1
|
Pouliot RA, Link PA, Mikhaiel NS, Schneck MB, Valentine MS, Kamga Gninzeko FJ, Herbert JA, Sakagami M, Heise RL. Development and characterization of a naturally derived lung extracellular matrix hydrogel. J Biomed Mater Res A 2016; 104:1922-35. [PMID: 27012815 DOI: 10.1002/jbm.a.35726] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/10/2016] [Accepted: 03/22/2016] [Indexed: 01/15/2023]
Abstract
The complexity and rapid clearance mechanisms of lung tissue make it difficult to develop effective treatments for many chronic pathologies. We are investigating lung derived extracellular matrix (ECM) hydrogels as a novel approach for delivery of cellular therapies to the pulmonary system. The main objectives of this study include effective decellularization of porcine lung tissue, development of a hydrogel from the porcine ECM, and characterization of the material's composition, mechanical properties, and ability to support cellular growth. Our evaluation of the decellularized tissue indicated successful removal of cellular material and immunogenic remnants in the ECM. The self-assembly of the lung ECM hydrogel was rapid, reaching maximum modulus values within 3 min at 37°C. Rheological characterization showed the lung ECM hydrogel to have a concentration dependent storage modulus between 15 and 60 Pa. The purpose of this study was to evaluate our novel ECM derived hydrogel and measure its ability to support 3D culture of MSCs in vitro and in vivo delivery of MSCs. Our in vitro experiments using human mesenchymal stem cells demonstrated our novel ECM hydrogel's ability to enhance cellular attachment and viability. Our in vivo experiments demonstrated that rat MSC delivery in pre-gel solution significantly increased cell retention in the lung over 24 h in an emphysema rat model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1922-1935, 2016.
Collapse
|
Journal Article |
9 |
106 |
2
|
Link P, Freiha FS, Stamey TA. Adjuvant radiation therapy in patients with detectable prostate specific antigen following radical prostatectomy. J Urol 1991; 145:532-4. [PMID: 1705294 DOI: 10.1016/s0022-5347(17)38388-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Adjuvant radiation therapy following radical prostatectomy for adenocarcinoma of the prostate was given to 25 patients. Of these patients 8 had microscopic lymph node metastasis, 8 had seminal vesicle invasion without positive lymph nodes, 6 had positive surgical margins and 3 had only capsule penetration. Their only evidence of residual disease was detectable serum prostate specific antigen (PSA) by the Yang assay. A total of 15 patients (60%) had a subsequent decrease in PSA to less than 0.3 ng./ml. and an additional 5 (20%) had a decrease in PSA by more than 50%. Currently 8 patients have no detectable PSA after a median followup of 18 months (17 to 38 months) since initiating radiation therapy. Only 1 of 12 patients with detectable PSA immediately after radical prostatectomy has had a durable response to adjuvant radiation therapy. In contrast 7 of 13 patients with a delayed increase in PSA had a durable response. The ability of adjuvant radiation therapy to eliminate serum PSA in patients with a delayed increase in PSA after radical prostatectomy is encouraging. However, longer followup, including the use of nonradiated control subjects, is needed to assess the ability of adjuvant radiation therapy to control local disease and prolong patient survival.
Collapse
|
|
34 |
103 |
3
|
James SR, Link PA, Karpf AR. Epigenetic regulation of X-linked cancer/germline antigen genes by DNMT1 and DNMT3b. Oncogene 2006; 25:6975-85. [PMID: 16715135 DOI: 10.1038/sj.onc.1209678] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 03/01/2006] [Accepted: 03/30/2006] [Indexed: 12/31/2022]
Abstract
We examined the function of two key DNA methyltransferase (DNMT) enzymes in epigenetic regulation of X-linked cancer/germline (CG-X) antigen genes in human cancer cells, using MAGE-A1, NY-ESO-1, and XAGE-1 as models. In HCT116 cells, genetic knockout of DNMT1 caused moderate activation of CG-X genes, DNMT3b knockout had a negligible effect, and double knockout of both enzymes caused robust gene induction. Similarly, dual DNMT knockout caused dramatic hypomethylation of the MAGE-A1 and NY-ESO-1 promoters, DNMT1 knockout showed moderate hypomethylation, and DNMT3b knockout elicited only slight methylation changes. In contrast, both single and double knockout cells showed significant hypomethylation of the XAGE-1 promoter. RNA interference (RNAi) targeting of DNMT1 in HCT116 cells validated the results seen using genetic knockout cells; however, RNAi targeting of DNMT1 in a different colorectal cancer cell line revealed a greater independent role for DNMT1 in mediating CG-X gene repression and promoter methylation in other cell types. Notably, the histone H3 modification pattern at CG-X promoters was altered following DNMT knockout. DNMT1 or DNMT3b knockout reduced dimethylated lysine-9 (diMe-H3K9) levels, but did not significantly affect dimethylated lysine-4 (diMe-H3K4) or acetylated lysine-9 (Ac-H3-K9) levels. In contrast, dual DNMT1/3b knockout reduced the level of diMe-H3K9 and dramatically increased the levels of diMe-H3K4 and Ac-H3K9 at CG-X gene loci. In summary, DNMT1 and DNMT3b were found to perform both redundant and independent functions in epigenetic regulation of CG-X antigen genes in human cancer cells.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
93 |
4
|
Pouliot RA, Young BM, Link PA, Park HE, Kahn AR, Shankar K, Schneck MB, Weiss DJ, Heise RL. Porcine Lung-Derived Extracellular Matrix Hydrogel Properties Are Dependent on Pepsin Digestion Time. Tissue Eng Part C Methods 2020; 26:332-346. [PMID: 32390520 PMCID: PMC7310225 DOI: 10.1089/ten.tec.2020.0042] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022] Open
Abstract
Hydrogels derived from decellularized lungs are promising materials for tissue engineering in the development of clinical therapies and for modeling the lung extracellular matrix (ECM) in vitro. Characterizing and controlling the resulting physical, biochemical, mechanical, and biologic properties of decellularized ECM (dECM) after enzymatic solubilization and gelation are thus of key interest. As the role of enzymatic pepsin digestion in effecting these properties has been understudied, we investigated the digestion time-dependency on key parameters of the resulting ECM hydrogel. Using resolubilized, homogenized decellularized pig lung dECM as a model system, significant time-dependent changes in protein concentration, turbidity, and gelation potential were found to occur between the 4 and 24 h digestion time points, and plateauing with longer digestion times. These results correlated with qualitative scanning electron microscopy images and quantitative analysis of hydrogel interconnectivity and average fiber diameter. Interestingly, the time-dependent changes in the storage modulus tracked with the hydrogel interconnectivity results, while the Young's modulus values were more closely related to average fiber size at each time point. The structural and biochemical alterations correlated with significant changes in metabolic activity of several representative lung cells seeded onto the hydrogels with progressive decreases in cell viability and alterations in morphology observed in cells cultured on hydrogels produced with dECM digested for >12 and up to 72 h of digestion. These studies demonstrate that 12 h pepsin digest of pig lung dECM provides an optimal balance between desirable physical ECM hydrogel properties and effects on lung cell behaviors.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
64 |
5
|
Caporarello N, Lee J, Pham TX, Jones DL, Guan J, Link PA, Meridew JA, Marden G, Yamashita T, Osborne CA, Bhagwate AV, Huang SK, Nicosia RF, Tschumperlin DJ, Trojanowska M, Ligresti G. Dysfunctional ERG signaling drives pulmonary vascular aging and persistent fibrosis. Nat Commun 2022; 13:4170. [PMID: 35879310 PMCID: PMC9314350 DOI: 10.1038/s41467-022-31890-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/04/2022] [Indexed: 01/18/2023] Open
Abstract
Vascular dysfunction is a hallmark of chronic diseases in elderly. The contribution of the vasculature to lung repair and fibrosis is not fully understood. Here, we performed an epigenetic and transcriptional analysis of lung endothelial cells (ECs) from young and aged mice during the resolution or progression of bleomycin-induced lung fibrosis. We identified the transcription factor ETS-related gene (ERG) as putative orchestrator of lung capillary homeostasis and repair, and whose function is dysregulated in aging. ERG dysregulation is associated with reduced chromatin accessibility and maladaptive transcriptional responses to injury. Loss of endothelial ERG enhances paracrine fibroblast activation in vitro, and impairs lung fibrosis resolution in young mice in vivo. scRNA-seq of ERG deficient mouse lungs reveales transcriptional and fibrogenic abnormalities resembling those associated with aging and human lung fibrosis, including reduced number of general capillary (gCap) ECs. Our findings demonstrate that lung endothelial chromatin remodeling deteriorates with aging leading to abnormal transcription, vascular dysrepair, and persistent fibrosis following injury.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
40 |
6
|
Tan Q, Link PA, Meridew JA, Pham TX, Caporarello N, Ligresti G, Tschumperlin DJ. Spontaneous Lung Fibrosis Resolution Reveals Novel Antifibrotic Regulators. Am J Respir Cell Mol Biol 2021; 64:453-464. [PMID: 33493091 DOI: 10.1165/rcmb.2020-0396oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Fibroblast activation is transient in successful wound repair but persistent in fibrotic pathologies. Understanding fibroblast deactivation during successful wound healing may provide new approaches to therapeutically reverse fibroblast activation. To characterize the gene programs that accompany fibroblast activation and reversal during lung fibrosis resolution, we used RNA sequencing analysis of flow sorted Col1α1-GFP-positive and CD45-, CD31-, and CD326-negative cells isolated from the lungs of young mice exposed to bleomycin. We compared fibroblasts isolated from control mice with those isolated at Days 14 and 30 after bleomycin exposure, representing the peak of extracellular matrix deposition and an early stage of fibrosis resolution, respectively. Bleomycin exposure dramatically altered fibroblast gene programs at Day 14. Principal component and differential gene expression analyses demonstrated the predominant reversal of these trends at Day 30. Upstream regulator and pathway analyses of reversing "resolution" genes identified novel candidate antifibrotic genes and pathways. Two genes from these analyses that were decreased in expression at Day 14 and reversed at Day 30, Aldh2 and Nr3c1, were selected for further analysis. Enhancement of endogenous expression of either gene by CRISPR activation in cultured human idiopathic pulmonary fibrosis fibroblasts was sufficient to reduce profibrotic gene expression, fibronectin deposition, and collagen gel compaction, consistent with roles for these genes in fibroblast deactivation. This combination of RNA sequencing analysis of freshly sorted fibroblasts and hypothesis testing in cultured idiopathic pulmonary fibrosis fibroblasts offers a path toward identification of novel regulators of lung fibroblast deactivation, with potential relevance to understanding fibrosis resolution and its failure in human disease.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
30 |
7
|
Link PA, Choi KM, Diaz Espinosa AM, Jones DL, Gao AY, Haak AJ, Tschumperlin DJ. Combined control of the fibroblast contractile program by YAP and TAZ. Am J Physiol Lung Cell Mol Physiol 2022; 322:L23-L32. [PMID: 34755530 PMCID: PMC8721907 DOI: 10.1152/ajplung.00210.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are transcription cofactors implicated in the contractile and profibrotic activation of fibroblasts. Fibroblast contractile function is important in alveologenesis and in lung wound healing and fibrosis. As paralogs, YAP and TAZ may have independent or redundant roles in regulating transcriptional programs and contractile function. Using IMR-90 lung fibroblasts, microarray analysis, and traction microscopy, we tested whether independent YAP or TAZ knockdown alone was sufficient to limit transcriptional activation and contraction in vitro. Our results demonstrate limited effects of knockdown of either YAP or TAZ alone, with more robust transcriptional and functional effects observed with combined knockdown, consistent with cooperation or redundancy of YAP and TAZ in transforming growth factor β1 (TGFβ1)-induced fibroblast activation and contractile force generation. The transcriptional responses to combined YAP/TAZ knockdown were focused on a relatively small subset of genes with prominent overrepresentation of genes implicated in contraction and migration. To explore potential disease relevance of our findings, we tested primary human lung fibroblasts isolated from patients with idiopathic pulmonary fibrosis and confirmed that YAP and TAZ combined knockdown reduced the expression of three cytoskeletal genes, ACTA2, CNN1, and TAGLN. We then compared the contribution of these genes, along with YAP and TAZ, to contractile function. Combined knockdown targeting YAP/TAZ was more effective than targeting any of the individual cytoskeletal genes in reducing contractile function. Together, our results demonstrate that YAP and TAZ combine to regulate a multigene program that is essential to fibroblast contractile function.
Collapse
|
research-article |
3 |
21 |
8
|
Altarev I, Babcock E, Beck D, Burghoff M, Chesnevskaya S, Chupp T, Degenkolb S, Fan I, Fierlinger P, Frei A, Gutsmiedl E, Knappe-Grüneberg S, Kuchler F, Lauer T, Link P, Lins T, Marino M, McAndrew J, Niessen B, Paul S, Petzoldt G, Schläpfer U, Schnabel A, Sharma S, Singh J, Stoepler R, Stuiber S, Sturm M, Taubenheim B, Trahms L, Voigt J, Zechlau T. A magnetically shielded room with ultra low residual field and gradient. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:075106. [PMID: 25085172 DOI: 10.1063/1.4886146] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A versatile and portable magnetically shielded room with a field of (700 ± 200) pT within a central volume of 1 m × 1 m × 1 m and a field gradient less than 300 pT/m, achieved without any external field stabilization or compensation, is described. This performance represents more than a hundredfold improvement of the state of the art for a two-layer magnetic shield and provides an environment suitable for a next generation of precision experiments in fundamental physics at low energies; in particular, searches for electric dipole moments of fundamental systems and tests of Lorentz-invariance based on spin-precession experiments. Studies of the residual fields and their sources enable improved design of future ultra-low gradient environments and experimental apparatus. This has implications for developments of magnetometry beyond the femto-Tesla scale in, for example, biomagnetism, geosciences, and security applications and in general low-field nuclear magnetic resonance (NMR) measurements.
Collapse
|
|
11 |
20 |
9
|
Jones DL, Meridew JA, Link PA, Ducharme MT, Lydon KL, Choi KM, Caporarello N, Tan Q, Diaz Espinosa AM, Xiong Y, Lee JH, Ye Z, Yan H, Ordog T, Ligresti G, Varelas X, Tschumperlin DJ. ZNF416 is a pivotal transcriptional regulator of fibroblast mechanoactivation. J Cell Biol 2021; 220:211825. [PMID: 33625469 PMCID: PMC7918622 DOI: 10.1083/jcb.202007152] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/13/2020] [Accepted: 01/26/2021] [Indexed: 01/18/2023] Open
Abstract
Matrix stiffness is a central regulator of fibroblast function. However, the transcriptional mechanisms linking matrix stiffness to changes in fibroblast phenotype are incompletely understood. Here, we evaluated the effect of matrix stiffness on genome-wide chromatin accessibility in freshly isolated lung fibroblasts using ATAC-seq. We found higher matrix stiffness profoundly increased global chromatin accessibility relative to lower matrix stiffness, and these alterations were in close genomic proximity to known profibrotic gene programs. Motif analysis of these regulated genomic loci identified ZNF416 as a putative mediator of fibroblast stiffness responses. Genome occupancy analysis using ChIP-seq confirmed that ZNF416 occupies a broad range of genes implicated in fibroblast activation and tissue fibrosis, with relatively little overlap in genomic occupancy with other mechanoresponsive and profibrotic transcriptional regulators. Using loss- and gain-of-function studies, we demonstrated that ZNF416 plays a critical role in fibroblast proliferation, extracellular matrix synthesis, and contractile function. Together, these observations identify ZNF416 as novel mechano-activated transcriptional regulator of fibroblast biology.
Collapse
|
Journal Article |
4 |
18 |
10
|
Link PA, Pouliot RA, Mikhaiel NS, Young BM, Heise RL. Tunable Hydrogels from Pulmonary Extracellular Matrix for 3D Cell Culture. J Vis Exp 2017:55094. [PMID: 28117788 PMCID: PMC5352266 DOI: 10.3791/55094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Here we present a method for establishing multiple component cell culture hydrogels for in vitro lung cell culture. Beginning with healthy en bloc lung tissue from porcine, rat, or mouse, the tissue is perfused and submerged in subsequent chemical detergents to remove the cellular debris. Histological comparison of the tissue before and after processing confirms removal of over 95% of double stranded DNA and alpha galactosidase staining suggests the majority of cellular debris is removed. After decellularization, the tissue is lyophilized and then cryomilled into a powder. The matrix powder is digested for 48 hr in an acidic pepsin digestion solution and then neutralized to form the pregel solution. Gelation of the pregel solution can be induced by incubation at 37 °C and can be used immediately following neutralization or stored at 4 °C for up to two weeks. Coatings can be formed using the pregel solution on a non-treated plate for cell attachment. Cells can be suspended in the pregel prior to self-assembly to achieve a 3D culture, plated on the surface of a formed gel from which the cells can migrate through the scaffold, or plated on the coatings. Alterations to the strategy presented can impact gelation temperature, strength, or protein fragment sizes. Beyond hydrogel formation, the hydrogel stiffness may be increased using genipin.
Collapse
|
Video-Audio Media |
8 |
16 |
11
|
Aponte GW, Keddie A, Halldén G, Hess R, Link P. Polarized intestinal hybrid cell lines derived from primary culture: establishment and characterization. Proc Natl Acad Sci U S A 1991; 88:5282-6. [PMID: 1711225 PMCID: PMC51856 DOI: 10.1073/pnas.88.12.5282] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A cell culture system has been developed that produces stable gastrointestinal (GI) polarized cell lines capable of maintaining hormone secretion. A spontaneously transformed rat mucosal epithelial cell was selected for hypoxanthine/guanine phosphoribosyltransferase deficiency and transfected with a plasmid conferring hygromycin resistance (BRIE 291 cells). Fusion of these cells with dispersed small intestinal epithelia cells resulted in hybrid cell lines that retained characteristic properties of the native GI cell more effectively than the transformed tumorigenic parental cell line. Hybrid hBRIE 380 cells are uniformly cuboidal with microvilli, contain villin, are contact inhibited, are anchorage dependent, require serum supplementation for growth, and are more sensitive to virus infection than the parental BRIE 291 cells. Fusion of BRIE 291 with dispersed pancreatic islet cells has resulted in a variety of pancreatic-hormone-producing cell lines. One of these, hybrid hBRIE 291-i2, forms confluent monolayers capable of synthesizing insulin-like immunoreactivity. These studies demonstrate that functionally polarized GI cells can be generated from primary cultures of nondividing committed epithelial cells by somatic cell hybridization and make feasible the selection and maintenance of specific GI epithelial cell types in confluent monolayer cultures.
Collapse
|
research-article |
34 |
14 |
12
|
Tsyrulin N, Pardini T, Singh RRP, Xiao F, Link P, Schneidewind A, Hiess A, Landee CP, Turnbull MM, Kenzelmann M. Quantum effects in a weakly frustrated s=1/2 two-dimensional heisenberg antiferromagnet in an applied magnetic field. PHYSICAL REVIEW LETTERS 2009; 102:197201. [PMID: 19518991 DOI: 10.1103/physrevlett.102.197201] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Indexed: 05/27/2023]
Abstract
We have studied the two-dimensional S=1/2 square-lattice antiferromagnet Cu(pz)_{2}(ClO4)_{2} (where pz denotes pyrazine), using neutron inelastic scattering and series expansion calculations. We show that the presence of antiferromagnetic next-nearest-neighbor interactions enhances quantum fluctuations associated with resonating valence bonds. Intermediate magnetic fields lead to a selective tuning of resonating valence bonds and a spectacular inversion of the zone-boundary dispersion, providing novel insight into 2D antiferromagnetism in the quantum limit.
Collapse
|
|
16 |
11 |
13
|
Diaz-Espinosa AM, Link PA, Sicard D, Jorba I, Tschumperlin DJ, Haak AJ. Dopamine D1 receptor stimulates cathepsin K-dependent degradation and resorption of collagen I in lung fibroblasts. J Cell Sci 2020; 133:jcs248278. [PMID: 33172983 PMCID: PMC7746663 DOI: 10.1242/jcs.248278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/02/2020] [Indexed: 01/18/2023] Open
Abstract
Matrix resorption is essential to the clearance of the extracellular matrix (ECM) after normal wound healing. A disruption in these processes constitutes a main component of fibrotic diseases, characterized by excess deposition and diminished clearance of fibrillar ECM proteins, such as collagen type I. The mechanisms and stimuli regulating ECM resorption in the lung remain poorly understood. Recently, agonism of dopamine receptor D1 (DRD1), which is predominantly expressed on fibroblasts in the lung, has been shown to accelerate tissue repair and clearance of ECM following bleomycin injury in mice. Therefore, we investigated whether DRD1 receptor signaling promotes the degradation of collagen type I by lung fibroblasts. For cultured fibroblasts, we found that DRD1 agonism enhances extracellular cleavage, internalization and lysosomal degradation of collagen I mediated by cathepsin K, which results in reduced stiffness of cell-derived matrices, as measured by atomic force microscopy. In vivo agonism of DRD1 similarly enhanced fibrillar collagen degradation by fibroblasts, as assessed by tissue labeling with a collagen-hybridizing peptide. Together, these results implicate DRD1 agonism in fibroblast-mediated collagen clearance, suggesting an important role for this mechanism in fibrosis resolution.This article has an associated First Person interview with the first author of the paper.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
10 |
14
|
Link PA, Ritchie AM, Cotman GM, Valentine MS, Dereski BS, Heise RL. Electrosprayed extracellular matrix nanoparticles induce a pro‐regenerative cell response. J Tissue Eng Regen Med 2018; 12:2331-2336. [DOI: 10.1002/term.2768] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 09/04/2018] [Accepted: 10/18/2018] [Indexed: 11/07/2022]
|
|
7 |
9 |
15
|
Senff D, Link P, Hradil K, Hiess A, Regnault LP, Sidis Y, Aliouane N, Argyriou DN, Braden M. Magnetic excitations in multiferroic TbMnO3: evidence for a hybridized soft mode. PHYSICAL REVIEW LETTERS 2007; 98:137206. [PMID: 17501238 DOI: 10.1103/physrevlett.98.137206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Indexed: 05/15/2023]
Abstract
The magnetic excitations in multiferroic TbMnO3 have been studied by inelastic neutron scattering in the spiral and sinusoidally ordered phases. At the incommensurate magnetic zone center of the spiral phase, we find three low-lying magnons whose character has been fully determined using neutron-polarization analysis. The excitation at the lowest energy is the sliding mode of the spiral, and two modes at 1.1 and 2.5 meV correspond to rotations of the spiral rotation plane. These latter modes are expected to couple to the electric polarization. The 2.5 meV mode is in perfect agreement with recent infrared-spectroscopy data giving strong support to its interpretation as a hybridized phonon-magnon excitation.
Collapse
|
|
18 |
8 |
16
|
Blanchard N, Link PA, Farkas D, Harmon B, Hudson J, Bogamuwa S, Piper B, Authelet K, Cool CD, Heise RL, Freishtat R, Farkas L. Dichotomous role of integrin-β5 in lung endothelial cells. Pulm Circ 2022; 12:e12156. [PMID: 36438452 PMCID: PMC9684688 DOI: 10.1002/pul2.12156] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive, devastating disease, and its main histological manifestation is an occlusive pulmonary arteriopathy. One important functional component of PAH is aberrant endothelial cell (EC) function including apoptosis-resistance, unchecked proliferation, and impaired migration. The mechanisms leading to and maintaining physiologic and aberrant EC function are not fully understood. Here, we tested the hypothesis that in PAH, ECs have increased expression of the transmembrane protein integrin-β5, which contributes to migration and survival under physiologic and pathological conditions, but also to endothelial-to-mesenchymal transition (EnMT). We found that elevated integrin-β5 expression in pulmonary artery lesions and lung tissue from PAH patients and rats with PH induced by chronic hypoxia and injection of CD117+ rat lung EC clones. These EC clones exhibited elevated expression of integrin-β5 and its heterodimerization partner integrin-αν and showed accelerated barrier formation. Inhibition of integrin-ανβ5 in vitro partially blocked transforming growth factor (TGF)-β1-induced EnMT gene expression in rat lung control ECs and less in rat lung EC clones and human lung microvascular ECs. Inhibition of integrin-ανβ5 promoted endothelial dysfunction as shown by reduced migration in a scratch assay and increased apoptosis in synergism with TGF-β1. In vivo, blocking of integrin-ανβ5 exaggerated PH induced by chronic hypoxia and CD117+ EC clones in rats. In summary, we found a role for integrin-ανβ5 in lung endothelial survival and migration, but also a partial contribution to TGF-β1-induced EnMT gene expression. Our results suggest that integrin-ανβ5 is required for physiologic function of ECs and lung vascular homeostasis.
Collapse
|
research-article |
3 |
7 |
17
|
Heise RL, Link PA, Farkas L. From Here to There, Progenitor Cells and Stem Cells Are Everywhere in Lung Vascular Remodeling. Front Pediatr 2016; 4:80. [PMID: 27583245 PMCID: PMC4988064 DOI: 10.3389/fped.2016.00080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/20/2016] [Indexed: 01/27/2023] Open
Abstract
The field of stem cell biology, cell therapy, and regenerative medicine has expanded almost exponentially, in the last decade. Clinical trials are evaluating the potential therapeutic use of stem cells in many adult and pediatric lung diseases with vascular component, such as bronchopulmonary dysplasia (BPD), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), or pulmonary arterial hypertension (PAH). Extensive research activity is exploring the lung resident and circulating progenitor cells and their contribution to vascular complications of chronic lung diseases, and researchers hope to use resident or circulating stem/progenitor cells to treat chronic lung diseases and their vascular complications. It is becoming more and more clear that progress in mechanobiology will help to understand the various influences of physical forces and extracellular matrix composition on the phenotype and features of the progenitor cells and stem cells. The current review provides an overview of current concepts in the field.
Collapse
|
Review |
9 |
6 |
18
|
Link P. How to Become a Lean Entrepreneur by Applying Lean Start-Up and Lean Canvas? ADVANCES IN DIGITAL EDUCATION AND LIFELONG LEARNING 2016. [DOI: 10.1108/s2051-229520160000002003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
|
9 |
5 |
19
|
Choi KM, Haak AJ, Diaz Espinosa AM, Cummins KA, Link PA, Aravamudhan A, Wood DK, Tschumperlin DJ. GPCR-mediated YAP/TAZ inactivation in fibroblasts via EPAC1/2, RAP2C, and MAP4K7. J Cell Physiol 2021; 236:7759-7774. [PMID: 34046891 DOI: 10.1002/jcp.30459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022]
Abstract
Yes-associated protein (YAP) and PDZ-binding motif (TAZ) have emerged as important regulators of pathologic fibroblast activation in fibrotic diseases. Agonism of Gαs-coupled G protein coupled receptors (GPCRs) provides an attractive approach to inhibit the nuclear localization and function of YAP and TAZ in fibroblasts that inhibits or reverses their pathological activation. Agonism of the dopamine D1 GPCR has proven effective in preclinical models of lung and liver fibrosis. However, the molecular mechanisms coupling GPCR agonism to YAP and TAZ inactivation in fibroblasts remain incompletely understood. Here, using human lung fibroblasts, we identify critical roles for the cAMP effectors EPAC1/2, the small GTPase RAP2c, and the serine/threonine kinase MAP4K7 as the essential elements in the downstream signaling cascade linking GPCR agonism to LATS1/2-mediated YAP and TAZ phosphorylation and nuclear exclusion in fibroblasts. We further show that this EPAC/RAP2c/MAP4K7 signaling cascade is essential to the effects of dopamine D1 receptor agonism on reducing fibroblast proliferation, contraction, and extracellular matrix production. Targeted modulation of this cascade in fibroblasts may prove a useful strategy to regulate YAP and TAZ signaling and fibroblast activities central to tissue repair and fibrosis.
Collapse
|
Journal Article |
4 |
5 |
20
|
Zayed ME, Rüegg C, Strässle T, Stuhr U, Roessli B, Ay M, Mesot J, Link P, Pomjakushina E, Stingaciu M, Conder K, Rønnow HM. Correlated decay of triplet excitations in the Shastry-Sutherland compound SrCu2(BO3)2. PHYSICAL REVIEW LETTERS 2014; 113:067201. [PMID: 25148346 DOI: 10.1103/physrevlett.113.067201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Indexed: 06/03/2023]
Abstract
The temperature dependence of the gapped triplet excitations (triplons) in the 2D Shastry-Sutherland quantum magnet SrCu(2)(BO(3))(2) is studied by means of inelastic neutron scattering. The excitation amplitude rapidly decreases as a function of temperature, while the integrated spectral weight can be explained by an isolated dimer model up to 10 K. Analyzing this anomalous spectral line shape in terms of damped harmonic oscillators shows that the observed damping is due to a two-component process: one component remains sharp and resolution limited while the second broadens. We explain the underlying mechanism through a simple yet quantitatively accurate model of correlated decay of triplons: an excited triplon is long lived if no thermally populated triplons are nearby but decays quickly if there are. The phenomenon is a direct consequence of frustration induced triplon localization in the Shastry-Sutherland lattice.
Collapse
|
|
11 |
4 |
21
|
Rai A, Link P, Boo S, Domico J, Lucke-Wold N, Tarabishy A, Carpenter J. P-004 Publishing Title: Incidence of Large Vessel Occlusions Amongst All Hospital Discharges for Acute Ischemic Stroke – Estimating a Thrombectomy Eligible Population. J Neurointerv Surg 2016. [DOI: 10.1136/neurintsurg-2016-012589.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
|
9 |
4 |
22
|
Chang J, Christensen NB, Niedermayer C, Lefmann K, Rønnow HM, McMorrow DF, Schneidewind A, Link P, Hiess A, Boehm M, Mottl R, Pailhés S, Momono N, Oda M, Ido M, Mesot J. Magnetic-field-induced soft-mode quantum phase transition in the high-temperature superconductor La1.855Sr0.145CuO4: an inelastic neutron-scattering study. PHYSICAL REVIEW LETTERS 2009; 102:177006. [PMID: 19518819 DOI: 10.1103/physrevlett.102.177006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Indexed: 05/27/2023]
Abstract
Inelastic neutron-scattering experiments on the high-temperature superconductor La1.855Sr0.145CuO4 reveal a magnetic excitation gap Delta that decreases continuously upon application of a magnetic field perpendicular to the CuO2 planes. The gap vanishes at the critical field required to induce long-range incommensurate antiferromagnetic order, providing compelling evidence for a field-induced soft-mode driven quantum phase transition.
Collapse
|
|
16 |
1 |
23
|
Kunkemöller S, Steffens P, Link P, Sidis Y, Mao ZQ, Maeno Y, Braden M. Absence of a Large Superconductivity-Induced Gap in Magnetic Fluctuations of Sr_{2}RuO_{4}. PHYSICAL REVIEW LETTERS 2017; 118:147002. [PMID: 28430489 DOI: 10.1103/physrevlett.118.147002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Indexed: 06/07/2023]
Abstract
Inelastic neutron scattering experiments on Sr_{2}RuO_{4} determine the spectral weight of the nesting induced magnetic fluctuations across the superconducting transition. There is no observable change at the superconducting transition down to an energy of ∼0.35 meV, which is well below the 2Δ values reported in several tunneling experiments. At this and higher energies magnetic fluctuations clearly persist in the superconducting state. Only at energies below ∼0.3 meV can evidence for partial suppression of spectral weight in the superconducting state be observed. This strongly suggests that the one-dimensional bands with the associated nesting fluctuations do not form the active, highly gapped bands in the superconducting pairing in Sr_{2}RuO_{4}.
Collapse
|
|
8 |
1 |
24
|
Link PA, Heise RL, Weinberg SH. Cellular mitosis predicts vessel stability in a mechanochemical model of sprouting angiogenesis. Biomech Model Mechanobiol 2021; 20:1195-1208. [PMID: 33715101 DOI: 10.1007/s10237-021-01442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 02/22/2021] [Indexed: 11/28/2022]
Abstract
Angiogenesis, the formation of new vessels, occurs in both developmental and pathological contexts. Prior research has investigated vessel formation to identify cellular phenotypes and dynamics associated with angiogenic disease. One major family of proteins involved in angiogenesis are the Rho GTPases, which govern function related to cellular elongation, migration, and proliferation. Using a mechanochemical model coupling Rho GTPase activity and cellular and intercellular mechanics, we investigate the role of cellular mitosis on sprouting angiogenesis. Mitosis-GTPase synchronization was not a strong predictor of GTPase and thus vessel signaling instability, whereas the location of mitotic events was predicted to alter GTPase cycling instabilities. Our model predicts that middle stalk cells undergoing mitosis introduce irregular dynamics in GTPase cycling and may provide a source of aberrant angiogenesis. We also find that cellular and junctional tension exhibit spatial heterogeneity through the vessel, and that tension feedback, specifically in stalk cells, tends to increase the maximum forces generated in the vessel.
Collapse
|
Journal Article |
4 |
|
25
|
Zarnowski J, Gersing D, Schwaiger D, Feuerriegel G, Guimaraes J, Facchetti L, Chancheck N, Link P. Gewichtsreduktion übergewichtiger und adipöser Patienten ist mit einer verlangsamten Knorpeldegeneration assoziiert über einen Zeitraum von 96 Monaten: Verlaufsdaten aus der Osteoarthritis Initiative. ROFO-FORTSCHR RONTG 2016. [DOI: 10.1055/s-0036-1581676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
|
9 |
|