1
|
Thastrup O, Cullen PJ, Drøbak BK, Hanley MR, Dawson AP. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A 1990; 87:2466-70. [PMID: 2138778 PMCID: PMC53710 DOI: 10.1073/pnas.87.7.2466] [Citation(s) in RCA: 2550] [Impact Index Per Article: 72.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thapsigargin, a tumor-promoting sesquiterpene lactone, discharges intracellular Ca2+ in rat hepatocytes, as it does in many vertebrate cell types. It appears to act intracellularly, as incubation of isolated rat liver microsomes with thapsigargin induces a rapid, dose-dependent release of stored Ca2+. The thapsigargin-releasable pool of microsomal Ca2+ includes the pools sensitive to inositol 1,4,5-trisphosphate and GTP. Thapsigargin pretreatment of microsomes blocks subsequent loading with 45Ca2+, suggesting that its target is the ATP-dependent Ca2+ pump of endoplasmic reticulum. This hypothesis is strongly supported by the demonstration that thapsigargin causes a rapid inhibition of the Ca2(+)-activated ATPase activity of rat liver microsomes, with an identical dose dependence to that seen in whole cell or isolated microsome Ca2+ discharge. The inhibition of the endoplasmic reticulum isoform of the Ca2(+)-ATPase is highly selective, as thapsigargin has little or no effect on the Ca2(+)-ATPases of hepatocyte or erythrocyte plasma membrane or of cardiac or skeletal muscle sarcoplasmic reticulum. These results suggest that thapsigargin increases the concentration of cytosolic free Ca2+ in sensitive cells by an acute and highly specific arrest of the endoplasmic reticulum Ca2+ pump, followed by a rapid Ca2+ leak from at least two pharmacologically distinct Ca2+ stores. The implications of this mechanism of action for the application of thapsigargin in the analysis of Ca2+ homeostasis and possible forms of Ca2+ control are discussed.
Collapse
|
research-article |
35 |
2550 |
2
|
Tiwari BK, Valdramidis VP, O'Donnell CP, Muthukumarappan K, Bourke P, Cullen PJ. Application of natural antimicrobials for food preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:5987-6000. [PMID: 19548681 DOI: 10.1021/jf900668n] [Citation(s) in RCA: 424] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In this review, antimicrobials from a range of plant, animal, and microbial sources are reviewed along with their potential applications in food systems. Chemical and biochemical antimicrobial compounds derived from these natural sources and their activity against a range of pathogenic and spoilage microorganisms pertinent to food, together with their effects on food organoleptic properties, are outlined. Factors influencing the antimicrobial activity of such agents are discussed including extraction methods, molecular weight, and agent origin. These issues are considered in conjunction with the latest developments in the quantification of the minimum inhibitory (and noninhibitory) concentration of antimicrobials and/or their components. Natural antimicrobials can be used alone or in combination with other novel preservation technologies to facilitate the replacement of traditional approaches. Research priorities and future trends focusing on the impact of product formulation, intrinsic product parameters, and extrinsic storage parameters on the design of efficient food preservation systems are also presented.
Collapse
|
Review |
16 |
424 |
3
|
Thastrup O, Dawson AP, Scharff O, Foder B, Cullen PJ, Drøbak BK, Bjerrum PJ, Christensen SB, Hanley MR. Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage. AGENTS AND ACTIONS 1989; 27:17-23. [PMID: 2787587 DOI: 10.1007/bf02222186] [Citation(s) in RCA: 416] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
|
36 |
416 |
4
|
Cullen PJ, Sprague GF. Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci U S A 2000; 97:13619-24. [PMID: 11095711 PMCID: PMC17625 DOI: 10.1073/pnas.240345197] [Citation(s) in RCA: 267] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Haploid yeast invades solid agar in response to nutrient limitation. To decipher the cues that underlie invasion, we have developed a single cell invasive growth assay. Using this assay, as well as the traditional plate-washing assay, we show that invasive growth occurs in response to glucose depletion. In the absence of glucose (or other fermentable sugar), individual cells adopted a nonaxial budding pattern and elongated morphology within the first cell divisions, and invasion into the agar was observed in microcolonies containing as few as 10 cells. In support of this observation, we found that glucose suppressed the hyperinvasive growth morphology of STE11-4, pbs2, hsl7, and RAS2V19 mutations. In addition, removal of glucose from YPD medium caused constitutive invasion in wild-type cells. We tested glucose control proteins for a role in invasion and found that Snf1, a protein required for derepression of glucose-repressed genes, was required for invasive growth. The transcription factor Sip4, which interacts with Snf1 and is induced during the diauxic shift, had an inhibitory role on invasive growth, suggesting that multiple mechanisms are required for glucose depletion-dependent invasion.
Collapse
|
research-article |
25 |
267 |
5
|
Cullen PJ, Hsuan JJ, Truong O, Letcher AJ, Jackson TR, Dawson AP, Irvine RF. Identification of a specific Ins(1,3,4,5)P4-binding protein as a member of the GAP1 family. Nature 1995; 376:527-30. [PMID: 7637787 DOI: 10.1038/376527a0] [Citation(s) in RCA: 245] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) is produced rapidly from inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) in stimulated cells. Despite extensive experimentation, no clearly defined cellular function has yet been described for this inositol phosphate. Binding sites specific for Ins(1,3,4,5)P4 have been identified in several tissues, and we have purified one such protein to homogeneity. Its high affinity for Ins(1,3,4,5)P4, and its exquisite specificity for this isomeric configuration, suggest it may be an Ins(1,3,4,5)P4 receptor. Here we report the cloning and characterization of this protein as a GTPase-activating protein, specifically a member of the GAP1 family. In vitro it shows GAP activity against both Rap and Ras, but only the Ras GAP activity is inhibited by phospholipids and is specifically stimulated by Ins(1,3,4,5)P4.
Collapse
|
|
30 |
245 |
6
|
Bourke P, Ziuzina D, Han L, Cullen PJ, Gilmore BF. Microbiological interactions with cold plasma. J Appl Microbiol 2017; 123:308-324. [PMID: 28245092 DOI: 10.1111/jam.13429] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/31/2017] [Accepted: 02/13/2017] [Indexed: 11/30/2022]
Abstract
There is a diverse range of microbiological challenges facing the food, healthcare and clinical sectors. The increasing and pervasive resistance to broad-spectrum antibiotics and health-related concerns with many biocidal agents drives research for novel and complementary antimicrobial approaches. Biofilms display increased mechanical and antimicrobial stability and are the subject of extensive research. Cold plasmas (CP) have rapidly evolved as a technology for microbial decontamination, wound healing and cancer treatment, owing to the chemical and bio-active radicals generated known collectively as reactive oxygen and nitrogen species. This review outlines the basics of CP technology and discusses the interactions with a range of microbiological targets. Advances in mechanistic insights are presented and applications to food and clinical issues are discussed. The possibility of tailoring CP to control specific microbiological challenges is apparent. This review focuses on microbiological issues in relation to food- and healthcare-associated human infections, the role of CP in their elimination and the current status of plasma mechanisms of action.
Collapse
|
Review |
8 |
216 |
7
|
Venkateswarlu K, Oatey PB, Tavaré JM, Cullen PJ. Insulin-dependent translocation of ARNO to the plasma membrane of adipocytes requires phosphatidylinositol 3-kinase. Curr Biol 1998; 8:463-6. [PMID: 9550703 DOI: 10.1016/s0960-9822(98)70181-2] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ADP-ribosylation factors (ARFs) are small GTP-binding proteins that are regulators of vesicle trafficking in eukaryotic cells [1]. ARNO is a member of the family of guanine nucleotide exchange factors for ARFs which includes cytohesin-1 and GRP-1 [2] [3-5]. Members of this family contain a carboxy-terminal pleckstrin homology (PH) domain which, in the case of GRP-1, has been shown to bind the second messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3) in preference to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) in vitro [3,4]. Here, we show that recombinant ARNO has the binding characteristics of a PIP3 receptor and that this activity is restricted to the PH domain. When expressed in murine 3T3 L1 adipocytes, ARNO tagged using green fluorescent protein (GFP) is localised exclusively in the cytoplasm. Stimulation with insulin, however, causes a rapid (< 50 second) PH-domain-dependent translocation of GFP-ARNO to the plasma membrane. This translocation is blocked by the PI(4,5)P2 3-kinase (PI 3-kinase) inhibitors wortmannin and LY294002, and by co-expression with a dominant-negative p85 mutant, suggesting that the translocation is a consequence of insulin stimulation of PI 3-kinase. Our data strongly suggest that ARNO binds PIP3 in vivo and that this interaction causes a translocation of ARNO to the plasma membrane where it might activate ARF6 and regulate subsequent plasma membrane cycling events.
Collapse
|
|
27 |
209 |
8
|
Tiwari BK, Patras A, Brunton N, Cullen PJ, O'Donnell CP. Effect of ultrasound processing on anthocyanins and color of red grape juice. ULTRASONICS SONOCHEMISTRY 2010; 17:598-604. [PMID: 20015673 DOI: 10.1016/j.ultsonch.2009.10.009] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 10/20/2009] [Accepted: 10/20/2009] [Indexed: 05/28/2023]
Abstract
Grape juice samples were sonicated with processing variables of amplitude level (24.4-61.0microm) and treatment time (0-10min) at a constant frequency of 20kHz and pulse durations of 5s on and 5s off. A full factorial experimental design with regression modeling was employed to investigate the main effects of amplitude level and treatment time on anthocyanins and color parameters. Significant effects of sonication on major anthocyanins cyanidin-3-O-glucosides (CA), malvanidin-3-O-glucosides (MA) and delphinidin-3-O-glucosides (DA), color values (L*, a*, b*) and color index (CI) were observed. Prediction models were found to be significant (p<0.05) with low standard errors and high coefficients of determination (R(2)). Model predictions for critical quality parameters of anthocyanins (CA; MA; DA), color values (L*, a*, b*), TCD and CI inactivation were closely correlated to the experimental results obtained. Significant retention of anthocyanin content in grape juice was observed for CA (97.5 %); MA (48.2 %) and DA (80.9%) during sonication. CI and other color combinations (L*a*b*, L*a*/b* and L*b*/a*) were found to be strongly correlated with anthocyanin content. This study shows that sonication could be employed for as a preservation technique for fruit juice processing where anthocyanin retention is desired.
Collapse
|
|
15 |
188 |
9
|
Zhou R, Zhou R, Wang P, Xian Y, Mai-Prochnow A, Lu X, Cullen PJ, Ostrikov K(K, Bazaka K. Plasma-activated water: generation, origin of reactive species and biological applications. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2020; 53:303001. [DOI: 10.1088/1361-6463/ab81cf] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
|
5 |
170 |
10
|
Cullen PJ, Sabbagh W, Graham E, Irick MM, van Olden EK, Neal C, Delrow J, Bardwell L, Sprague GF. A signaling mucin at the head of the Cdc42- and MAPK-dependent filamentous growth pathway in yeast. Genes Dev 2004; 18:1695-708. [PMID: 15256499 PMCID: PMC478191 DOI: 10.1101/gad.1178604] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Signaling molecules such as Cdc42 and mitogen-activated protein kinases (MAPKs) can function in multiple pathways in the same cell. Here, we propose one mechanism by which such factors may be directed to function in a particular pathway such that a specific response is elicited. Using genomic approaches, we identify a new component of the Cdc42- and MAPK-dependent signaling pathway that regulates filamentous growth (FG) in yeast. This factor, called Msb2, is a FG-pathway-specific factor that promotes differential activation of the MAPK for the FG pathway, Kss1. Msb2 is localized to polarized sites on the cell surface and interacts with Cdc42 and with the osmosensor for the high osmolarity glycerol response (HOG) pathway, Sho1. Msb2 is glycosylated and is a member of the mucin family, proteins that in mammalian cells promote disease resistance and contribute to metastasis in cancer cells. Remarkably, loss of the mucin domain of Msb2 causes hyperactivity of the FG pathway, demonstrating an inhibitory role for mucin domains in MAPK pathway activation. Taken together, our data suggest that Msb2 is a signaling mucin that interacts with general components, such as Cdc42 and Sho1, to promote their function in the FG pathway.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
21 |
170 |
11
|
Cullen PJ, Cozier GE, Banting G, Mellor H. Modular phosphoinositide-binding domains--their role in signalling and membrane trafficking. Curr Biol 2001; 11:R882-93. [PMID: 11696348 DOI: 10.1016/s0960-9822(01)00523-1] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The membrane phospholipid phosphatidylinositol is the precursor of a family of lipid second-messengers, known as phosphoinositides, which differ in the phosphorylation status of their inositol group. A major advance in understanding phosphoinositide signalling has been the identification of a number of highly conserved modular protein domains whose function appears to be to bind various phosphoinositides. Such 'cut and paste' modules are found in a diverse array of multidomain proteins and recruit their host protein to specific regions in cells via interactions with phosphoinositides. Here, with particular reference to proteins involved in membrane traffic pathways, we discuss recent advances in our understanding of phosphoinositide-binding domains.
Collapse
|
Review |
24 |
150 |
12
|
Tiwari BK, Muthukumarappan K, O'Donnell CP, Cullen PJ. Effects of sonication on the kinetics of orange juice quality parameters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:2423-2428. [PMID: 18321054 DOI: 10.1021/jf073503y] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The effects of sonication on pH, degrees Brix, titratable acidity (TA), cloud, browning index, and color parameters ( L*, a*, and b*) of freshly squeezed orange juice samples were studied. Ultrasonic intensity (UI) levels of 8.61, 9.24, 10.16, 17.17, and 22.79 W/cm2 and treatment times of 0 (control), 2, 4, 6, 8, and 10 min were investigated. No significant changes in pH, degrees Brix, and TA ( p < 0.05) were found. Cloud value, browning index, and color parameters were significantly affected by ultrasonic intensity and treatment time. Changes in cloud value followed first-order kinetics, whereas browning index, L*, a*, and b* values followed zero-order kinetics. Reaction rate constants were linearly correlated ( R2 > 0.90) to ultrasonic intensity.
Collapse
|
|
17 |
143 |
13
|
Venkateswarlu K, Gunn-Moore F, Oatey PB, Tavaré JM, Cullen PJ. Nerve growth factor- and epidermal growth factor-stimulated translocation of the ADP-ribosylation factor-exchange factor GRP1 to the plasma membrane of PC12 cells requires activation of phosphatidylinositol 3-kinase and the GRP1 pleckstrin homology domain. Biochem J 1998; 335 ( Pt 1):139-46. [PMID: 9742223 PMCID: PMC1219762 DOI: 10.1042/bj3350139] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ADP-ribosylation factors (ARFs) are small GTP-binding proteins that are regulators of vesicle trafficking in eukaryotic cells. GRP1 is a member of a family of ARF guanine-nucleotide-exchange factors that binds in vitro the lipid second messenger phosphatidylinositol 3,4, 5-trisphosphate [PtdIns(3,4,5)P3]. In order to study the effects of PtdIns(3,4,5)P3 on the function of GRP1, we have cloned the human homologue of GRP1, encoding for a protein which is 98.8% identical to mouse brain GRP1. Human GRP1 binds, via its pleckstrin homology (PH) domain, the inositol head group of PtdIns(3,4,5)P3, inositol 1, 3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4], with high affinity (Kd 32. 2+/-5.2 nM) and inositol phosphate specificity [Kd values for Ins(1, 3,4,5,6)P5, InsP6, Ins(1,3,4)P3 and Ins(1,4,5)P3: 283+/-32, >10000, >10000 and >10000 nM, respectively). Furthermore, GRP1 can accommodate addition of glycerol or diacetylglycerol to the 1-phosphate of Ins(1,3,4,5)P4, data that are consistent with its proposed role as a putative PtdIns(3,4,5)P3 receptor. To address whether GRP1 binds PtdIns(3,4,5)P3 in vivo, we have expressed a chimaera of green fluorescent protein (GFP) fused to the N-terminus of GRP1 in PC12 cells and, using confocal microscopy, examined its resultant localization in live cells. Stimulation with either nerve growth factor or epidermal growth factor (both at 100 ng/ml) results in a rapid, PH-domain dependent, translocation of GFP-GRP1 from the cytosol to the plasma membrane, which occurs with a time course that parallels the production of PtdIns(3,4,5)P3. This translocation is dependent on the activation of phosphatidylinositol 3-kinase, since it is inhibited by wortmannin (100 nM), LY294002 (50 microM) and by the co-expression with dominant negative p85. Taken together these data strongly suggest that GRP1 interacts in vivo with plasma membrane-located PtdIns(3,4,5)P3 and hence constitutes a true PtdIns(3,4,5)P3 receptor.
Collapse
|
research-article |
27 |
107 |
14
|
Tiwari BK, O'Donnell CP, Patras A, Cullen PJ. Anthocyanin and ascorbic acid degradation in sonicated strawberry juice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:10071-10077. [PMID: 18828602 DOI: 10.1021/jf801824v] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Strawberry juice samples were sonicated at amplitude levels ranging from 40 to 100% at a constant frequency of 20 kHz for treatment times (2-10 min) and pulse durations of 5 s on and 5 s off. Sonication was found to reduce anthocyanin and ascorbic acid contents by 3.2 and 11%, respectively, at the maximum treatment conditions. Response surface methodology (RSM) based on a two-factor, five-level central composite design was employed to determine the effect of amplitude level and treatment time on anthocyanins (P3G), ascorbic acid (AA) content, and color values (L*, a*, and b*). The model predictions for the selected nutritional and quality parameters were closely correlated to the experimental results. RSM was demonstrated to be an effective technique to model the effect of sonication on strawberry juice quality while minimizing the number of experiments required.
Collapse
|
|
17 |
107 |
15
|
Cullen PJ, Schultz J, Horecka J, Stevenson BJ, Jigami Y, Sprague GF. Defects in protein glycosylation cause SHO1-dependent activation of a STE12 signaling pathway in yeast. Genetics 2000; 155:1005-18. [PMID: 10880465 PMCID: PMC1461155 DOI: 10.1093/genetics/155.3.1005] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In haploid Saccharomyces cerevisiae, mating occurs by activation of the pheromone response pathway. A genetic selection for mutants that activate this pathway uncovered a class of mutants defective in cell wall integrity. Partial loss-of-function alleles of PGI1, PMI40, PSA1, DPM1, ALG1, MNN10, SPT14, and OCH1, genes required for mannose utilization and protein glycosylation, activated a pheromone-response-pathway-dependent reporter (FUS1) in cells lacking a basal signal (ste4). Pathway activation was suppressed by the addition of mannose to hexose isomerase mutants pgi1-101 and pmi40-101, which bypassed the requirement for mannose biosynthesis in these mutants. Pathway activation was also suppressed in dpm1-101 mutants by plasmids that contained RER2 or PSA1, which produce the substrates for Dpm1. Activation of FUS1 transcription in the mannose utilization/protein glycosylation mutants required some but not all proteins from three different signaling pathways: the pheromone response, invasive growth, and HOG pathways. We specifically suggest that a Sho1 --> Ste20/Ste50 --> Ste11 --> Ste7 --> Kss1 --> Ste12 pathway is responsible for activation of FUS1 transcription in these mutants. Because loss of pheromone response pathway components leads to a synthetic growth defect in mannose utilization/protein glycosylation mutants, we suggest that the Sho1 --> Ste12 pathway contributes to maintenance of cell wall integrity in vegetative cells.
Collapse
|
research-article |
25 |
97 |
16
|
Abstract
Ca(2+) is a universal second messenger that is critical for cell growth and is intimately associated with many Ras-dependent cellular processes such as proliferation and differentiation. Ras is a small GTP binding protein that operates as a molecular switch regulating the control of gene expression, cell growth, and differentiation through a pathway from receptors to mitogen-activated protein kinases (MAPKs). A role for intracellular Ca(2+) in the activation of Ras has been previously demonstrated, e.g., via the nonreceptor tyrosine kinase PYK2 and by Ca(2+)/calmodulin-dependent guanine nucleotide exchange factors (GEFs) such as Ras-GRF; however, there is no Ca(2+)-dependent mechanism for direct inactivation. An important advance toward greater understanding of the complex coordination within the Ras-signaling network is the spatio-temporal analysis of signaling events in vivo. Here, we describe the identification of CAPRI (Ca(2+)-promoted Ras inactivator), a Ca(2+)-dependent Ras GTPase-activating protein (GAP) that switches off the Ras-MAPK pathway following a stimulus that elevates intracellular Ca(2+). Analysis of the spatio-temporal dynamics of CAPRI indicates that Ca(2+) regulates the GAP by a fast C2 domain-dependent translocation mechanism.
Collapse
|
|
24 |
92 |
17
|
Vadaie N, Dionne H, Akajagbor DS, Nickerson SR, Krysan DJ, Cullen PJ. Cleavage of the signaling mucin Msb2 by the aspartyl protease Yps1 is required for MAPK activation in yeast. ACTA ACUST UNITED AC 2008; 181:1073-81. [PMID: 18591427 PMCID: PMC2442203 DOI: 10.1083/jcb.200704079] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Signaling mucins are cell adhesion molecules that activate RAS/RHO guanosine triphosphatases and their effector mitogen-activated protein kinase (MAPK) pathways. We found that the Saccharomyces cerevisiae mucin Msb2p, which functions at the head of the Cdc42p-dependent MAPK pathway that controls filamentous growth, is processed into secreted and cell-associated forms. Cleavage of the extracellular inhibitory domain of Msb2p by the aspartyl protease Yps1p generated the active form of the protein by a mechanism incorporating cellular nutritional status. Activated Msb2p functioned through the tetraspan protein Sho1p to induce MAPK activation as well as cell polarization, which involved the Cdc42p guanine nucleotide exchange factor Cdc24p. We postulate that cleavage-dependent activation is a general feature of signaling mucins, which brings to light a novel regulatory aspect of this class of signaling adhesion molecule.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
91 |
18
|
Misra NN, Pankaj SK, Walsh T, O'Regan F, Bourke P, Cullen PJ. In-package nonthermal plasma degradation of pesticides on fresh produce. JOURNAL OF HAZARDOUS MATERIALS 2014; 271:33-40. [PMID: 24598029 DOI: 10.1016/j.jhazmat.2014.02.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/09/2014] [Accepted: 02/05/2014] [Indexed: 06/03/2023]
Abstract
In-package nonthermal plasma (NTP) technology is a novel technology for the decontamination of foods and biological materials. This study presents the first report on the potential of the technology for the degradation of pesticide residues on fresh produce. A cocktail of pesticides, namely azoxystrobin, cyprodinil, fludioxonil and pyriproxyfen was tested on strawberries. The concentrations of these pesticides were monitored in priori and post-plasma treatment using GC-MS/MS. An applied voltage and time dependent degradation of the pesticides was observed for treatment voltages of 60, 70 and 80 kV and treatment durations ranging from 1 to 5 min, followed by 24h in-pack storage. The electrical characterisation revealed the operation of the discharge in a stable filamentary regime. The discharge was found to generate reactive oxygen and excited nitrogen species as observed by optical emission spectroscopy.
Collapse
|
|
11 |
85 |
19
|
Lockyer PJ, Bottomley JR, Reynolds JS, McNulty TJ, Venkateswarlu K, Potter BV, Dempsey CE, Cullen PJ. Distinct subcellular localisations of the putative inositol 1,3,4,5-tetrakisphosphate receptors GAP1IP4BP and GAP1m result from the GAP1IP4BP PH domain directing plasma membrane targeting. Curr Biol 1997; 7:1007-10. [PMID: 9382842 DOI: 10.1016/s0960-9822(06)00423-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Inositol 1,3,4,5-tetrakisphosphate (IP4), is a ubiquitous inositol phosphate that has been suggested to function as a second messenger. Recently, we purified and cloned a putative IP4 receptor, termed GAP1(IP4BP)[1], which is also a member of the GAP1 family of GTPase-activating proteins for the Ras family of GTPases. A homologue of GAP1(IP4BP), called GAP1(m), has been identified [2] and here we describe the cloning of a GAP1(m) cDNA from a human circulating-blood cDNA library. We found that a deletion mutant of GAP1(m), in which the putative phospholipid-binding domains (C2A and C2B) have been removed, binds to IP4 with a similar affinity and specificity to that of the corresponding GAP1(IP4BP) mutant. Expression studies of the proteins in either COS-7 or HeLa cells showed that, whereas GAP1(IP4BP) is located solely at the plasma membrane, GAP1(m) seems to have a distinct perinuclear localisation. By mutational analysis, we have shown that the contrast in subcellular distribution of these two closely related proteins may be a function of their respective pleckstrin homology (PH) domains. This difference in localisation has fundamental significance for our understanding of the second messenger functions of IP4.
Collapse
|
|
28 |
78 |
20
|
McCall AD, Pathirana RU, Prabhakar A, Cullen PJ, Edgerton M. Candida albicans biofilm development is governed by cooperative attachment and adhesion maintenance proteins. NPJ Biofilms Microbiomes 2019; 5:21. [PMID: 31452924 PMCID: PMC6707306 DOI: 10.1038/s41522-019-0094-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/24/2019] [Indexed: 02/04/2023] Open
Abstract
The opportunistic fungal pathogen Candida albicans is capable of adhering to the oral mucosa despite forces created by salivary flow. Although many fungal adhesion proteins have been identified, less is known about the temporal development of cell adhesion and biofilm growth in a flow environment. In this study, we use a flow system with real-time imaging of C. albicans cells as they adhere and grow. Rates of cell attachment and dispersion of C. albicans knockout strains of putative adhesins, transcription factors, and deletions with a hyperfilamentous phenotype were quantified during 18 h of biofilm development. Cell adhesion under flow is a multi-phase process initiated with cell rolling, then an initial firm attachment to the substrate occurs. After attachment, cells enter a growth phase where cells either commit to adherence or disperse. C. albicans Δeap1, Δhwp2, Δhyr1, and Δihd1 cells had significantly reduced initial attachment and subsequent adhesion, while Δals1/Δals3 had no change in initial attachment but reduced adhesion maintenance. WT cells had increased adhesion during the late growth phase when hyphae were more highly expressed. Hyperfilamentous strains had 10-fold higher total biofilm growth, a result of significantly reduced detachment rates, showing that hyphal morphogenesis is important for adhesion maintenance in the developing biofilm. The rate of C. albicans biomass dispersion was most important for determining the density of the mature biomass. Adhesion maintenance was mediated in part by Ywp1, a protein previously thought to regulate dispersion, thus it functions as an adhesion maintenance protein in C. albicans.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
76 |
21
|
Cozier GE, Lockyer PJ, Reynolds JS, Kupzig S, Bottomley JR, Millard TH, Banting G, Cullen PJ. GAP1IP4BP contains a novel group I pleckstrin homology domain that directs constitutive plasma membrane association. J Biol Chem 2000; 275:28261-8. [PMID: 10869341 DOI: 10.1074/jbc.m000469200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The group I family of pleckstrin homology (PH) domains are characterized by their inherent ability to specifically bind phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) and its corresponding inositol head-group inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P(4)). In vivo this interaction results in the regulated plasma membrane recruitment of cytosolic group I PH domain-containing proteins following agonist-stimulated PtdIns(3,4,5)P(3) production. Among group I PH domain-containing proteins, the Ras GTPase-activating protein GAP1(IP4BP) is unique in being constitutively associated with the plasma membrane. Here we show that, although the GAP1(IP4BP) PH domain interacts with PtdIns(3,4, 5)P(3), it also binds, with a comparable affinity, phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) (K(d) values of 0.5 +/- 0.2 and 0.8 +/- 0.5 microm, respectively). Intriguingly, whereas this binding site overlaps with that for Ins(1,3,4,5)P(4), consistent with the constitutive plasma membrane association of GAP1(IP4BP) resulting from its PH domain-binding PtdIns(4,5)P(2), we show that in vivo depletion of PtdIns(4,5)P(2), but not PtdIns(3,4,5)P(3), results in dissociation of GAP1(IP4BP) from this membrane. Thus, the Ins(1,3,4,5)P(4)-binding PH domain from GAP1(IP4BP) defines a novel class of group I PH domains that constitutively targets the protein to the plasma membrane and may allow GAP1(IP4BP) to be regulated in vivo by Ins(1,3,4,5)P(4) rather than PtdIns(3,4,5)P(3).
Collapse
|
|
25 |
74 |
22
|
Pitoniak A, Birkaya B, Dionne HM, Vadaie N, Cullen PJ. The signaling mucins Msb2 and Hkr1 differentially regulate the filamentation mitogen-activated protein kinase pathway and contribute to a multimodal response. Mol Biol Cell 2009; 20:3101-14. [PMID: 19439450 DOI: 10.1091/mbc.e08-07-0760] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A central question in the area of signal transduction is why pathways utilize common components. In the budding yeast Saccharomyces cerevisiae, the HOG and filamentous growth (FG) MAPK pathways require overlapping components but are thought to be induced by different stimuli and specify distinct outputs. To better understand the regulation of the FG pathway, we examined FG in one of yeast's native environments, the grape-producing plant Vitis vinifera. In this setting, different aspects of FG were induced in a temporal manner coupled to the nutrient cycle, which uncovered a multimodal feature of FG pathway signaling. FG pathway activity was modulated by the HOG pathway, which led to the finding that the signaling mucins Msb2p and Hkr1p, which operate at the head of the HOG pathway, differentially regulate the FG pathway. The two mucins exhibited different expression and secretion patterns, and their overproduction induced nonoverlapping sets of target genes. Moreover, Msb2p had a function in cell polarization through the adaptor protein Sho1p that Hkr1p did not. Differential MAPK activation by signaling mucins brings to light a new point of discrimination between MAPK pathways.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
72 |
23
|
Thastrup O, Dawson AP, Scharff O, Foder B, Cullen PJ, Drøbak BK, Bjerrum PJ, Christensen SB, Hanley MR. Thapsigargin, a novel molecular probe for studying intracellular calcium release and storage. 1989. AGENTS AND ACTIONS 1994; 43:187-93. [PMID: 7725971 DOI: 10.1007/bf01986687] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
Biography |
31 |
69 |
24
|
Cullen PJ, Sprague GF. The roles of bud-site-selection proteins during haploid invasive growth in yeast. Mol Biol Cell 2002; 13:2990-3004. [PMID: 12221111 PMCID: PMC124138 DOI: 10.1091/mbc.e02-03-0151] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In haploid strains of Saccharomyces cerevisiae, glucose depletion causes invasive growth, a foraging response that requires a change in budding pattern from axial to unipolar-distal. To begin to address how glucose influences budding pattern in the haploid cell, we examined the roles of bud-site-selection proteins in invasive growth. We found that proteins required for bipolar budding in diploid cells were required for haploid invasive growth. In particular, the Bud8p protein, which marks and directs bud emergence to the distal pole of diploid cells, was localized to the distal pole of haploid cells. In response to glucose limitation, Bud8p was required for the localization of the incipient bud site marker Bud2p to the distal pole. Three of the four known proteins required for axial budding, Bud3p, Bud4p, and Axl2p, were expressed and localized appropriately in glucose-limiting conditions. However, a fourth axial budding determinant, Axl1p, was absent in filamentous cells, and its abundance was controlled by glucose availability and the protein kinase Snf1p. In the bud8 mutant in glucose-limiting conditions, apical growth and bud site selection were uncoupled processes. Finally, we report that diploid cells starved for glucose also initiate the filamentous growth response.
Collapse
|
research-article |
23 |
69 |
25
|
Cullen PJ, Comerford JG, Dawson AP. Heparin inhibits the inositol 1,4,5-trisphosphate-induced Ca2+ release from rat liver microsomes. FEBS Lett 1988; 228:57-9. [PMID: 3257739 DOI: 10.1016/0014-5793(88)80584-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Inositol 1,4,5-trisphosphate (Ins (1,4,5)P3)-stimulated Ca2+ release is inhibited by low concentrations of heparin (IC50 = 4.5 micrograms/ml). GTP-stimulated Ca2+ release is unaffected at a heparin concentration of 16 micrograms/ml. Addition of heparin after Ins (1,4,5)P3 causes the rapid re-uptake of Ins (1,4,5)P3-releasable Ca2+.
Collapse
|
|
37 |
64 |