1
|
Köhler A, Cascio P, Leggett DS, Woo KM, Goldberg AL, Finley D. The axial channel of the proteasome core particle is gated by the Rpt2 ATPase and controls both substrate entry and product release. Mol Cell 2001; 7:1143-52. [PMID: 11430818 DOI: 10.1016/s1097-2765(01)00274-x] [Citation(s) in RCA: 307] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Substrates enter the proteasome core particle (CP) through a channel that opens upon association with the regulatory particle (RP). Using yeast mutants, we show that channel opening is mediated by the ATPase domain of Rpt2, one of six ATPases in the RP. To test whether degradation products exit through this channel, we analyzed their size distribution. Their median length from an open-channel CP mutant was 40% greater than that from the wild-type. Thus, channel opening may enhance the yield of peptides long enough to function in antigen presentation. These experiments demonstrate that gating of the RP channel controls both substrate entry and product release, and is specifically regulated by an ATPase in the base of the RP.
Collapse
|
|
24 |
307 |
2
|
Galeano M, Bitto A, Altavilla D, Minutoli L, Polito F, Calò M, Lo Cascio P, Stagno d'Alcontres F, Squadrito F. Polydeoxyribonucleotide stimulates angiogenesis and wound healing in the genetically diabetic mouse. Wound Repair Regen 2008; 16:208-17. [PMID: 18318806 DOI: 10.1111/j.1524-475x.2008.00361.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Healing of diabetic wounds still remains a critical medical problem. Polydeoxyribonucleotide (PDRN), a compound having a mixture of deoxyribonucleotide polymers, stimulates the A2 purinergic receptor with no toxic or adverse effect. We studied the effects of PDRN in diabetes-related healing defect using an incisional skin-wound model produced on the back of female diabetic mice (db+/db+) and their normal littermates (db+/+m). Animals were treated daily for 12 days with PDRN (8 mg/kg/ip) or its vehicle (100 muL 0.9%NaCl). Mice were killed 3, 6, and 12 days after skin injury to measure vascular endothelial growth factor (VEGF) mRNA expression and protein synthesis, to assay angiogenesis and tissue remodeling through histological evaluation, and to study CD31, Angiopoietin-1 and Transglutaminase-II. Furthermore, we measured wound breaking strength at day 12. PDRN injection in diabetic mice resulted in an increased VEGF message (vehicle=1.0+/-0.2 n-fold vs. beta-actin; PDRN=1.5+/-0.09 n-fold vs. beta-actin) and protein wound content on day 6 (vehicle=0.3+/-0.07 pg/wound; PDRN=0.9+/-0.1 pg/wound). PDRN injection improved the impaired wound healing and increased the wound-breaking strength in diabetic mice. PDRN also caused a marked increase in CD31 immunostaining and induced Transglutaminase-II and Angiopoietin-1 expression. Furthermore, the concomitant administration of 3,7-dimethyl-1-propargilxanthine, a selective adenosine A2A receptor antagonist, abolished PDRN positive effects on healing. However, 3,7-dimethyl-1-propargilxanthine alone did not affect wound healing in both diabetic mice and normal littermates. These results suggest that PDRN might be useful in wound disorders associated with diabetes.
Collapse
|
Journal Article |
17 |
118 |
3
|
Galeano M, Altavilla D, Bitto A, Minutoli L, Calò M, Lo Cascio P, Polito F, Giugliano G, Squadrito G, Mioni C, Giuliani D, Venuti FS, Squadrito F. Recombinant human erythropoietin improves angiogenesis and wound healing in experimental burn wounds. Crit Care Med 2006; 34:1139-1146. [PMID: 16484928 DOI: 10.1097/01.ccm.0000206468.18653.ec] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Erythropoietin interacts with vascular endothelial growth factor (VEGF) and stimulates endothelial cell mitosis and motility; thus it may be of importance in the complex phenomenon of wound healing. The purpose of this study was to investigate the effect of recombinant human erythropoietin (rHuEPO) on experimental burn wounds. DESIGN Randomized experiment. SETTING Research laboratory. SUBJECTS C57BL/6 male mice weighing 25-30 g. INTERVENTIONS Mice were immersed in 80 degrees C water for 10 secs to achieve a deep-dermal second degree burn. Animals were randomized to receive either rHuEPO (400 units/kg/day for 14 days in 100 microL subcutaneously) or its vehicle alone (100 microl/day distilled water for 14 days subcutaneously). On day 14 the animals were killed. Burn areas were used for histologic examination, evaluation of neoangiogenesis by immunohistochemistry, and expression (Western blot) of the specific endothelial marker CD31 as well as quantification of microvessel density, measurement of VEGF wound content (enzyme-linked immunosorbent assay), expression (Western blot) of endothelial and inducible nitric oxide synthases, and determination of wound nitric oxide (NO) products. MEASUREMENTS AND MAIN RESULTS rHuEPO increased burn wound reepithelialization and reduced the time to final wound closure. These effects were completely abated by a passive immunization with specific antibodies against erythropoietin. rHuEPO improved healing of burn wound through increased epithelial proliferation, maturation of the extracellular matrix, and angiogenesis. The hematopoietic factor augmented neoangiogenesis as suggested by the marked increase in microvessel density and by the robust expression of the specific endothelial marker CD31. Furthermore, rHuEPO enhanced the wound content of VEGF caused a marked expression of endothelial and inducible nitric oxide synthases and increased wound content of nitric oxide products. CONCLUSIONS Our study suggests that rHuEPO may be an effective therapeutic approach to improve clinical outcomes after thermal injury.
Collapse
|
Comment |
19 |
111 |
4
|
Bitto A, Minutoli L, Altavilla D, Polito F, Fiumara T, Marini H, Galeano M, Calò M, Lo Cascio P, Bonaiuto M, Migliorato A, Caputi AP, Squadrito F. Simvastatin enhances VEGF production and ameliorates impaired wound healing in experimental diabetes. Pharmacol Res 2008; 57:159-69. [PMID: 18316203 DOI: 10.1016/j.phrs.2008.01.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 01/18/2008] [Accepted: 01/21/2008] [Indexed: 11/21/2022]
Abstract
Statins have different effects beyond cholesterol reduction and stimulate angiogenesis. We investigated the effect of simvastatin in diabetes-related healing defects. An incisional skin wound model produced on the back of female diabetic mice (db(+)/db(+)) and their normoglycemic littermates (db(+)/(+)m) was used. Animals were treated daily either with simvastatin (5 mg/(kgi.p.)) or vehicle. Mice were killed on different days (3, 6 and 12 after skin injury) for measurement of vascular endothelial growth factor (VEGF) mRNA and protein expression, to assess histologically the healing process and to evaluate wound breaking strength and angiogenesis by CD31 immunostaining. Simvastatin administration in diabetic mice increased VEGF mRNA (simvastatin=4.8+/-0.6n-fold/beta-actin; vehicle=2.3+/-0.4n-fold/beta-actin) and protein expression (simvastatin=5+/-0.7 integrated intensity; vehicle=2.2+/-0.3 integrated intensity) and enhanced nitric oxide wound content at day 6. Additionally, the statin augmented breaking strength and PECAM-1 immunostaining at day 12. Finally, simvastatin administration restored the impaired wound healing process in diabetic mice. Similar results were obtained in normoglycaemic mice. Passive immunization with anti-VEGF antibody (10 microg/mouse) completely abrogated the beneficial effects of simvastatin on healing in diabetic mice. Simvastatin has potential application in diabetes-related wound healing disorders.
Collapse
|
|
17 |
107 |
5
|
Cheroni C, Peviani M, Cascio P, Debiasi S, Monti C, Bendotti C. Accumulation of human SOD1 and ubiquitinated deposits in the spinal cord of SOD1G93A mice during motor neuron disease progression correlates with a decrease of proteasome. Neurobiol Dis 2005; 18:509-22. [PMID: 15755678 DOI: 10.1016/j.nbd.2004.12.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 12/10/2004] [Accepted: 12/16/2004] [Indexed: 10/25/2022] Open
Abstract
Mutations in SOD1 cause selective motor neuron degeneration in familial amyotrophic lateral sclerosis patients and transgenic mice overexpressing the mutant enzyme. Formation and accumulation of ubiquitinated aggregates in motor neurons are thought to be involved in the toxic gain of function of mutant SOD1. The present study shows that the accumulation of soluble and detergent-insoluble mutant SOD1 in spinal cord of symptomatic SOD1G93A transgenic mice is due to impaired degradation of mutant SOD1 rather than to increased transcript levels. This effect was accompanied by a decrease of constitutive proteasome levels and a concomitant increase of immunoproteasome in the spinal cord homogenate which resulted in overall unchanged proteasome activity. A decrease of constitutive proteasome occurred in the motor neurons of SOD1G93A mice at the presymptomatic stage and became remarkable with the progression of the disease. This provides further evidence for an involvement of proteasome impairment in the toxicity of mutant SOD1.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
77 |
6
|
Benaroudj N, Tarcsa E, Cascio P, Goldberg AL. The unfolding of substrates and ubiquitin-independent protein degradation by proteasomes. Biochimie 2001; 83:311-8. [PMID: 11295491 DOI: 10.1016/s0300-9084(01)01244-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
26S proteasomes are composed of a 20S proteolytic core and two ATPase-containing 19S regulatory particles. To clarify the role of these ATPases in proteolysis, we studied the PAN complex, the archaeal homolog of the 19S ATPases. When ATP is present, PAN stimulates protein degradation by archaeal 20S proteasomes. PAN is a molecular chaperone that catalyzes the ATP-dependent unfolding of globular proteins. If 20S proteasomes are present, this unfoldase activity is linked to degradation. Thus PAN, and presumably the 26S ATPases, unfold substrates and facilitate their entry into the 20S particle. 26S proteasomes preferentially degrade ubiquitinated proteins. However, we found that calmodulin (CaM) and troponin C are degraded by 26S proteasomes without ubiquitination. Ca(2+)-free native CaM and in vitro 'aged' CaM are degraded faster than the Ca(2+)-bound form. Ubiquitination of CaM does not enhance its degradation. Degradation of ovalbumin normally requires ubiquitination, but can occur without ubiquitination if ovalbumin is denatured. The degradation of these proteins still requires ATP and the 19S particle. Thus, ubiquitin-independent degradation by 26S proteasomes may be more important than generally assumed.
Collapse
|
Review |
24 |
62 |
7
|
Galeano M, Deodato B, Altavilla D, Squadrito G, Seminara P, Marini H, Stagno d'Alcontres F, Colonna M, Calò M, Lo Cascio P, Torre V, Giacca M, Venuti FS, Squadrito F. Effect of recombinant adeno-associated virus vector-mediated vascular endothelial growth factor gene transfer on wound healing after burn injury. Crit Care Med 2003; 31:1017-1025. [PMID: 12682466 DOI: 10.1097/01.ccm.0000059435.88283.c2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the effect of recombinant adeno-associated viral (rAAV) vector-mediated human vascular endothelial growth factor (VEGF165) transfer on experimental burn wounds. DESIGN Randomized experiment. SETTING Research laboratory. SUBJECTS C57BL/6 male mice weighing 25-30 g. INTERVENTIONS Mice were immersed in 80 degrees C water for 10 secs to achieve a partial-thickness scald burn. Animals were randomized to receive at two injection sites on the edge of the burn either 1011 copies of the rAAV-VEGF165 or the vector carrying the control and inert gene beta-galactosidase (rAAV-LacZ). On day 14 the animals were killed. Burn areas were used for histologic examination, evaluation of VEGF expression (immunohistochemistry) and VEGF wound content (enzyme-linked immunosorbent assay), determination of wound nitrite, and measurement of messenger RNA (mRNA) for endothelial and inducible nitric oxide synthase (eNOS and iNOS). MEASUREMENTS AND MAIN RESULTS rAAV-VEGF165 increased epithelial proliferation, angiogenesis, and maturation of the extracellular matrix. Furthermore, gene transfer enhanced VEGF expression, studied by immunohistochemistry, and the wound content of the mature protein (rAAV-LacZ, 11 +/- 5 pg/wound; rAAV-VEGF165, 104 +/- 7 pg/wound). Moreover, VEGF165 gene transfer increased wound content of nitrate. Finally, rAAV-VEGF165 administration enhanced the messenger RNA for eNOS (rAAV-VEGF165, 1.1 +/- 0.2 relative amount of eNOS mRNA; rAAV-LacZ, 0.66 +/- 0.3 relative amount of eNOS mRNA) and iNOS (rAAV-VEGF165, 0.8 +/- 0.09 relative amount of iNOS mRNA; rAAV-LacZ, 0.45 +/- 0.05 relative amount of iNOS mRNA). CONCLUSION Our study suggests that rAAV-VEGF gene transfer may be an effective therapeutic approach to improve clinical outcomes after thermal injury.
Collapse
|
|
22 |
47 |
8
|
Galeano M, Polito F, Bitto A, Irrera N, Campo GM, Avenoso A, Calò M, Lo Cascio P, Minutoli L, Barone M, Squadrito F, Altavilla D. Systemic administration of high-molecular weight hyaluronan stimulates wound healing in genetically diabetic mice. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1812:752-759. [PMID: 21447385 DOI: 10.1016/j.bbadis.2011.03.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 02/15/2011] [Accepted: 03/21/2011] [Indexed: 02/07/2023]
Abstract
Hyaluronic acid (HA), an essential component of the extracellular matrix, is an efficient space filler that maintains hydration, serves as a substrate for assembly of proteoglycans and is involved in wound healing. Although numerous pieces of evidence demonstrate beneficial effects in promoting wound healing in diabetes, a systemic approach has never been tested. We used an incisional wound healing model in genetically diabetic mice to test the effects of systemic injection of HA. Diabetic (n=56) and normoglycemic (n=56) mice were subjected to incision and randomized (8 groups of 7 animals each) to receive HA at different doses, 7.5, 15 and 30mg/kg/i.p., or vehicle (0.9% NaCl solution) for 12days. At the end of the experiment animals were sacrificed and skin wounds were excised for histological, biochemical and molecular analysis. Histology revealed that the most effective dose to improve wound repair and angiogenesis in diabetic mice was 30mg/kg. Furthermore HA injection (30mg/kg) improved the altered healing pattern in diabetic animals, increased skin remodeling proteins TGF-β and transglutaminase-II and restored the altered expression of cyclin B1/Cdc2 complex. Evaluation of skin from diabetic animals injected with HA revealed also an increase in HA content, suggesting that systemic injection may be able to restore the reduced intracellular HA pool of diabetic mice. Finally HA markedly improved skin mechanical properties. These promising results, if confirmed in a clinical setting, may improve the care and management of diabetic patients.
Collapse
|
|
14 |
45 |
9
|
Bitto A, Minutoli L, Galeano MR, Altavilla D, Polito F, Fiumara T, Calò M, Lo Cascio P, Zentilin L, Giacca M, Squadrito F. Angiopoietin-1 gene transfer improves impaired wound healing in genetically diabetic mice without increasing VEGF expression. Clin Sci (Lond) 2008; 114:707-18. [PMID: 18078386 DOI: 10.1042/cs20070250] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ang-1 (angiopoietin-1) improves the ineffective angiogenesis and impaired wound healing in diabetes; however, the mechanism underlying this positive effect is still far from being completely understood. In the present study, we investigated whether rAAV (recombinant adeno-associated virus)-Ang-1 gene transfer could improve wound repair in genetically diabetic mice (db+/db+) and the mechanism(s) by which it causes new vessel formation. An incisional skin-wound model in diabetic and normoglycaemic mice was used. After the incision, animals received rAAV-LacZ or rAAV-Ang-1 in the wound edge. After 7 and 14 days, wounds were used to (i) confirm Ang-1 gene transfer, (ii) assess histologically the healing process, (iii) evaluate wound-breaking strength, and (iv) study new vessel formation by PECAM-1 (platelet/endothelial cell adhesion molecule-1) immunostaining. Finally, we investigated VEGF (vascular endothelial growth factor) mRNA and protein levels, eNOS (endothelial NO synthase) expression and VEGFR-1 and VEGFR-2 (VEGF receptor-1 and -2 respectively) immunostaining. The efficiency of Ang-1 gene transfer was confirmed by increased mRNA and protein expression of the protein. rAAV-Ang-1 significantly improved the healing process, stimulating re-epithelization and collagen maturation, increasing breaking strength and significantly augmenting the number of new vessels, as indicated by PECAM-1 immunostaining. However, Ang-1 gene transfer did not modify the decrease in VEGF mRNA and protein expression in diabetic mice; in contrast, Ang-1 increased eNOS expression and augmented nitrate wound content and VEGFR-2 immunostaining and protein expression. Ang-1 gene transfer did not change vascular permeability. Similar results were obtained in normoglycaemic animals. In conclusion, our results provide strong evidence that Ang-1 gene transfer improves the delayed wound repair in diabetes by inducing angiogenesis in a VEGF-independent manner.
Collapse
|
Evaluation Study |
17 |
44 |
10
|
Zaccone G, Ainis L, Mauceri A, Lo Cascio P, Lo Giudice F, Fasulo S. NANC nerves in the respiratory air sac and branchial vasculature of the Indian catfish, Heteropneustes fossilis. Acta Histochem 2004; 105:151-63. [PMID: 12831167 DOI: 10.1078/0065-1281-00695] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Gill and air sac of the Indian catfish Heteropneustes fossilis harbour a nerve network comprising an innervated system of neuroepithelial endocrine cells; the latter cells are found especially in the gill. A series of antibodies was used for the immunohistochemical detection of neurotransmitters of the neural non-adrenergic, non-cholinergic (NANC) systems such as the sensory neuropeptides (enkephalins), the inhibitory neuropeptide VIP and neuronal nitric oxide synthase (nNOS) responsible for nitric oxide (NO) production which is an inhibitory NANC neurotransmitter. NADPH-diaphorase (NADPH-d) histochemistry was used as marker of nNOS although it is not a specific indicator of constitutively-expressed NOS in gill and air sac tissues. A tyrosine hydroxylase antibody was used to investigate adrenergic innervation. Nitrergic and VIP-positive sensory innervation was found to be shared by gill and air sac. Immunohistochemistry revealed the presence of enkephalins, VIP, NOS and NADPH-d in nerves associated with branchial and air sac vasculature, and in the neuroendocrine cell systems of the gill. Adrenergic nerve fibers were found in some parts of the air sac vasculature. The origin of the nerve fibers remains unclear despite previous findings showing the presence of both NADPH-d and nNOS in the sensory system of the glossopharyngeal and vagus nerves including the branchial structure. Scarce faintly stained nNOS-positive neurons were located in the gill but were never detected in the air sac. These findings lead to the conclusion that a postganglionic innervation of the airways is absent. Mucous goblet cells in the gill were found to express nNOS and those located in the non-respiratory interlamellar areas of the air sac were densely innervated by nNOS-positive and VIP-positive nerve fibers. Our immunohistochemical studies demonstrate that most arteries of the gill and air sac share a NANC (basically nitrergic) innervation which strongly suggests that they are homologous structures.
Collapse
|
Comparative Study |
21 |
43 |
11
|
Altavilla D, Squadrito F, Polito F, Irrera N, Calò M, Lo Cascio P, Galeano M, La Cava L, Minutoli L, Marini H, Bitto A. Activation of adenosine A2A receptors restores the altered cell-cycle machinery during impaired wound healing in genetically diabetic mice. Surgery 2010; 149:253-61. [PMID: 20570301 DOI: 10.1016/j.surg.2010.04.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 04/27/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cyclins drive cell-cycle progression by associating with their kinase partners, cyclin-dependent kinases (CDK). We investigated cyclin D1/CDK6, cyclin E/CDK2 complexes, and the cell-cycle negative regulators p15 and p27 in an incisional skin wound model. METHODS Wounds were produced on the back of female diabetic mice and their normoglycemic littermates. Animals were treated with polydeoxyribonucleotide (PDRN, 8 mg/kg/i.p.), an agonist of adenosine A2(A) receptors, or its vehicle daily. Granulation tissue proliferation by Ki67 immunostaining, cyclin D/CDK6 and cyclin E/CDK2 complexes, and p21 and p16 proteins (Western blot analysis), and the histologic changes were assessed at different days (3, 6, and 12 days after injury). RESULTS Numerous Ki67 positive cells were observed at day 3 and day 6 in the granulation tissue of normoglycemic mice. Ki67 positive cells were fewer in diabetic than in normoglycemic mice. PDRN increased Ki67 positive cells in diabetic mice. Normoglycemic mice showed the greatest upregulation of cyclin D1, CDK6, cyclin E, and CDK2 at day 6. Diabetic mice had a markedly lower expression of cyclin D1, CDK6, cyclin E, and CDK2 at day 6. They also showed a greater expression of p15 and p27 at day 6. PDRN administration in diabetic mice increased cyclin D1/CDK6 and cyclin E/CDK2 expression and reduced p15 and p27 inhibitors at day 6 after injury; moreover, it improved the impaired wound healing at day 12. CONCLUSION Our results suggest that adenosine A2(A) receptor activation by PDRN might represent a therapeutic strategy to overcome the diabetes-impaired cell-cycle machinery.
Collapse
|
Journal Article |
15 |
40 |
12
|
Bitto A, Irrera N, Minutoli L, Calò M, Lo Cascio P, Caccia P, Pizzino G, Pallio G, Micali A, Vaccaro M, Saitta A, Squadrito F, Altavilla D. Relaxin improves multiple markers of wound healing and ameliorates the disturbed healing pattern of genetically diabetic mice. Clin Sci (Lond) 2013; 125:575-85. [PMID: 23742173 PMCID: PMC3906928 DOI: 10.1042/cs20130105] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/28/2013] [Accepted: 06/06/2013] [Indexed: 12/26/2022]
Abstract
Diabetic mice are characterized by a disrupted expression pattern of VEGF (vascular endothelial growth factor), and impaired vasculogenesis during healing. Experimental evidence suggests that RLX (relaxin) can improve several parameters associated with wound healing. Therefore we investigated the effects of porcine-derived RLX in diabetes-related wound-healing defects in genetically diabetic mice. An incisional wound model was produced on the back of female diabetic C57BL/KsJ-m+/+Lept(db) (db+/db+) mice and their normal littermates (db(+/+)m). Animals were treated daily with porcine RLX (25 μg/mouse per day, subcutaneously) or its vehicle. Mice were killed on 3, 6 and 12 days after skin injury for measurements of VEGF mRNA and protein synthesis, SDF-1α (stromal cell-derived factor-1α) mRNA and eNOS (endothelial NO synthase) expression. Furthermore, we evaluated wound-breaking strength, histological changes, angiogenesis and vasculogenesis at day 12. Diabetic animals showed a reduced expression of VEGF, eNOS and SDF-1α compared with non-diabetic animals. At day 6, RLX administration resulted in an increase in VEGF mRNA expression and protein wound content, in eNOS expression and in SDF-1α mRNA. Furthermore, the histological evaluation indicated that RLX improved the impaired wound healing, enhanced the staining of MMP-11 (matrix metalloproteinase-11) and increased wound-breaking strength at day 12 in diabetic mice. Immunohistochemistry showed that RLX in diabetic animals augmented new vessel formation by stimulating both angiogenesis and vasculogenesis. RLX significantly reduced the time to complete skin normalization and this effect was abrogated by a concomitant treatment with antibodies against VEGF and CXCR4 (CXC chemokine receptor 4), the SDF-1α receptor. These data strongly suggest that RLX may have a potential application in diabetes-related wound disorders.
Collapse
Key Words
- angiogenesis
- diabetes
- matrix metalloproteinase (mmp)
- relaxin
- vascular endothelial growth factor (vegf)
- wound healing
- bm, bone marrow
- cxcr4, cxc chemokine receptor 4
- enos, endothelial no synthase
- epc, endothelial progenitor cell
- mmp, matrix metalloproteinase
- mvd, microvessel density
- rlx, relaxin
- sdf-1α, stromal cell-derived factor-1α
- ve-cadherin, vascular endothelial cadherin
- vegf, vascular endothelial growth factor
- vegfr, vegf receptor
Collapse
|
Retracted Publication |
12 |
36 |
13
|
Lauriano ER, Calò M, Silvestri G, Zaccone D, Pergolizzi S, Lo Cascio P. Mast cells in the intestine and gills of the sea bream, Sparus aurata, exposed to a polychlorinated biphenyl, PCB 126. Acta Histochem 2012; 114:166-71. [PMID: 21565388 DOI: 10.1016/j.acthis.2011.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 02/07/2023]
Abstract
The presence of mast cells has been reported in all classes of vertebrates, including many teleost fish families. The mast cells of teleosts, both morphologically and functionally, show a close similarity to the mast cells of mammals. Mast cells of teleosts, localized in the vicinity of blood vessels of the intestine, gills and skin, may play an important role in the mechanisms of inflammatory response, because they express a number of functional proteins, including piscidins, which are antimicrobical peptides that act against a broad-spectrum of pathogens. An increase in the number of mast cells in various tissues and organs of teleosts seems to be linked to a wide range of stressful conditions, such as exposure to heavy metals (cadmium, copper, lead and mercury), exposure to herbicides and parasitic infections. This study analyzed the morphological localization and abundance of mast cells in the intestine and gills of sea bream, Sparus aurata, after a 12, 24 or 72 h exposure to PCB 126, a polychlorinated biphenyl, which is a potent immunotoxic agent. In the organs of fish exposed to PCB 126, it was observed that in addition to congestion of blood vessels, there was extravasation of red blood cells, infiltration of lymphocytes, and a progressive increase in numbers of mast cells. These data confirm the immunotoxic action of PCB, and the involvement of mast cells in the inflammatory response.
Collapse
|
Journal Article |
13 |
31 |
14
|
Alesci A, Pergolizzi S, Capillo G, Lo Cascio P, Lauriano ER. Rodlet cells in kidney of goldfish (Carassius auratus, Linnaeus 1758): A light and confocal microscopy study. Acta Histochem 2022; 124:151876. [PMID: 35303512 DOI: 10.1016/j.acthis.2022.151876] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023]
Abstract
Rodlet cells (RCs) have always been an enigma for scientists. RCs have been given a variety of activities over the years, including ion transport, osmoregulation, and sensory function. These cells, presumably as members of the granulocyte line, are present only in teleosts and play a role in the innate immune response. RCs are migratory cells found in a variety of organs, including skin, vascular, digestive, uropoietic, reproductive, and respiratory systems, and present distinct physical properties that make them easily recognizable in tissues and organs. The development of RCs can be divided into four stages: granular, transitional, mature, and ruptured, having different morphological characteristics. Our study aims to characterize the different stages of these cells by histomorphological and histochemical techniques. Furthermore, we characterized these cells at all stages with peroxidase and fluorescence immunohistochemical techniques using different antibodies: S100, tubulin, α-SMA, piscidin, and for the first time TLR-2. From our results, the immunoreactivity of these cells to the antibodies performed may confirm that RCs play a role in fish defense mechanisms, helping to expand the state of the art on immunology and immune cells of teleosts.
Collapse
|
|
3 |
25 |
15
|
Mauceri A, Fossi MC, Leonzio C, Ancora S, Minniti F, Maisano M, Lo Cascio P, Ferrando S, Fasulo S. Stress factors in the gills ofLiza aurata(Perciformes, Mugilidae) living in polluted environments. ACTA ACUST UNITED AC 2005. [DOI: 10.1080/11250000509356687] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
|
20 |
24 |
16
|
Alesci A, Fumia A, Lo Cascio P, Miller A, Cicero N. Immunostimulant and Antidepressant Effect of Natural Compounds in the Management of Covid-19 Symptoms. J Am Coll Nutr 2021; 41:840-854. [PMID: 34550044 DOI: 10.1080/07315724.2021.1965503] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the use of natural compounds as adjuvant treatments and alternatives to traditional pharmacological therapies has become increasingly popular. These compounds have a wide range of biological effects, such as: antioxidant, anti-aging, hypocholesterolizing, hypoglycemic, antitumoral, antidepressant, anxiolytic activity, etc. Almost all of these compounds are easily available and are contained in different foods. At the end of 2019 the Coronavirus SARS-CoV-2 appeared in China and quickly spread throughout the world, causing a pandemic. The most common symptoms of this infection are dry cough, fever, dyspnea, and in severe cases bilateral interstitial pneumonia, with consequences that can lead to death. The nations, in trying to prevent the spread of infection, have imposed social distancing and lockdown measures on their citizens. This had a strong psychological-social impact, leading to phobic, anxious and depressive states. Pharmacological therapy could be accompanied by treatment with several natural compounds, such as vitamins, baicalein, zinc and essential oils. These compounds possess marked immunostimulant activity, strengthening the immune response and mitigating interactions between the virus and the host cell. They also have an antidepressant effect, acting on certain neurotransmitters.
Collapse
|
|
4 |
21 |
17
|
Altavilla D, Galeano M, Bitto A, Minutoli L, Squadrito G, Seminara P, Venuti FS, Torre V, Calò M, Colonna M, Lo Cascio P, Giugliano G, Scuderi N, Mioni C, Leone S, Squadrito F. Lipid peroxidation inhibition by raxofelast improves angiogenesis and wound healing in experimental burn wounds. Shock 2005; 24:85-91. [PMID: 15988325 DOI: 10.1097/01.shk.0000168523.37796.89] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We investigated the effects of raxofelast, a lipid peroxidation inhibitor, in an experimental model of burn wounds. C57BL/6 male mice of 25-30 g were immersed in 80 degrees C water for 10 seconds to achieve a partial-thickness scald burn. Animals received intraperitoneally either raxofelast (20 mg/kg/day for 14 days in 100 microL) or its vehicle alone (100 microL/day for 14 days). On day 14, burn areas were used for measuring conjugated dienes, reduced glutathione levels, histological damage, neoangiogenesis by immunohistochemistry and expression (Western blot) of the specific endothelial marker CD31 as well as quantification of microvessel density, VEGF wound content, endothelial and inducible nitric oxide synthase (eNOS and iNOS) expression and wound nitrite content. Raxofelast decreased tissue conjugated dienes (vehicle 6.1 +/- 1.4 DeltaABS/mg protein; raxofelast 3.7 +/- 0.8 DeltaABS/mg protein), prevented tissue glutathione consumption (vehicle 3.2 +/- 0.9 micromol/g protein; raxofelast 6.7 +/- 1.8 mumol/g protein), increased epithelial proliferation, extracellular matrix maturation, and augmented neoangiogenesis as suggested by the marked increase in microvessel density and by the robust expression of the specific endothelial marker CD31 (vehicle 9.4 +/- 1.1 integrated intensity; raxofelast 14.8 +/- 1.8 integrated intensity). Furthermore, raxofelast enhanced VEGF wound content (vehicle 1.4 +/- 0.4 pg/mg protein; raxofelast 2.4 +/- 0.6 pg/mg protein), caused a marked expression of eNOS (vehicle 16.1 +/- 3 integrated intensity; raxofelast 26.2 +/- 4 integrated intensity) and iNOS (vehicle 9.1 +/- 1.8 integrated intensity; raxofelast 16.2 +/- 3.5 integrated intensity) and increased wound nitrite content. Lipid peroxidation inhibition by raxofelast may be an effective therapeutic approach to improve clinical outcomes after thermal injury.
Collapse
|
|
20 |
19 |
18
|
Piccinini M, Merighi A, Bruno R, Cascio P, Curto M, Mioletti S, Ceruti C, Rinaudo MT. Affinity purification and characterization of protein gene product 9.5 (PGP9.5) from retina. Biochem J 1996; 318 ( Pt 2):711-6. [PMID: 8809066 PMCID: PMC1217676 DOI: 10.1042/bj3180711] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Protein gene product 9.5 (PGP9.5) is a cytosolic protein that is highly expressed in vertebrate neurons, which is now included in the ubiquitin C-terminal hydrolase subclass (UCH) on the basis of primary-structure homology and hydrolytic activity on the synthetic substrate ubiquitin ethyl ester (UbOEt). Some UCHs show affinity for immobilized ubiquitin, a property exploited to purify them. In this study we show that this property can also be applied to PGP9.5, since a protein has been purified to homogeneity from bovine retina by affinity chromatography on a ubiquitin-Sepharose column that can be identified with: (a) PGP9.5 with respect to molecular mass, primary structure and immunological reactivity; (b) the known UCHs with respect to some catalytic properties, such as hydrolytic activity on UbOEt, (which also characterizes PGP9.5), Km value and reactivity with cysteine and histidine-specific reagents. However, it differs with respect to other properties, e.g. inhibition by UbOEt and a wider pH range of activity.
Collapse
|
research-article |
29 |
18 |
19
|
Lo Cascio P, Calabrò C, Bertuccio C, Iaria C, Marino F, Denaro MG. Immunohistochemical Characterization of PepT1 and Ghrelin in Gastrointestinal Tract of Zebrafish: Effects of Spirulina Vegetarian Diet on the Neuroendocrine System Cells After Alimentary Stress. Front Physiol 2018; 9:614. [PMID: 29881359 PMCID: PMC5976732 DOI: 10.3389/fphys.2018.00614] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/07/2018] [Indexed: 12/28/2022] Open
Abstract
Gastrointestinal function in vertebrates is influenced by stressors, such as fasting and refeeding, different types of diet and hormonal factors. The aim of this paper was to analyze the effect of a Spirulina (Arthrospira platensis) diet, a microalga known for its nutraceutical properties, on the gastrointestinal tract of zebrafish (Danio rerio) regarding expression of oligopeptide transporter 1 (PepT1) and ghrelin (GHR). Food deprivation and refeeding was investigated to elucidate expression of PepT1 and GHR at a gastrointestinal level and the zebrafish compensatory mechanism. PepT1 is responsible for absorbing di- and tripeptides through a brush border membrane of intestinal mucosa. GHR is a brain-gut peptide in fish and mammals, stimulating growth hormone secretion and regulating appetite. Samples were taken after 2 and 5 days of specimen fasting, and 2 and 5 days of refeeding with Sera Spirulina tabs, in which the major constituent is Spirulina sp. (50.2% protein). Morphological and immunohistochemical analysis of PepT1 and GHR were carried out. Control specimen intestinal tract showed normal morphology of the digestive tract. Fasting caused fold structural changes and intestinal lumen constriction. Immunohistochemical analysis showed a PepT1 level reduction after fasting and an increase after refeeding, reaching very high levels after 5 days, compared to controls. GHR levels increased after food deprivation and gradually decreased after refeeding. Increased expression of PepT1 in refeeding fish suggests a compensatory physiological mechanism, as does the increase in GHR levels in fasting fish followed by a reduction after refeeding. A compensatory mechanism may be induced by fasting and refeeding and by a higher protein Spirulina diet. The microalga, for its nutraceutical properties, is an excellent candidate for animal breeding and human diet.
Collapse
|
Journal Article |
7 |
17 |
20
|
Alesci A, Pergolizzi S, Fumia A, Calabrò C, Lo Cascio P, Lauriano ER. Mast cells in goldfish (
Carassius auratus
) gut: Immunohistochemical characterization. ACTA ZOOL-STOCKHOLM 2022. [DOI: 10.1111/azo.12417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
|
3 |
16 |
21
|
Lauriano ER, Aragona M, Alesci A, Lo Cascio P, Pergolizzi S. Toll-like receptor 2 and α-Smooth Muscle Actin expressed in the tunica of a urochordate, Styela plicata. Tissue Cell 2021; 71:101584. [PMID: 34224967 DOI: 10.1016/j.tice.2021.101584] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022]
Abstract
The tunicate, Styela plicata (Lesueur, 1823) present an open circulator system with a tubular heart and blood flowing in lacunae among organs, bathing the tissues directly. Blood vascular lacunae are present in the tunica that is situated outside the epidermis and present a fibrous structure. The cells of the tunic are in straight contact with the blood vessels or are highly mobile. Ascidians are considered model organisms in comparative immunology of the chordate, and hold an important phylogenetic position as sister group of vertebrates. In recent years, numerous studies have reported the presence of Toll-like receptors (TLRs) in the genome of non-mammalian organisms including invertebrates. Two TLRs, designated Ci-TLR1 and Ci-TLR2 were expressed in the stomach, intestine and in numerous hemocytes of Ciona intestinalis, demonstrating that these key transmembrane proteins are evolutionarily conserved in ascidians. In this study for the first time, hemocytes aggregates were identified by confocal immunofluorescence techniques, using TLR2 antibody in the tunica of Styela plicata; furthermore, α-Smooth Muscle Actin (α-SMA) expression has been shown in the cells lining the vessels of the tunic. Our results support the view that the TLR-mediated innate immune functions are conserved in ascidian tissues.
Collapse
|
Journal Article |
4 |
16 |
22
|
Alesci A, Capillo G, Fumia A, Messina E, Albano M, Aragona M, Lo Cascio P, Spanò N, Pergolizzi S, Lauriano ER. Confocal Characterization of Intestinal Dendritic Cells from Myxines to Teleosts. BIOLOGY 2022; 11:1045. [PMID: 36101424 PMCID: PMC9312193 DOI: 10.3390/biology11071045] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) are antigen-presenting cells (APCs) that regulate the beginning of adaptive immune responses. The mechanisms of tolerance to antigens moving through the digestive tract are known to be regulated by intestinal DCs. Agnatha and Gnathostoma are descendants of a common ancestor. The Ostracoderms gave rise to Cyclostomes, whereas the Placoderms gave rise to Chondrichthyes. Sarcopterygii and Actinopterygii are two evolutionary lines of bony fishes. Brachiopterygii and Neopterygii descend from the Actinopterygii. From Neopterygii, Holostei and Teleostei evolved. Using immunohistochemistry with TLR-2, Langerin/CD207, and MHC II, this study aimed to characterize intestinal DCs, from myxines to teleosts. The findings reveal that DCs are positive for the antibodies tested, highlighting the presence of DCs and DC-like cells phylogenetically from myxines, for the first time, to teleosts. These findings may aid in improving the level of knowledge about the immune system's evolution and these sentinel cells, which are crucial to the body's defense.
Collapse
|
research-article |
3 |
16 |
23
|
Alesci A, Pergolizzi S, Lo Cascio P, Fumia A, Lauriano ER. Neuronal regeneration: Vertebrates comparative overview and new perspectives for neurodegenerative diseases. ACTA ZOOL-STOCKHOLM 2021. [DOI: 10.1111/azo.12397] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
|
4 |
14 |
24
|
Lo Cascio P, Calabrò C, Bertuccio C, Paterniti I, Palombieri D, Calò M, Albergamo A, Salvo A, Gabriella Denaro M. Effects of fasting and refeeding on the digestive tract of zebrafish (Danio rerio) fed with Spirulina (Arthrospira platensis), a high protein feed source. Nat Prod Res 2017; 31:1478-1485. [DOI: 10.1080/14786419.2016.1274893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
|
8 |
10 |
25
|
Alesci A, Gitto M, Kotańska M, Lo Cascio P, Miller A, Nicosia N, Fumia A, Pergolizzi S. Immunogenicity, effectiveness, safety and psychological impact of COVID-19 mRNA vaccines. Hum Immunol 2022; 83:755-767. [PMID: 35963787 PMCID: PMC9359511 DOI: 10.1016/j.humimm.2022.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/10/2022] [Accepted: 08/03/2022] [Indexed: 12/15/2022]
Abstract
In December 2019, a new single-stranded RNA coronavirus, SARS-CoV-2, appeared in China and quickly spread around the world leading to a pandemic. Infection with SARS-CoV-2 generates symptoms ranging from asymptomatic to severe, occasionally requiring hospitalization in intensive care units, and, in more severe cases, leading to death. Scientists and researchers around the world have made a real race against time to develop various vaccines to slow down and stop the spread of the virus. In addition to conventional viral vector vaccines, new generation mRNA vaccines, BNT152b2 (Comirnaty) and mRNA-1273 (Spikevax), have been developed respectively by Pfizer/BioNTech and Moderna. These vaccines act on immune cells to induce an immune response with the production of specific antibodies against Spike protein of SARS-CoV-2, and to stimulate the differentiation of T and B memory cells. The objective of this review is to provide a detailed picture of the validity of these new vaccines and the safety of vaccination. Not only was the immunogenic effect of mRNA vaccines evaluated, but also the psychosocial impact they had on the population. The data collected show that this type of vaccine can also be an excellent candidate for future treatment and eradication of possible new pathologies with viral and non-viral etiology.
Collapse
|
Review |
3 |
8 |