1
|
Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 2015; 14:561-84. [PMID: 26228759 DOI: 10.1038/nrd4591] [Citation(s) in RCA: 1002] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeting immune checkpoints such as programmed cell death protein 1 (PD1), programmed cell death 1 ligand 1 (PDL1) and cytotoxic T lymphocyte antigen 4 (CTLA4) has achieved noteworthy benefit in multiple cancers by blocking immunoinhibitory signals and enabling patients to produce an effective antitumour response. Inhibitors of CTLA4, PD1 or PDL1 administered as single agents have resulted in durable tumour regression in some patients, and combinations of PD1 and CTLA4 inhibitors may enhance antitumour benefit. Numerous additional immunomodulatory pathways as well as inhibitory factors expressed or secreted by myeloid and stromal cells in the tumour microenvironment are potential targets for synergizing with immune checkpoint blockade. Given the breadth of potential targets in the immune system, critical questions to address include which combinations should move forward in development and which patients will benefit from these treatments. This Review discusses the leading drug targets that are expressed on tumour cells and in the tumour microenvironment that allow enhancement of the antitumour immune response.
Collapse
|
Review |
10 |
1002 |
2
|
Eberl G, Marmon S, Sunshine MJ, Rennert PD, Choi Y, Littman DR. An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat Immunol 2003; 5:64-73. [PMID: 14691482 DOI: 10.1038/ni1022] [Citation(s) in RCA: 820] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 11/12/2003] [Indexed: 12/31/2022]
Abstract
Lymphoid tissue inducer (LTi) cells are associated with early development of lymph nodes and Peyer's patches. We show here that during fetal life the nuclear hormone receptor RORgamma(t) is expressed exclusively in and is required for the generation of LTi cells. RORgamma(t+) LTi cells provide essential factors, among which lymphotoxin-alpha1beta2 is necessary but not sufficient for activation of the mesenchyma in lymph node and Peyer's patch anlagen. This early LTi cell-mediated activation of lymph node and Peyer's patch mesenchyma forms the necessary platform for the subsequent development of mature lymphoid tissues.
Collapse
MESH Headings
- Animals
- Embryonic and Fetal Development/genetics
- Embryonic and Fetal Development/immunology
- Embryonic and Fetal Development/physiology
- Female
- Flow Cytometry
- Green Fluorescent Proteins
- Immunohistochemistry
- Intercellular Adhesion Molecule-1/genetics
- Intercellular Adhesion Molecule-1/immunology
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Lymphoid Tissue/embryology
- Lymphoid Tissue/immunology
- Lymphoid Tissue/physiology
- Lymphotoxin-alpha/immunology
- Male
- Mice
- Mice, Knockout
- Nuclear Receptor Subfamily 1, Group F, Member 3
- Organogenesis/genetics
- Organogenesis/immunology
- Organogenesis/physiology
- Receptors, Interleukin-7/genetics
- Receptors, Interleukin-7/immunology
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/immunology
- Receptors, Retinoic Acid/physiology
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/immunology
- Receptors, Thyroid Hormone/physiology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/physiology
- Vascular Cell Adhesion Molecule-1/genetics
- Vascular Cell Adhesion Molecule-1/immunology
Collapse
|
Journal Article |
22 |
820 |
3
|
Abstract
BAFF, a member of the TNF family, is a fundamental survival factor for transitional and mature B cells. BAFF overexpression leads to an expanded B cell compartment and autoimmunity in mice, and elevated amounts of BAFF can be found in the serum of autoimmune patients. APRIL is a related factor that shares receptors with BAFF yet appears to play a different biological role. The BAFF system provides not only potential insight into the development of autoreactive B cells but a relatively simple paradigm to begin considering the balancing act between survival, growth, and death that affects all cells.
Collapse
|
Review |
22 |
721 |
4
|
Mebius RE, Rennert P, Weissman IL. Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 1997; 7:493-504. [PMID: 9354470 DOI: 10.1016/s1074-7613(00)80371-4] [Citation(s) in RCA: 551] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
For a brief period during fetal lymph node organogenesis in mice, lymph node postcapillary high endothelial venules surprisingly express the Peyer's patch addressin MAdCAM-1. This expression allows initial seeding of this incipient structure by two unusual lymphocyte populations selectively expressing the Peyer's patch homing receptor integrin alpha4beta7: CD4+CD3- oligolineage progenitors and TCR gammadelta+ T cells. We show here that CD4+CD3- cells are lineage-restricted progenitors that express surface lymphotoxin-beta (LTbeta) and the chemokine receptor BLR1 and that can become natural killer cells, dendritic antigen-presenting cells, and follicular cells of unknown outcome, but these cells do not become T or B lymphocytes. Since the necessity of lymphotoxin in lymphoid organ development has been shown, we propose that the novel subset of CD4+CD3-LTbeta+ fetal cells is instrumental in the development of lymphoid tissue architecture.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antigen-Presenting Cells/cytology
- B-Lymphocytes/cytology
- CD3 Complex/metabolism
- CD4-Positive T-Lymphocytes/cytology
- Cell Adhesion Molecules
- Cytotoxicity, Immunologic
- Fluorescent Antibody Technique, Indirect
- GTP-Binding Proteins/genetics
- Gene Expression
- Histocompatibility Antigens Class II/metabolism
- Immunity, Cellular
- Immunoglobulins/metabolism
- Integrins/metabolism
- Interleukin-2/pharmacology
- Killer Cells, Natural/cytology
- Leukocyte Common Antigens/analysis
- Leukopoiesis
- Lymph Nodes/cytology
- Lymph Nodes/embryology
- Lymphocyte Subsets/cytology
- Lymphotoxin-alpha/metabolism
- Lymphotoxin-beta
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred AKR
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mucoproteins/metabolism
- RNA, Messenger/genetics
- Receptors, CXCR5
- Receptors, Chemokine
- Receptors, Cytokine/genetics
- Spleen/embryology
- Spleen/immunology
- T-Lymphocytes/cytology
Collapse
|
|
28 |
551 |
5
|
Freeman GJ, Boussiotis VA, Anumanthan A, Bernstein GM, Ke XY, Rennert PD, Gray GS, Gribben JG, Nadler LM. B7-1 and B7-2 do not deliver identical costimulatory signals, since B7-2 but not B7-1 preferentially costimulates the initial production of IL-4. Immunity 1995; 2:523-32. [PMID: 7538442 DOI: 10.1016/1074-7613(95)90032-2] [Citation(s) in RCA: 439] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The functional necessity for two CD28 counterreceptors (B7-1 and B7-2) is presently unknown. B7-1 and B7-2 equivalently costimulate IL-2 and interferon-gamma (IFN gamma) production and IL-2 receptor alpha and gamma chain expression. B7-2 induces significantly more IL-4 production than B7-1, with the greatest difference seen in naive T cells. Repetitive costimulation of CD4+ CD45RA+ T cells with B7-2 results in moderate levels of both IL-4 and IL-2, whereas repetitive costimulation with B7-1 results in high levels of IL-2 and low levels of IL-4. Therefore, B7-1 and B7-2 costimulation mediate distinct outcomes, since B7-2 provides an initial signal to induce naive T cells to become IL-4 producers, thereby directing the immune response more towards Th0/Th2, whereas B7-1 is a more neutral differentiative signal.
Collapse
|
|
30 |
439 |
6
|
Jang MH, Kweon MN, Iwatani K, Yamamoto M, Terahara K, Sasakawa C, Suzuki T, Nochi T, Yokota Y, Rennert PD, Hiroi T, Tamagawa H, Iijima H, Kunisawa J, Yuki Y, Kiyono H. Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc Natl Acad Sci U S A 2004; 101:6110-5. [PMID: 15071180 PMCID: PMC395931 DOI: 10.1073/pnas.0400969101] [Citation(s) in RCA: 344] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
M cells located in the follicle-associated epithelium of Peyer's patches (PP) are shown to be the principal sites for the sampling of gut luminal antigens. Thus, PP have long been considered the gatekeepers of the mucosal immune system. Here, we report a distinct gateway for the uptake of gut bacteria: clusters of non-follicle-associated epithelium-associated Ulex europaeus agglutinin (UEA)-1(+) cells, which we have designated intestinal villous M cells. Interestingly, villous M cells are developed in various PP [or gut-associated lymphoid tissue (GALT)]-null mice, such as in utero lymphotoxin beta receptor (LTbetaR)-Ig-treated, lymphotoxin alpha (LTalpha)(-/-), tumor necrosis factor/LTalpha(-/-), and inhibition of differentiation 2 (Id2)(-/-) mice. Intestinal villous M cells have been observed to take up GFP-expressing Salmonella, Yersinia, and Escherichia coli-expressing invasin, as well as gut bacterial antigen for subsequent induction of antigen-specific immune responses. Thus, the identified villous M cells could be an alternative and PP-independent gateway for the induction of antigen-specific immune responses by means of the mucosal compartment.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
344 |
7
|
Rennert PD, Browning JL, Mebius R, Mackay F, Hochman PS. Surface lymphotoxin alpha/beta complex is required for the development of peripheral lymphoid organs. J Exp Med 1996; 184:1999-2006. [PMID: 8920886 PMCID: PMC2192901 DOI: 10.1084/jem.184.5.1999] [Citation(s) in RCA: 320] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
For more than a decade, the biological roles and the apparent redundancy of the cytokines tumor necrosis factor (TNF) and lymphotoxin (LT) have been debated. LT alpha exists in its soluble form as a homotrimer, which like TNF only binds the TNF receptors, TNF-R55 or TNF-R75. The cell surface form of LT exists as a heteromer of LT alpha and LT beta subunits and this complex specifically binds the LT beta receptor (LT beta-R). To discriminate the functions of the LT and TNF systems, soluble LT beta-R-immunoglobulin (Ig) or TNF-R-Ig fusion proteins were introduced into embryonic circulation by injecting pregnant mice. Exposure to LT beta-R-Ig during gestation disrupted lymph node development and splenic architecture in the progeny indicating that both effects are mediated by the surface LT alpha/beta complex. These data are the first to identify a cell surface ligand involved in immune organ morphogenesis. Moreover, they unambiguously discriminate the functions of the various TNF/LT ligands, provide a unique model to study compartmentalization of immune responses and illustrate the generic utility of receptor-Ig fusion proteins for dissecting/ordering ontogenetic events in the absence of genetic modifications.
Collapse
|
research-article |
29 |
320 |
8
|
Leitges M, Sanz L, Martin P, Duran A, Braun U, García JF, Camacho F, Diaz-Meco MT, Rennert PD, Moscat J. Targeted disruption of the zetaPKC gene results in the impairment of the NF-kappaB pathway. Mol Cell 2001; 8:771-80. [PMID: 11684013 DOI: 10.1016/s1097-2765(01)00361-6] [Citation(s) in RCA: 299] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Here we have addressed the role that zetaPKC plays in NF-kappaB activation using mice in which this kinase was inactivated by homologous recombination. These mice, although grossly normal, showed phenotypic alterations in secondary lymphoid organs reminiscent of those of the TNF receptor-1 and of the lymphotoxin-beta receptor gene-deficient mice. The lack of zetaPKC in embryonic fibroblasts (EFs) severely impairs kappaB-dependent transcriptional activity as well as cytokine-induced phosphorylation of p65. Also, a cytokine-inducible interaction of zetaPKC with p65 was detected which requires the previous degradation of IkappaB. Although in zetaPKC-/- EFs this kinase is not necessary for IKK activation, in lung, which abundantly expresses zetaPKC, IKK activation is inhibited.
Collapse
|
|
24 |
299 |
9
|
Ingold K, Zumsteg A, Tardivel A, Huard B, Steiner QG, Cachero TG, Qiang F, Gorelik L, Kalled SL, Acha-Orbea H, Rennert PD, Tschopp J, Schneider P. Identification of proteoglycans as the APRIL-specific binding partners. ACTA ACUST UNITED AC 2005; 201:1375-83. [PMID: 15851487 PMCID: PMC2213192 DOI: 10.1084/jem.20042309] [Citation(s) in RCA: 280] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
B cell activating factor of the tumor necrosis factor (TNF) family (BAFF) and a proliferation-inducing ligand (APRIL) are closely related ligands within the TNF superfamily that play important roles in B lymphocyte biology. Both ligands share two receptors—transmembrane activator and calcium signal–modulating cyclophilin ligand interactor (TACI) and B cell maturation antigen (BCMA)—that are predominantly expressed on B cells. In addition, BAFF specifically binds BAFF receptor, whereas the nature of a postulated APRIL-specific receptor remains elusive. We show that the TNF homology domain of APRIL binds BCMA and TACI, whereas a basic amino acid sequence (QKQKKQ) close to the NH2 terminus of the mature protein is required for binding to the APRIL-specific “receptor.” This interactor was identified as negatively charged sulfated glycosaminoglycan side chains of proteoglycans. Although T cell lines bound little APRIL, the ectopic expression of glycosaminoglycan-rich syndecans or glypicans conferred on these cells a high binding capacity that was completely dependent on APRIL's basic sequence. Moreover, syndecan-1–positive plasma cells and proteoglycan-rich nonhematopoietic cells displayed high specific, heparin-sensitive binding to APRIL. Inhibition of BAFF and APRIL, but not BAFF alone, prevented the survival and/or the migration of newly formed plasma cells to the bone marrow. In addition, costimulation of B cell proliferation by APRIL was only effective upon APRIL oligomerization. Therefore, we propose a model whereby APRIL binding to the extracellular matrix or to proteoglycan-positive cells induces APRIL oligomerization, which is the prerequisite for the triggering of TACI- and/or BCMA-mediated activation, migration, or survival signals.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
280 |
10
|
Suzuki K, Okuno T, Yamamoto M, Pasterkamp RJ, Takegahara N, Takamatsu H, Kitao T, Takagi J, Rennert PD, Kolodkin AL, Kumanogoh A, Kikutani H. Semaphorin 7A initiates T-cell-mediated inflammatory responses through alpha1beta1 integrin. Nature 2007; 446:680-4. [PMID: 17377534 DOI: 10.1038/nature05652] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Accepted: 02/05/2007] [Indexed: 11/08/2022]
Abstract
Semaphorins are axon guidance factors that assist growing axons in finding appropriate targets and forming synapses. Emerging evidence suggests that semaphorins are involved not only in embryonic development but also in immune responses. Semaphorin 7A (Sema7A; also known as CD108), which is a glycosylphosphatidylinositol-anchored semaphorin, promotes axon outgrowth through beta1-integrin receptors and contributes to the formation of the lateral olfactory tract. Although Sema7A has been shown to stimulate human monocytes, its function as a negative regulator of T-cell responses has also been reported. Thus, the precise function of Sema7A in the immune system remains unclear. Here we show that Sema7A, which is expressed on activated T cells, stimulates cytokine production in monocytes and macrophages through alpha1beta1 integrin (also known as very late antigen-1) as a component of the immunological synapse, and is critical for the effector phase of the inflammatory immune response. Sema7A-deficient (Sema7a-/-) mice are defective in cell-mediated immune responses such as contact hypersensitivity and experimental autoimmune encephalomyelitis. Although antigen-specific and cytokine-producing effector T cells can develop and migrate into antigen-challenged sites in Sema7a-/- mice, Sema7a-/- T cells fail to induce contact hypersensitivity even when directly injected into the antigen-challenged sites. Thus, the interaction between Sema7A and alpha1beta1 integrin is crucial at the site of inflammation. These findings not only identify a function of Sema7A as an effector molecule in T-cell-mediated inflammation, but also reveal a mechanism of integrin-mediated immune regulation.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
256 |
11
|
Gribben JG, Freeman GJ, Boussiotis VA, Rennert P, Jellis CL, Greenfield E, Barber M, Restivo VA, Ke X, Gray GS. CTLA4 mediates antigen-specific apoptosis of human T cells. Proc Natl Acad Sci U S A 1995; 92:811-5. [PMID: 7846057 PMCID: PMC42710 DOI: 10.1073/pnas.92.3.811] [Citation(s) in RCA: 246] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The regulation of T cell-mediated immune responses requires a balance between amplification and generation of effector function and subsequent selective termination by clonal deletion. Although apoptosis of previously activated T cells can be induced by signaling of the tumor necrosis factor receptor family, these molecules do not appear to regulate T-cell clonal deletion in an antigen-specific fashion. We demonstrate that cross-linking of the inducible T-cell surface molecule CTLA4 can mediate apoptosis of previously activated human T lymphocytes. This function appears to be antigen-restricted, since a concomitant signal T-cell receptor signal is required. Regulation of this pathway may provide a novel therapeutic strategy to delete antigen-specific activated T cells.
Collapse
|
research-article |
30 |
246 |
12
|
Rennert PD, James D, Mackay F, Browning JL, Hochman PS. Lymph node genesis is induced by signaling through the lymphotoxin beta receptor. Immunity 1998; 9:71-9. [PMID: 9697837 DOI: 10.1016/s1074-7613(00)80589-0] [Citation(s) in RCA: 241] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We investigated lymphotoxin (LT) and TNF function in lymph node genesis and cellular organization by manipulating LTbeta-R and TNF-R signaling. Lymph nodes developed in LTalpha-/- mice treated in utero with agonist anti-LTbeta-R monoclonal antibody. Thus, LTbeta-R signaling mediates lymph node genesis. Surprisingly, mucosal lymph nodes that can develop independently of LTalphabeta/LTbeta-R interaction were generated. Normal mice treated in utero with LTbeta-R-Ig and TNF-R55-Ig or anti-TNF lacked all lymph nodes, indicating that TNF signaling contributes to lymph node genesis. Lymph nodes generated in LTalpha-/- mice had disrupted cellular organization. Therefore, LTbeta-R signaling during gestation is not sufficient to establish normal cellular microarchitecture. We conclude that LT and TNF play critical roles in the genesis and cellular organization of lymph nodes.
Collapse
|
|
27 |
241 |
13
|
Kim D, Mebius RE, MacMicking JD, Jung S, Cupedo T, Castellanos Y, Rho J, Wong BR, Josien R, Kim N, Rennert PD, Choi Y. Regulation of peripheral lymph node genesis by the tumor necrosis factor family member TRANCE. J Exp Med 2000; 192:1467-78. [PMID: 11085748 PMCID: PMC2193182 DOI: 10.1084/jem.192.10.1467] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2000] [Accepted: 10/06/2000] [Indexed: 12/16/2022] Open
Abstract
Proper lymph node (LN) development requires tumor necrosis factor-related activation-induced cytokine (TRANCE) expression. Here we demonstrate that the defective LN development in TRANCE(-/)- mice correlates with a significant reduction in lymphotoxin (LT)alphabeta(+)alpha(4)beta(7)(+)CD45(+)CD4(+)CD3(-) cells and their failure to form clusters in rudimentary mesenteric LNs. Transgenic TRANCE overexpression in TRANCE(-/)- mice results in selective restoration of this cell population into clusters, and results in full LN development. Transgenic TRANCE-mediated restoration of LN development requires LTalphabeta expression on CD45(+) CD4(+)CD3(-) cells, as LNs could not be induced in LTalpha(-/)- mice. LTalpha(-/)- mice also showed defects in the fate of CD45(+)CD4(+)CD3(-) cells similar to TRANCE(-/)- mice. Thus, we propose that both TRANCE and LTalphabeta regulate the colonization and cluster formation by CD45(+) CD4(+)CD3(-) cells in developing LNs, the degree of which appears to correlate with the state of LN organogenesis.
Collapse
|
research-article |
25 |
214 |
14
|
Rennert P, Schneider P, Cachero TG, Thompson J, Trabach L, Hertig S, Holler N, Qian F, Mullen C, Strauch K, Browning JL, Ambrose C, Tschopp J. A soluble form of B cell maturation antigen, a receptor for the tumor necrosis factor family member APRIL, inhibits tumor cell growth. J Exp Med 2000; 192:1677-84. [PMID: 11104810 PMCID: PMC2193103 DOI: 10.1084/jem.192.11.1677] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A proliferation-inducing ligand (APRIL) is a ligand of the tumor necrosis factor (TNF) family that stimulates tumor cell growth in vitro and in vivo. Expression of APRIL is highly upregulated in many tumors including colon and prostate carcinomas. Here we identify B cell maturation antigen (BCMA) and transmembrane activator and calcium modulator and cyclophilin ligand (CAML) interactor (TACI), two predicted members of the TNF receptor family, as receptors for APRIL. APRIL binds BCMA with higher affinity than TACI. A soluble form of BCMA, which inhibits the proliferative activity of APRIL in vitro, decreases tumor cell proliferation in nude mice. Growth of HT29 colon carcinoma cells is blocked when mice are treated once per week with the soluble receptor. These results suggest an important role for APRIL in tumorigenesis and point towards a novel anticancer strategy.
Collapse
|
research-article |
25 |
203 |
15
|
Honda K, Nakano H, Yoshida H, Nishikawa S, Rennert P, Ikuta K, Tamechika M, Yamaguchi K, Fukumoto T, Chiba T, Nishikawa SI. Molecular basis for hematopoietic/mesenchymal interaction during initiation of Peyer's patch organogenesis. J Exp Med 2001; 193:621-30. [PMID: 11238592 PMCID: PMC2193398 DOI: 10.1084/jem.193.5.621] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2000] [Accepted: 01/31/2001] [Indexed: 12/19/2022] Open
Abstract
Mice deficient in lymphotoxin beta receptor (LTbetaR) or interleukin 7 receptor alpha (IL-7Ralpha) lack Peyer's patches (PPs). Deficiency in CXC chemokine receptor 5 (CXCR5) also severely affects the development of PPs. A molecular network involving these three signaling pathways has been implicated in PP organogenesis, but it remains unclear how they are connected during this process. We have shown that PP organogenesis is initiated at sites containing IL-7Ralpha(+) lymphoid cells and vascular cell adhesion molecule (VCAM)-1/intercellular adhesion molecule (ICAM)-1 expressing nonlymphoid elements. Here we characterize these lymphoid and nonlymphoid components in terms of chemokine signals. The lymphoid population expresses CXCR5 and has a strong chemotactic response to B lymphocyte chemoattractant (BLC). Importantly, chemokines produced by VCAM-1(+)ICAM-1(+) nonlymphoid cells mediate the recruitment of lymphoid cells. Furthermore, we show that these VCAM-1(+)ICAM-1(+) cells are mesenchymal cells that are activated by lymphoid cells through the LTbetaR to express adhesion molecules and chemokines. Thus, promotion of PP development relies on mutual interaction between mesenchymal and lymphoid cells.
Collapse
MESH Headings
- Animals
- Cell Adhesion Molecules/biosynthesis
- Cell Communication/drug effects
- Cell Communication/immunology
- Cell Separation
- Cells, Cultured
- Chemokine CXCL13
- Chemokines/biosynthesis
- Chemokines/pharmacology
- Chemokines, CXC/pharmacology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Intercellular Adhesion Molecule-1/biosynthesis
- Lymphocytes/cytology
- Lymphocytes/drug effects
- Lymphocytes/metabolism
- Lymphotoxin beta Receptor
- Mesoderm/cytology
- Mesoderm/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morphogenesis/immunology
- Peyer's Patches/cytology
- Peyer's Patches/embryology
- Peyer's Patches/metabolism
- Receptors, CXCR5
- Receptors, Chemokine
- Receptors, Cytokine/deficiency
- Receptors, Cytokine/genetics
- Receptors, Interleukin-7/deficiency
- Receptors, Interleukin-7/genetics
- Receptors, Tumor Necrosis Factor/deficiency
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Signal Transduction/drug effects
- Vascular Cell Adhesion Molecule-1/biosynthesis
Collapse
|
research-article |
24 |
189 |
16
|
de Fougerolles AR, Sprague AG, Nickerson-Nutter CL, Chi-Rosso G, Rennert PD, Gardner H, Gotwals PJ, Lobb RR, Koteliansky VE. Regulation of inflammation by collagen-binding integrins alpha1beta1 and alpha2beta1 in models of hypersensitivity and arthritis. J Clin Invest 2000; 105:721-9. [PMID: 10727440 PMCID: PMC377459 DOI: 10.1172/jci7911] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Adhesive interactions play an important role in inflammation by promoting leukocyte attachment and extravasation from the vasculature into the peripheral tissues. However, the importance of adhesion molecules within the extracellular matrix-rich environment of peripheral tissues, in which cells must migrate and be activated, has not been well explored. We investigated the role of the major collagen-binding integrins, alpha1beta1 and alpha2beta1, in several in vivo models of inflammation. mAb's against murine alpha1 and alpha2 were found to significantly inhibit effector phase inflammatory responses in animal models of delayed-type hypersensitivity (DTH), contact hypersensitivity (CHS), and arthritis. Mice that were alpha1-deficient also showed decreased inflammatory responses in the CHS and arthritis models when compared with wild-type mice. Decreased leukocyte infiltration and edema formation accompanied inhibition of antigen-specific models of inflammation, as nonspecific inflammation induced by croton oil was not inhibited. This study demonstrates the importance in vivo of alpha1beta1 and alpha2beta1, the collagen-binding integrins, in inflammatory diseases. The study also extends the role of integrins in inflammation beyond leukocyte attachment and extravasation at the vascular endothelial interface, revealing the extracellular matrix environment of peripheral tissues as a new point of intervention for adhesion-based therapies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Arthritis/immunology
- Arthritis/pathology
- Arthritis/prevention & control
- Cell Adhesion/physiology
- Collagen/metabolism
- Collagen/toxicity
- Dermatitis, Allergic Contact/immunology
- Dermatitis, Allergic Contact/pathology
- Dermatitis, Allergic Contact/prevention & control
- Dermatitis, Irritant/immunology
- Dermatitis, Irritant/pathology
- Dermatitis, Irritant/prevention & control
- Edema/etiology
- Edema/prevention & control
- Female
- Hypersensitivity, Delayed/immunology
- Hypersensitivity, Delayed/pathology
- Hypersensitivity, Delayed/prevention & control
- Integrin alpha1beta1
- Integrins/immunology
- Integrins/physiology
- Leukocytes/pathology
- Lipopolysaccharides/toxicity
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Receptors, Collagen
Collapse
|
research-article |
25 |
187 |
17
|
Matsushima A, Kaisho T, Rennert PD, Nakano H, Kurosawa K, Uchida D, Takeda K, Akira S, Matsumoto M. Essential role of nuclear factor (NF)-kappaB-inducing kinase and inhibitor of kappaB (IkappaB) kinase alpha in NF-kappaB activation through lymphotoxin beta receptor, but not through tumor necrosis factor receptor I. J Exp Med 2001; 193:631-6. [PMID: 11238593 PMCID: PMC2193391 DOI: 10.1084/jem.193.5.631] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2000] [Accepted: 01/24/2001] [Indexed: 12/19/2022] Open
Abstract
Both nuclear factor (NF)-kappaB-inducing kinase (NIK) and inhibitor of kappaB (IkappaB) kinase (IKK) have been implicated as essential components for NF-kappaB activation in response to many external stimuli. However, the exact roles of NIK and IKKalpha in cytokine signaling still remain controversial. With the use of in vivo mouse models, rather than with enforced gene-expression systems, we have investigated the role of NIK and IKKalpha in signaling through the type I tumor necrosis factor (TNF) receptor (TNFR-I) and the lymphotoxin beta receptor (LTbetaR), a receptor essential for lymphoid organogenesis. TNF stimulation induced similar levels of phosphorylation and degradation of IkappaBalpha in embryonic fibroblasts from either wild-type or NIK-mutant mice. In contrast, LTbetaR stimulation induced NF-kappaB activation in wild-type mice, but the response was impaired in embryonic fibroblasts from NIK-mutant and IKKalpha-deficient mice. Consistent with the essential role of IKKalpha in LTbetaR signaling, we found that development of Peyer's patches was defective in IKKalpha-deficient mice. These results demonstrate that both NIK and IKKalpha are essential for the induction of NF-kappaB through LTbetaR, whereas the NIK-IKKalpha pathway is dispensable in TNFR-I signaling.
Collapse
|
research-article |
24 |
175 |
18
|
Fukuyama S, Hiroi T, Yokota Y, Rennert PD, Yanagita M, Kinoshita N, Terawaki S, Shikina T, Yamamoto M, Kurono Y, Kiyono H. Initiation of NALT organogenesis is independent of the IL-7R, LTbetaR, and NIK signaling pathways but requires the Id2 gene and CD3(-)CD4(+)CD45(+) cells. Immunity 2002; 17:31-40. [PMID: 12150889 DOI: 10.1016/s1074-7613(02)00339-4] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Initiation of nasopharyngeal-associated lymphoid tissue (NALT) development is independent of the programmed cytokine cascade necessary for the formation of Peyer's patches (PP) and peripheral lymph nodes (PLN), a cytokine cascade which consists of IL-7R, LTalpha1beta2/LTbetaR, and NIK. However, the subsequent organization of NALT seems to be controlled by these cytokine signaling cascades since the maturation of NALT structure is generally incomplete in those cytokine cascade-deficient mice. NALT as well as PP and PLN are completely absent in Id2(-/-) mice. NALT organogenesis is initiated following the adoptive transfer of CD3(-)CD4(+)CD45(+) cells into Id2(-/-) mice, constituting direct evidence that CD3(-)CD4(+)CD45(+) inducer cells can provide an IL-7R-, LTalpha1beta2/LTbetaR-, and NIK-independent tissue organogenesis pathway for secondary lymphoid tissue development.
Collapse
|
Comparative Study |
23 |
170 |
19
|
Nakano H, Sakon S, Koseki H, Takemori T, Tada K, Matsumoto M, Munechika E, Sakai T, Shirasawa T, Akiba H, Kobata T, Santee SM, Ware CF, Rennert PD, Taniguchi M, Yagita H, Okumura K. Targeted disruption of Traf5 gene causes defects in CD40- and CD27-mediated lymphocyte activation. Proc Natl Acad Sci U S A 1999; 96:9803-8. [PMID: 10449775 PMCID: PMC22291 DOI: 10.1073/pnas.96.17.9803] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
TRAF5 [tumor necrosis factor (TNF) receptor-associated factor 5] is implicated in NF-kappaB and c-Jun NH(2)-terminal kinase/stress-activated protein kinase activation by members of the TNF receptor superfamily, including CD27, CD30, CD40, and lymphotoxin-beta receptor. To investigate the functional role of TRAF5 in vivo, we generated TRAF5-deficient mice by gene targeting. Activation of either NF-kappaB or c-Jun NH(2)-terminal kinase/stress-activated protein kinase by tumor necrosis factor, CD27, and CD40 was not abrogated in traf5(-/-) mice. However, traf5(-/-) B cells showed defects in proliferation and up-regulation of various surface molecules, including CD23, CD54, CD80, CD86, and Fas in response to CD40 stimulation. Moreover, in vitro Ig production of traf5(-/-) B cells stimulated with anti-CD40 plus IL-4 was reduced substantially. CD27-mediated costimulatory signal also was impaired in traf5(-/-) T cells. Collectively, these results demonstrate that TRAF5 is involved in CD40- and CD27-mediated signaling.
Collapse
|
research-article |
26 |
154 |
20
|
Dohi T, Fujihashi K, Rennert PD, Iwatani K, Kiyono H, McGhee JR. Hapten-induced colitis is associated with colonic patch hypertrophy and T helper cell 2-type responses. J Exp Med 1999; 189:1169-80. [PMID: 10209035 PMCID: PMC2193023 DOI: 10.1084/jem.189.8.1169] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To investigate the potential involvement of T helper (Th)2-type responses in murine models of intestinal inflammation, we used trinitrobenzene sulfonic acid (TNBS)-hapten to induce inflammatory bowel disease in situations where Th1-type responses with interferon (IFN)-gamma synthesis are either diminished or do not occur. Intracolonic administration of TNBS to either normal (IFN-gamma+/+) or Th1-deficient IFN-gamma knockout (IFN-gamma-/-) BALB/c mice resulted in significant colitis. In IFN-gamma-/- mice, crypt inflammation was more severe than in IFN-gamma+/+ mice and was accompanied by hypertrophy of colonic patches with a lymphoepithelium containing M cells and distinct B and T cell zones resembling Peyer's patches. Hapten-specific, colonic patch T cells from both mouse groups exhibited a Th2 phenotype with interleukin (IL)-4 and IL-5 production. TNBS colitis in normal mice treated with anti-IL-4 antibodies or in IL-4(-/-) mice was less severe than in either IFN-gamma+/+ or IFN-gamma-/- mice. Our findings now show that the Th2-type responses in TNBS colitis are associated with colonic patch enlargement and inflammation of the mucosal layer and may represent a model for ulcerative colitis.
Collapse
|
research-article |
26 |
137 |
21
|
Fujihashi K, Dohi T, Rennert PD, Yamamoto M, Koga T, Kiyono H, McGhee JR. Peyer's patches are required for oral tolerance to proteins. Proc Natl Acad Sci U S A 2001; 98:3310-5. [PMID: 11248075 PMCID: PMC30650 DOI: 10.1073/pnas.061412598] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2000] [Indexed: 11/18/2022] Open
Abstract
To clarify the role of Peyer's patches in oral tolerance induction, BALB/c mice were treated in utero with lymphotoxin beta-receptor Ig fusion protein to generate mice lacking Peyer's patches. When these Peyer's patch-null mice were fed 25 mg of ovalbumin (OVA) before systemic immunization, OVA-specific IgG Ab responses in serum and spleen were seen, in marked contrast to low responses in OVA-fed normal mice. Further, high T-cell-proliferative- and delayed-type hypersensitivity responses were seen in Peyer's patch-null mice given oral OVA before systemic challenge. Higher levels of CD4(+) T-cell-derived IFN-gamma, IL-4, IL-5, and IL-10 syntheses were noted in Peyer's patch-null mice fed OVA, whereas OVA-fed normal mice had suppressed cytokine levels. In contrast, oral administration of trinitrobenzene sulfonic acid (TNBS) to Peyer's patch-null mice resulted in reduced TNBS-specific serum Abs and splenic B cell antitrinitrophenyl Ab-forming cell responses after skin painting with picryl chloride. Further, when delayed-type hypersensitivity and splenic T cell proliferative responses were examined, Peyer's patch-null mice fed TNBS were unresponsive to hapten. Peyer's patch-null mice fed trinitrophenyl-OVA failed to induce systemic unresponsiveness to hapten or protein. These findings show that organized Peyer's patches are required for oral tolerance to proteins, whereas haptens elicit systemic unresponsiveness via the intestinal epithelial cell barrier.
Collapse
|
research-article |
24 |
132 |
22
|
Yamamoto M, Rennert P, McGhee JR, Kweon MN, Yamamoto S, Dohi T, Otake S, Bluethmann H, Fujihashi K, Kiyono H. Alternate mucosal immune system: organized Peyer's patches are not required for IgA responses in the gastrointestinal tract. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:5184-91. [PMID: 10799877 DOI: 10.4049/jimmunol.164.10.5184] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The progeny of mice treated with lymphotoxin (LT)-beta receptor (LTbetaR) and Ig (LTbetaR-Ig) lack Peyer's patches but not mesenteric lymph nodes (MLN). In this study, we used this approach to determine the importance of Peyer's patches for induction of mucosal IgA Ab responses in the murine gastrointestinal tract. Immunohistochemical analysis revealed that LTbetaR-Ig-treated, Peyer's patch null (PP null) mice possessed significant numbers of IgA-positive (IgA+) plasma cells in the intestinal lamina propria. Further, oral immunization of PP null mice with OVA plus cholera toxin as mucosal adjuvant resulted in Ag-specific mucosal IgA and serum IgG Ab responses. OVA-specific CD4+ T cells of the Th2 type were induced in MLN and spleen of PP null mice. In contrast, when TNF and LT-alpha double knockout (TNF/LT-alpha-/-) mice, which lack both Peyer's patches and MLN, were orally immunized with OVA plus cholera toxin, neither mucosal IgA nor serum IgG anti-OVA Abs were induced. On the other hand, LTbetaR-Ig- and TNF receptor 55-Ig-treated normal adult mice elicited OVA- and cholera toxin B subunit-specific mucosal IgA responses, indicating that both LT-alphabeta and TNF/LT-alpha pathways do not contribute for class switching for IgA Ab responses. These results show that the MLN plays a more important role than had been appreciated until now for the induction of both mucosal and systemic Ab responses after oral immunization. Further, organized Peyer's patches are not a strict requirement for induction of mucosal IgA Ab responses in the gastrointestinal tract.
Collapse
|
|
25 |
107 |
23
|
Moscat J, Diaz-Meco MT, Rennert P. NF-kappaB activation by protein kinase C isoforms and B-cell function. EMBO Rep 2003; 4:31-6. [PMID: 12524517 PMCID: PMC1315804 DOI: 10.1038/sj.embor.embor704] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2002] [Accepted: 10/28/2002] [Indexed: 12/12/2022] Open
Abstract
B cells are essential to the immune response in health and disease. Results from knockout (KO) mice for different members of the nuclear factor-kappaB (NF-kappaB) family have highlighted the importance of this transcription factor in B cell development and function. The recent generation of additional KO mice for adapters and kinases implicated in NF-kappaB activation, including several protein kinase C isoforms, has provided new insights into the roles of these proteins in B cell signalling. These studies have also given rise to a number of important questions that must be answered with further experimentation to establish accurately the signalling pathways that regulate B-cell function through NF-kappaB.
Collapse
|
review-article |
22 |
106 |
24
|
Martin P, Duran A, Minguet S, Gaspar ML, Diaz-Meco MT, Rennert P, Leitges M, Moscat J. Role of zeta PKC in B-cell signaling and function. EMBO J 2002; 21:4049-57. [PMID: 12145205 PMCID: PMC126153 DOI: 10.1093/emboj/cdf407] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The atypical protein kinase C isoform, zeta PKC, has been implicated in the control of extracellular signal-regulated kinase (ERK) and nuclear factor (NF)-kappa B pathways. Recent evidence from zeta PKC knock-out mice demonstrates that this kinase is important for NF-kappa B transcriptional activity but not for ERK activation in embryonic fibroblasts. The lack of zeta PKC produces in mice a number of alterations in the development of secondary lymphoid tissues that could be accounted for, at least in part, by defects in B-cell function. Here, we present evidence that the loss of zeta PKC selectively impairs signaling through the B-cell receptor, resulting in inhibition of cell proliferation and survival, as well as defects in the activation of ERK and the transcription of NF-kappa B-dependent genes. Furthermore, zeta PKC-/- mice are unable to mount an optimal T-cell-dependent immune response. Collectively, these results genetically establish a critical role for zeta PKC in B-cell function in vitro and in vivo.
Collapse
|
research-article |
23 |
103 |
25
|
Moscat J, Rennert P, Diaz-Meco MT. PKCzeta at the crossroad of NF-kappaB and Jak1/Stat6 signaling pathways. Cell Death Differ 2006; 13:702-11. [PMID: 16322752 DOI: 10.1038/sj.cdd.4401823] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The atypical protein kinase C (PKC) isoforms (aPKC) have been implicated in the regulation of a number of essential signaling events. Early studies using dominant-negative mutants suggested that they are important intermediaries in the activation of the canonical nuclear factor (NF)-kappaB pathway. More recent data using knockout mice genetically demonstrate that in fact the PKCzeta isoform is essential for the adequate activation of this cascade both upstream and downstream the IkappaB kinase complex. In this review, we summarize the mechanistic details whereby the aPKC pathway regulates important cellular functions and how this is achieved by the ability of these kinases to interact with different protein regulators and adapters, as well as to impinge in NF-kappaB-independent signaling cascades such as the Janus kinase-1/signal transducer and activator of transcription 6 system, which plays a critical role in T-cell-mediated hepatitis and asthma.
Collapse
|
Review |
19 |
100 |