinophil behaviour in human liver failure, which may also involve MIP-1alpha. Further ex vivo studies are necessary to evaluate the specific role of eosinophils in FHF.
Collapse
|
|
16 |
14 |
3
|
Azamor T, Cunha DP, da Silva AMV, Bezerra OCDL, Ribeiro-Alves M, Calvo TL, Kehdy FDSG, Manta FDN, Pinto TGDT, Ferreira LP, Portari EA, Guida LDC, Gomes L, Moreira MEL, de Carvalho EF, Cardoso CC, Muller M, Ano Bom APD, Neves PCDC, Vasconcelos Z, Moraes MO. Congenital Zika Syndrome Is Associated With Interferon Alfa Receptor 1. Front Immunol 2021; 12:764746. [PMID: 34899713 PMCID: PMC8657619 DOI: 10.3389/fimmu.2021.764746] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Host factors that influence Congenital Zika Syndrome (CZS) outcome remain elusive. Interferons have been reported as the main antiviral factor in Zika and other flavivirus infections. Here, we accessed samples from 153 pregnant women (77 without and 76 with CZS) and 143 newborns (77 without and 66 with CZS) exposed to ZIKV conducted a case-control study to verify whether interferon alfa receptor 1 (IFNAR1) and interferon lambda 2 and 4 (IFNL2/4) single nucleotide polymorphisms (SNPs) contribute to CZS outcome, and characterized placenta gene expression profile at term. Newborns carrying CG/CC genotypes of rs2257167 in IFNAR1 presented higher risk of developing CZS (OR=3.41; IC=1.35-8.60; Pcorrected=0.032). No association between IFNL SNPs and CZS was observed. Placenta from CZS cases displayed lower levels of IFNL2 and ISG15 along with higher IFIT5. The rs2257167 CG/CC placentas also demonstrated high levels of IFIT5 and inflammation-related genes. We found CZS to be related with exacerbated type I IFN and insufficient type III IFN in placenta at term, forming an unbalanced response modulated by the IFNAR1 rs2257167 genotype. Despite of the low sample size se findings shed light on the host-pathogen interaction focusing on the genetically regulated type I/type III IFN axis that could lead to better management of Zika and other TORCH (Toxoplasma, Others, Rubella, Cytomegalovirus, Herpes) congenital infections.
Collapse
|
research-article |
4 |
8 |
4
|
Tavares da Silva Fernandes A, Moreira SB, Gaspar LP, Simões M, Cajaraville ACDRA, Pereira RC, Gomes MPDB, Linhares JHR, Santos VDO, Santos RT, Amorim JF, Barros TADC, Melgaço JG, da Silva AMV, Fernandes CB, Tubarão LN, da Silva J, Caride EC, Borges MB, Guimarães RC, Marchevsky RS, de Lima SMB, Ano Bom APD, Neves PCDC, Pissinatti A, Freire MDS. Safety and immunogenicity of 17DD attenuated yellow fever vaccine in howler monkeys (Alouatta spp.). J Med Primatol 2020; 50:36-45. [PMID: 33219623 DOI: 10.1111/jmp.12501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/17/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Alouatta spp. are highly susceptible to yellow fever (YF) infection and develop an often fatal disease. The threat posed by an outbreak started in 2016 leads us to investigate vaccination as a potential tool in preventing YF in non-human primates (NHP). METHODS Susceptible howler monkeys were immunized with three different concentrations of the human Brazilian commercial YF17DD vaccine. Post-vaccination viremia/RNAemia, immunogenicity, and safety were characterized. RESULTS The vaccine did not produce YF clinical manifestations in any of the NHPs. After immunization, all animals seroconverted demonstrating the ability of the YF vaccine to induce humoral response in Alouatta species. CONCLUSIONS The present work has demonstrated the safe and immunogenic profile of the existing YF 17DD vaccine in howler monkeys. This knowledge may support further studies with other susceptible monkey species and provide a possible solution for controlling epizootics and preventing the devastation of endangered species.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
7 |
5
|
Barros TADC, Batista DDO, Torrentes de Carvalho A, Costa Faria NRD, Barreto-Vieira DF, Jácome FC, Barth OM, Nogueira RMR, Neves PCDC, Matos DCDS, Leal de Azeredo E, Vieira Damasco P, Cunha RVD, de-Oliveira-Pinto LM. Different aspects of platelet evaluation in dengue: Measurement of circulating mediators, ability to interact with the virus, the degree of activation and quantification of intraplatelet protein content. Virus Res 2018; 260:163-172. [PMID: 30282001 DOI: 10.1016/j.virusres.2018.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/06/2018] [Accepted: 09/19/2018] [Indexed: 10/28/2022]
Abstract
Platelets play a role in hemostasis, coagulation, angiogenesis, inflammation and immune response is one of the most affected cells in dengue. Here we describe some aspects of platelets by observing their specific circulating mediators, the ability to interact with the virus and morphological consequences of this interaction, activation markers and intraplatelet protein contents in dengue. We conducted this study using dengue-patients as well as healthy donors. Immunoenzymatic assay, flow cytometry, transmission electron microscopy and intraplatelet proteins expression assays were carried out. Briefly, we found an increase in sCD62L, NO or TBX2 ratio in platelet count, mostly in patients with the worse clinical outcome. After in vitro DENV infection or during natural infection, platelets underwent morphological alteration with increased expression of platelet activation markers, particularly in natural infections. Analysis of intraplatelet protein contents revealed different angiogenic and inflammatory profiles, maintaining or not extracellular matrix integrity between DF and DFWS patients. Thus, platelets are frequently affected by dengue, either by altering their own functionality, as "carrier" of the virus, or as an antiviral and mediator-secreting effector cell. Thus, strategies aimed at recovering platelet amounts in dengue seem to be essential for a better clinical outcome of the patients.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
4 |
6
|
Cajaraville ACDRA, Gomes MPDB, Azamor T, Pereira RC, Neves PCDC, De Luca PM, de Lima SMB, Gaspar LP, Caride E, Freire MDS, Medeiros MA. Evaluation of Two Adjuvant Formulations for an Inactivated Yellow Fever 17DD Vaccine Candidate in Mice. Vaccines (Basel) 2022; 11:73. [PMID: 36679918 PMCID: PMC9865672 DOI: 10.3390/vaccines11010073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
The attenuated yellow fever (YF) vaccine is one of the most successful vaccines ever developed. After a single dose administration YF vaccine can induce balanced Th1/Th2 immune responses and long-lasting neutralizing antibodies. These attributes endorsed it as a model of how to properly stimulate the innate response to target protective immune responses. Despite their longstanding success, attenuated YF vaccines can cause rare fatal adverse events and are contraindicated for persons with immunosuppression, egg allergy and age < 6 months and >60 years. These drawbacks have encouraged the development of a non-live vaccine. The aim of the present study is to characterize and compare the immunological profile of two adjuvant formulations of an inactivated YF 17DD vaccine candidate. Inactivated YF vaccine formulations based on alum (Al(OH)3) or squalene (AddaVax®) were investigated by immunization of C57BL/6 mice in 3-dose or 2-dose schedules, respectively, and compared with a single dose of attenuated YF virus 17DD. Sera were analyzed by ELISA and Plaque Reduction Neutralization Test (PRNT) for detection of total IgG and neutralizing antibodies against YF virus. In addition, splenocytes were collected to evaluate cellular responses by ELISpot. Both inactivated formulations were able to induce high titers of IgG against YF, although neutralizing antibodies levels were borderline on pre-challenge samples. Analysis of IgG subtypes revealed a predominance of IgG2a associated with improved neutralizing capacity in animals immunized with the attenuated YF vaccine, and a predominance of IgG1 in groups immunized with experimental non-live formulations (alum and AddaVax®). After intracerebral (IC) challenge, attenuated and inactivated vaccine formulations showed an increase in neutralizing antibodies. The AddaVax®-based inactivated vaccine and the attenuated vaccine achieved 100% protection, and alum-based equivalent formulation achieved 70% protection.
Collapse
|
research-article |
3 |
4 |
7
|
Dinis Ano Bom AP, da Costa Neves PC, Bonacossa de Almeida CE, Silva D, Missailidis S. Aptamers as Delivery Agents of siRNA and Chimeric Formulations for the Treatment of Cancer. Pharmaceutics 2019; 11:pharmaceutics11120684. [PMID: 31888119 PMCID: PMC6956146 DOI: 10.3390/pharmaceutics11120684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022] Open
Abstract
Both aptamers and siRNA technologies have now reached maturity, and both have been validated with a product in the market. However, although pegaptanib reached the market some time ago, there has been a slow process for new aptamers to follow. Today, some 40 aptamers are in the market, but many in combination with siRNAs, in the form of specific delivery agents. This combination offers the potential to explore the high affinity and specificity of aptamers, the silencing power of siRNA, and, at times, the cytotoxicity of chemotherapy molecules in powerful combinations that promise to delivery new and potent therapies. In this review, we report new developments in the field, following up from our previous work, more specifically on the use of aptamers as delivery agents of siRNA in nanoparticle formulations, alone or in combination with chemotherapy, for the treatment of cancer.
Collapse
|
Review |
6 |
3 |
8
|
Gomes MPDB, Linhares JHR, Dos Santos TP, Pereira RC, Santos RT, da Silva SA, Souza MCDO, da Silva JFA, Trindade GF, Gomes VS, Barreto-Vieira DF, Carvalho MMVF, Ano Bom APD, Gardinali NR, Müller R, Alves NDS, Moura LDC, Neves PCDC, Esteves GS, Schwarcz WD, Missailidis S, Mendes YDS, de Lima SMB. Inactivated and Immunogenic SARS-CoV-2 for Safe Use in Immunoassays and as an Immunization Control for Non-Clinical Trials. Viruses 2023; 15:1486. [PMID: 37515173 PMCID: PMC10386713 DOI: 10.3390/v15071486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Successful SARS-CoV-2 inactivation allows its safe use in Biosafety Level 2 facilities, and the use of the whole viral particle helps in the development of analytical methods and a more reliable immune response, contributing to the development and improvement of in vitro and in vivo assays. In order to obtain a functional product, we evaluated several inactivation protocols and observed that 0.03% beta-propiolactone for 24 h was the best condition tested, as it promoted SARS-CoV-2 inactivation above 99.99% and no cytopathic effect was visualized after five serial passages. Moreover, RT-qPCR and transmission electron microscopy revealed that RNA quantification and viral structure integrity were preserved. The antigenicity of inactivated SARS-CoV-2 was confirmed by ELISA using different Spike-neutralizing monoclonal antibodies. K18-hACE2 mice immunized with inactivated SARS-CoV-2, formulated in AddaS03TM, presented high neutralizing antibody titers, no significant weight loss, and longer survival than controls from a lethal challenge, despite RNA detection in the oropharyngeal swab, lung, and brain. This work emphasizes the importance of using different techniques to confirm viral inactivation and avoid potentially disastrous contamination. We believe that an efficiently inactivated product can be used in several applications, including the development and improvement of molecular diagnostic kits, as an antigen for antibody production as well as a control for non-clinical trials.
Collapse
|
|
2 |
1 |
9
|
Guterres A, Abrahim M, da Costa Neves PC. The role of immune subtyping in glioma mRNA vaccine development. Immunotherapy 2023; 15:1057-1072. [PMID: 37431617 DOI: 10.2217/imt-2023-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
Studies on the development of mRNA vaccines for central nervous system tumors have used gene expression profiles, clinical data and RNA sequencing from sources such as The Cancer Genome Atlas and Chinese Glioma Genome Atlas to identify effective antigens. These studies revealed several immune subtypes of glioma, each one linked to unique prognoses and genetic/immune-modulatory changes. Potential antigens include ARPC1B, BRCA2, COL6A1, ITGB3, IDH1, LILRB2, TP53 and KDR, among others. Patients with immune-active and immune-suppressive phenotypes were found to respond better to mRNA vaccines. While these findings indicate the potential of mRNA vaccines in cancer therapy, further research is required to optimize administration and adjuvant selection, and precisely identify target antigens.
Collapse
|
Review |
2 |
1 |
10
|
da Silva AMV, Alvarado-Arnez LE, Azamor T, Batista-Silva LR, Leal-Calvo T, Bezerra OCDL, Ribeiro-Alves M, Kehdy FDSG, Neves PCDC, Bayma C, da Silva J, de Souza AF, Muller M, de Andrade EF, Andrade ACM, dos Santos EM, Xavier JR, Maia MDLDS, Meireles RP, Cuni HN, Sander GB, Picon PD, Matos DCS, Moraes MO. Interferon-lambda 3 and 4 Polymorphisms Increase Sustained Virological Responses and Regulate Innate Immunity in Antiviral Therapy With Pegylated Interferon-Alpha. Front Cell Infect Microbiol 2021; 11:656393. [PMID: 34307188 PMCID: PMC8294038 DOI: 10.3389/fcimb.2021.656393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Sustained virologic response (SVR) in chronic hepatitis C (CHC) treatment denotes that the host genetics controls the immune response and unequivocally contribute to viral clearance or disease severity. In this context, single nucleotide polymorphisms (SNPs) in the locus of interferon lambda 3 and 4 genes (IFNL3/4) have been important genetic markers of responsiveness to CHC as prognostic markers for the pegylated-Interferon-alpha/ribavirin (Peg-IFN-α/RBV). Here, we analyzed 12 SNPs at the IFNL3/4 region in 740 treatment-naïve patients with CHC infected with hepatitis C virus (HCV) genotypes 1, 2, or 3 treated with Peg-IFN-α/RBV. Individually, rs12979860-CC, rs8109886-CC, or rs8099917-TT were predictive markers of SVR, while rs12979860-CC demonstrated the stronger effect. Besides, the genotypic combination of these three predictors' genotypes, CC/CC/TT, increased the rate of SVR. Serum levels of cytokines and gene expression analysis on the genes IFNL3, IFNL4, IFNA1, and some of the IFN-stimulated genes (ISGs) were measured in a subgroup of 24 treated patients and 24 healthy volunteers. An antagonist effect was highlighted between the expression of IFNL3/4 and IFNA1 mRNA among patients. Besides, a prominent production of the pro-inflammatory chemokines CCL4 and CXCL10 was observed at a 12-week treatment follow-up. Lower serum levels of these chemokines were detected in patients with an rs12979860-CC genotype associated with the better treatment outcome. Also, lower expression levels of the IFI6, IFI16, IRF9 genes were observed among rs12979860-CC individuals. In conclusion, a combination of the genotypes at the IFNL3/4 locus can act as a better marker for the prognosis for virological responses in an admixed Brazilian population presenting the modulating effect over innate immunity and inflammation that are controlling the outcome of the viral infection, but also other infectious diseases. This study is registered on the ClinicalTrials.gov platform (accession number NCT01889849 and NCT01623336).
Collapse
|
research-article |
4 |
1 |
11
|
de Souza CS, Lopes VRDC, Barcellos G, Alexandrino-Junior F, Neves PCDC, Patricio BFDC, Rocha HVA, Ano Bom APD, Figueiredo ABC. Unleashing Fungicidal Forces: Exploring the Synergistic Power of Amphotericin B-Loaded Nanoparticles and Monoclonal Antibodies. J Fungi (Basel) 2024; 10:344. [PMID: 38786699 PMCID: PMC11122123 DOI: 10.3390/jof10050344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Fungal infections cause 1.7 million deaths annually, which can be attributed not only to fungus-specific factors, such as antifungal resistance and biofilm formation, but also to drug-related challenges. In this study, the potential of Amphotericin (AmB) loaded polymeric nanoparticles (AmB-NPs) combined with murine monoclonal antibodies (mAbs) (i.e., CC5 and DD11) was investigated as a strategy to overcome these challenges. To achieve this goal, AmB-NPs were prepared by nanoprecipitation using different polymers (polycaprolactone (PCL) and poly(D,L-lactide) (PLA)), followed by comprehensive characterization of their physicochemical properties and in vitro biological performance. The results revealed that AmB-loaded NPs exhibited no cytotoxicity toward mammalian cells (baby hamster kidney cells-BHK and human monocyte cells-THP-1). Conversely, both AmB-NPs demonstrated a cytotoxic effect against C. albicans, C. neoformans, and H. capsulatum throughout the entire evaluated range (from 10 µg/mL to 0.1 µg/mL), with a significant MIC of up to 0.031 µg/mL. Moreover, the combination of AmB-NPs with mAbs markedly intensified antifungal activity, resulting in a synergistic effect that was two to four times greater than that of AmB-NPs alone. These findings suggest that the combination of AmB-NPs with mAbs could be a promising new treatment for fungal infections that is potentially more effective and less toxic than current antifungal treatments.
Collapse
|
research-article |
1 |
|
12
|
Ramos MB, Araújo AEVD, Pestana CP, Ano Bom APD, Bastos RC, de Almeida Oliveira A, da Costa Neves PC, da Silva Junior HC. Initial development of biosimilar immune checkpoint blockers using HEK293 cells. Protein Expr Purif 2020; 170:105596. [PMID: 32036001 DOI: 10.1016/j.pep.2020.105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/05/2020] [Indexed: 11/19/2022]
Abstract
Antibodies that block interaction of immune checkpoint receptors with its ligands have revolutionized the treatment of several cancers. Despite the success of this approach, the high cost has been restricted the use of this class of drugs. In this context, the development of biosimilar can be an important strategy for reducing prices and expanding access after patent has been dropped. Here, we evaluated the use of HEK293 cells for transient expression of an immune checkpoint-blocking antibody as a first step for biosimilar development. Antibody light and heavy chain genes were cloned into pCI-neo vector and transiently expressed in HEK293 cells. The culture supernatant was then subjected to protein A affinity chromatography, which allowed to obtain the antibody with high homogeneity. For physicochemical comparability, biosimilar antibody and reference drug were analyzed by SDS-PAGE, isoelectric focusing, circular dichroism and fluorescence spectroscopy. The results indicated that the both antibodies have a high degree of structural similarity. Lastly, the biosimilar antibody binding capacity to target receptor was shown to be similar to reference product in ELISA and flow cytometry assays. These data demonstrate that the HEK293 system can be used as an important tool for candidate selection and early development of biosimilar antibodies.
Collapse
|
|
5 |
|
13
|
Matos ADS, Soares IF, Rodrigues-da-Silva RN, Rodolphi CM, Albrecht L, Donassolo RA, Lopez-Camacho C, Ano Bom APD, Neves PCDC, Conte FDP, Pratt-Riccio LR, Daniel-Ribeiro CT, Totino PRR, Lima-Junior JDC. Immunogenicity of PvCyRPA, PvCelTOS and Pvs25 chimeric recombinant protein of Plasmodium vivax in murine model. Front Immunol 2024; 15:1392043. [PMID: 38962015 PMCID: PMC11219565 DOI: 10.3389/fimmu.2024.1392043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
In the Americas, P. vivax is the predominant causative species of malaria, a debilitating and economically significant disease. Due to the complexity of the malaria parasite life cycle, a vaccine formulation with multiple antigens expressed in various parasite stages may represent an effective approach. Based on this, we previously designed and constructed a chimeric recombinant protein, PvRMC-1, composed by PvCyRPA, PvCelTOS, and Pvs25 epitopes. This chimeric protein was strongly recognized by naturally acquired antibodies from exposed population in the Brazilian Amazon. However, there was no investigation about the induced immune response of PvRMC-1. Therefore, in this work, we evaluated the immunogenicity of this chimeric antigen formulated in three distinct adjuvants: Stimune, AddaVax or Aluminum hydroxide (Al(OH)3) in BALB/c mice. Our results suggested that the chimeric protein PvRMC-1 were capable to generate humoral and cellular responses across all three formulations. Antibodies recognized full-length PvRMC-1 and linear B-cell epitopes from PvCyRPA, PvCelTOS, and Pvs25 individually. Moreover, mice's splenocytes were activated, producing IFN-γ in response to PvCelTOS and PvCyRPA peptide epitopes, affirming T-cell epitopes in the antigen. While aluminum hydroxide showed notable cellular response, Stimune and Addavax induced a more comprehensive immune response, encompassing both cellular and humoral components. Thus, our findings indicate that PvRMC-1 would be a promising multistage vaccine candidate that could advance to further preclinical studies.
Collapse
MESH Headings
- Animals
- Plasmodium vivax/immunology
- Plasmodium vivax/genetics
- Mice
- Antigens, Protozoan/immunology
- Antigens, Protozoan/genetics
- Malaria, Vivax/immunology
- Malaria, Vivax/prevention & control
- Antibodies, Protozoan/immunology
- Mice, Inbred BALB C
- Malaria Vaccines/immunology
- Female
- Protozoan Proteins/immunology
- Protozoan Proteins/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/genetics
- Disease Models, Animal
- Adjuvants, Immunologic
- Immunogenicity, Vaccine
- Antigens, Surface
Collapse
|
research-article |
1 |
|
14
|
Pinto MA, da Silva ADS, Rodrigues DDRF, Müller R, de Vasconcelos GALBM, Neves PCDC, de Oliveira JM, Marchevsky RS. Animal models and SARS-CoV-2-induced pulmonary and neurological injuries. Mem Inst Oswaldo Cruz 2023; 117:e220239. [PMID: 36700583 PMCID: PMC9870265 DOI: 10.1590/0074-02760220239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/29/2022] [Indexed: 01/27/2023] Open
Abstract
Laboratory animals are essential mainly for experiments aiming to study pathogenesis and evaluate antivirals and vaccines against emerging human infectious diseases. Preclinical studies of coronavirus disease 19 (COVID-19) pathogenesis have used several animal species as models: transgenic human ACE2 mice (K18 mice), inbred BALB/c or C57BL/6N mice, ferrets, minks, domestic cats and dogs, hamsters, and macaques. However, the choice of an animal model relies on several limitations. Besides the host susceptibility, the researcher's experience with animal model management and the correct interpretation of clinical and laboratory records are crucial to succeed in preclinical translational research. Here, we summarise pathological and clinical findings correlated with virological data and immunological changes observed from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) experimental infections using different well-established SARS-CoV-2 animal model species. This essay aims to critically evaluate the current state of animal model translation to clinical data, as described in the human SARS-CoV-2 infection.
Collapse
|
review-article |
2 |
|
15
|
Azamor T, Cunha DP, Nobre Pires KS, Lira Tanabe EL, Melgaço JG, Vieira da Silva AM, Ribeiro-Alves M, Calvo TL, Tubarão LN, da Silva J, Fernandes CB, Fonseca de Souza A, Torrentes de Carvalho A, Avvad-Portari E, da Cunha Guida L, Gomes L, Lopes Moreira ME, Dinis Ano Bom AP, Cristina da Costa Neves P, Missailidis S, Vasconcelos Z, Borbely AU, Moraes MO. Decidual production of interferon lambda in response to ZIKV persistence: Clinical evidence and in vitro modelling. Heliyon 2024; 10:e30613. [PMID: 38737240 PMCID: PMC11087979 DOI: 10.1016/j.heliyon.2024.e30613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
Zika virus (ZIKV) infections during pregnancy can result in Congenital Zika Syndrome (CZS), a range of severe neurological outcomes in fetuses that primarily occur during early gestational stages possibly due to placental damage. Although some placentas can maintain ZIKV persistence for weeks or months after the initial infection and diagnosis, the impact of this viral persistence is still unknown. Here, we aimed to investigate the immunological repercussion of ZIKV persistence in term placentas. As such, term placentas from 64 pregnant women diagnosed with Zika in different gestational periods were analyzed by ZIKV RT-qPCR, examination of decidua and placental villous histopathology, and expression of inflammation-related genes and IFNL1-4. Subsequently, we explored primary cultures of term decidual Extravillous Trophoblasts (EVTs) and Term Chorionic Villi (TCV) explants, as in vitro models to access the immunological consequences of placental ZIKV infection. Placenta from CZS cases presented low IFNL1-4 expression, evidencing the critical protective role of theses cytokines in the clinical outcome. Term placentas cleared for ZIKV showed increased levels of IFNL1, 3, and 4, whether viral persistence was related with a proinflammatory profile. Conversely, upon ZIKV persistence placentas with decidual inflammation showed high IFNL1-4 levels. In vitro experiments showed that term EVTs are more permissive, and secreted higher levels of IFN-α2 and IFN-λ1 compared to TCV explants. The results suggest that, upon ZIKV persistence, the maternal-skewed decidua contributes to placental inflammatory and antiviral signature, through chronic deciduitis and IFNL upregulation. Although further studies are needed to elucidate the mechanisms underlying the decidual responses against ZIKV. Hence, this study presents unique insights and valuable in vitro models for evaluating the immunological landscape of placentas upon ZIKV persistence.
Collapse
|
research-article |
1 |
|