1
|
Abstract
Cellular actions of thyroid hormone may be initiated within the cell nucleus, at the plasma membrane, in cytoplasm, and at the mitochondrion. Thyroid hormone nuclear receptors (TRs) mediate the biological activities of T(3) via transcriptional regulation. Two TR genes, alpha and beta, encode four T(3)-binding receptor isoforms (alpha1, beta1, beta2, and beta3). The transcriptional activity of TRs is regulated at multiple levels. Besides being regulated by T(3), transcriptional activity is regulated by the type of thyroid hormone response elements located on the promoters of T(3) target genes, by the developmental- and tissue-dependent expression of TR isoforms, and by a host of nuclear coregulatory proteins. These nuclear coregulatory proteins modulate the transcription activity of TRs in a T(3)-dependent manner. In the absence of T(3), corepressors act to repress the basal transcriptional activity, whereas in the presence of T(3), coactivators function to activate transcription. The critical role of TRs is evident in that mutations of the TRbeta gene cause resistance to thyroid hormones to exhibit an array of symptoms due to decreasing the sensitivity of target tissues to T(3). Genetically engineered knockin mouse models also reveal that mutations of the TRs could lead to other abnormalities beyond resistance to thyroid hormones, including thyroid cancer, pituitary tumors, dwarfism, and metabolic abnormalities. Thus, the deleterious effects of mutations of TRs are more severe than previously envisioned. These genetic-engineered mouse models provide valuable tools to ascertain further the molecular actions of unliganded TRs in vivo that could underlie the pathogenesis of hypothyroidism. Actions of thyroid hormone that are not initiated by liganding of the hormone to intranuclear TR are termed nongenomic. They may begin at the plasma membrane or in cytoplasm. Plasma membrane-initiated actions begin at a receptor on integrin alphavbeta3 that activates ERK1/2 and culminate in local membrane actions on ion transport systems, such as the Na(+)/H(+) exchanger, or complex cellular events such as cell proliferation. Concentration of the integrin on cells of the vasculature and on tumor cells explains recently described proangiogenic effects of iodothyronines and proliferative actions of thyroid hormone on certain cancer cells, including gliomas. Thus, hormonal events that begin nongenomically result in effects in DNA-dependent effects. l-T(4) is an agonist at the plasma membrane without conversion to T(3). Tetraiodothyroacetic acid is a T(4) analog that inhibits the actions of T(4) and T(3) at the integrin, including angiogenesis and tumor cell proliferation. T(3) can activate phosphatidylinositol 3-kinase by a mechanism that may be cytoplasmic in origin or may begin at integrin alphavbeta3. Downstream consequences of phosphatidylinositol 3-kinase activation by T(3) include specific gene transcription and insertion of Na, K-ATPase in the plasma membrane and modulation of the activity of the ATPase. Thyroid hormone, chiefly T(3) and diiodothyronine, has important effects on mitochondrial energetics and on the cytoskeleton. Modulation by the hormone of the basal proton leak in mitochondria accounts for heat production caused by iodothyronines and a substantial component of cellular oxygen consumption. Thyroid hormone also acts on the mitochondrial genome via imported isoforms of nuclear TRs to affect several mitochondrial transcription factors. Regulation of actin polymerization by T(4) and rT(3), but not T(3), is critical to cell migration. This effect has been prominently demonstrated in neurons and glial cells and is important to brain development. The actin-related effects in neurons include fostering neurite outgrowth. A truncated TRalpha1 isoform that resides in the extranuclear compartment mediates the action of thyroid hormone on the cytoskeleton.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
934 |
2
|
DeFronzo RA, Cooke CR, Andres R, Faloona GR, Davis PJ. The effect of insulin on renal handling of sodium, potassium, calcium, and phosphate in man. J Clin Invest 1975; 55:845-55. [PMID: 1120786 PMCID: PMC301822 DOI: 10.1172/jci107996] [Citation(s) in RCA: 697] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The effects of insulin on the renal handling of sodium, potassium, calcium, and phosphate were studied in man while maintaining the blood glucose concentration at the fasting level by negative feedback servocontrol of a variable glucose infusion. In studies on six water-loaded normal subjects in a steady state of water diuresis, insulin was administered i.v. to raise the plasma insulin concentration to between 98 and 193 muU/ml and infused at a constant rate of 2 mU/kg body weight per min over a total period of 120 min. The blood glucose concentration was not significantly altered, and there was no change in the filtered load of glucose; glomerular filtration rate (CIN) and renal plasma flow (CPAH) were unchanged. Urinary sodium excretion (UNaV) decreased from 401 plus or minus 46 (SEM) to 213 plus or minus 18 mueq/min during insulin administration, the change becoming significant (P smaller than 0.02) within the 30-60 min collection period. Free water clearance (CH2O) increased from 10.6 plus or minus 0.6 to 13 plus or minus 0.5 ml/min (P smaller than 0.025); osmolar clearance decreased and urine flow was unchanged. There was no change in plasma aldosterone concentration, which was low throughout the studies, and a slight reduction was observed in plasma glucagon concentration. Urinary potassium (UKV) and phosphate (UPV) excretion were also both decreased during insulin administration; UKV decreased from 66 plus or minus 9 to 21 plus or minus 1 mueq/min (P smaller than 0.005), and tupv decreased from 504 plus or minus 93 to 230 plus or minus 43 mug/min (P smaller than 0.01). The change in UKV was associated with a significant reduction in plasma potassium concentration. There was also a statistically significant but small reduction in plasma phosphate concentration which was not considered sufficient alone to account for the large reduction in UPV. Urinary calcium excretion (UCaV) increased from 126 plus or minus 24 to 200 plus or minus 17 mug/min (P smaller than 0.01). These studies demonstrate a reduction in UNaV associated with insulin administration that occurs in the absence of changes in the filtered load of glucose, glomerular filtration rate, renal blood flow, and plasma aldosterone concentration. The effect of insulin on CH2O suggests that insulin's effect on sodium excretion is due to enhancement of sodium reabsorption in the diluting segment of the distal nephron.
Collapse
|
research-article |
50 |
697 |
3
|
Bergh JJ, Lin HY, Lansing L, Mohamed SN, Davis FB, Mousa S, Davis PJ. Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen-activated protein kinase and induction of angiogenesis. Endocrinology 2005; 146:2864-71. [PMID: 15802494 DOI: 10.1210/en.2005-0102] [Citation(s) in RCA: 416] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Integrin alpha(V)beta(3) is a heterodimeric plasma membrane protein whose several extracellular matrix protein ligands contain an RGD recognition sequence. This study identifies integrin alpha(V)beta(3) as a cell surface receptor for thyroid hormone [L-T(4) (T(4))] and as the initiation site for T(4)-induced activation of intracellular signaling cascades. Integrin alpha(V)beta(3) dissociably binds radiolabeled T(4) with high affinity, and this binding is displaced by tetraiodothyroacetic acid, alpha(V)beta(3) antibodies, and an integrin RGD recognition site peptide. CV-1 cells lack nuclear thyroid hormone receptor, but express plasma membrane alpha(V)beta(3); treatment of these cells with physiological concentrations of T(4) activates the MAPK pathway, an effect inhibited by tetraiodothyroacetic acid, RGD peptide, and alpha(V)beta(3) antibodies. Inhibitors of T(4) binding to the integrin also block the MAPK-mediated proangiogenic action of T(4). T(4)-induced phosphorylation of MAPK is inhibited by small interfering RNA knockdown of alpha(V) and beta(3). These findings suggest that T(4) binds to alpha(V)beta(3) near the RGD recognition site and show that hormone-binding to alpha(V)beta(3) has physiological consequences.
Collapse
|
|
20 |
416 |
4
|
Abstract
The nongenomic actions of thyroid hormone begin at receptors in the plasma membrane, mitochondria or cytoplasm. These receptors can share structural homologies with nuclear thyroid hormone receptors (TRs) that mediate transcriptional actions of T3, or have no homologies with TR, such as the plasma membrane receptor on integrin αvβ3. Nongenomic actions initiated at the plasma membrane by T4 via integrin αvβ3 can induce gene expression that affects angiogenesis and cell proliferation, therefore, both nongenomic and genomic effects can overlap in the nucleus. In the cytoplasm, a truncated TRα isoform mediates T4-dependent regulation of intracellular microfilament organization, contributing to cell and tissue structure. p30 TRα1 is another shortened TR isoform found at the plasma membrane that binds T3 and mediates nongenomic hormonal effects in bone cells. T3 and 3,5-diiodo-L-thyronine are important to the complex nongenomic regulation of cellular respiration in mitochondria. Thus, nongenomic actions expand the repertoire of cellular events controlled by thyroid hormone and can modulate TR-dependent nuclear events. Here, we review the experimental approaches required to define nongenomic actions of the hormone, enumerate the known nongenomic effects of the hormone and their molecular basis, and discuss the possible physiological or pathophysiological consequences of these actions.
Collapse
|
Review |
9 |
299 |
5
|
De Vito P, Incerpi S, Pedersen JZ, Luly P, Davis FB, Davis PJ. Thyroid hormones as modulators of immune activities at the cellular level. Thyroid 2011; 21:879-90. [PMID: 21745103 DOI: 10.1089/thy.2010.0429] [Citation(s) in RCA: 230] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Increasing evidence suggests that thyroid hormones, L-thyroxine (T(4)) and 3,3',5-triiodo-L-thyronine (T(3)), are modulators of the immune response. In monocytes, macrophages, leukocytes, natural killer cells, and lymphocytes, a wide range of immune functions such as chemotaxis, phagocytosis, generation of reactive oxygen species (ROS), and cytokine synthesis and release are altered under hypo- and hyperthyroid conditions. SUMMARY Hyperthyroidism decreases the proinflammatory activities of monocytes and macrophages, whereas enhancement of phagocytosis and increased levels of ROS may occur during hypothyroidism. The expression of proinflammatory molecules such as macrophage inflammatory protein-1α and interleukin-1β increases in hypothyroidism. However, in Kupffer cells, proinflammatory activities such as the respiratory burst, nitric oxide synthase activity, and tumor necrosis factor-α expression may result from increased T(3) levels. Thyroid hormones also affect natural killer cell activity and cell-mediated immune responses. Still, for many immune cells no clear correlation has been found so far between abnormally high or low T(3) or T(4) levels and the effects observed on the immune responses. CONCLUSIONS In this review we outline the contributions of thyroid hormones to different aspects of innate and adaptive immune responses. The relationship between thyroid hormones and immune cells is complex and T(3) and T(4) may modulate immune responses through both genomic and nongenomic mechanisms. Future studies of the molecular signaling mechanisms involved in this cross-talk between thyroid hormones and the immune system may support development of new strategies to improve clinical immune responses.
Collapse
|
Review |
14 |
230 |
6
|
Davis PJ, Leonard JL, Davis FB. Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol 2008; 29:211-8. [PMID: 17983645 DOI: 10.1016/j.yfrne.2007.09.003] [Citation(s) in RCA: 227] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 09/13/2007] [Indexed: 12/18/2022]
Abstract
The nongenomic actions of thyroid hormone require a plasma membrane receptor or nuclear receptors located in cytoplasm. The plasma membrane receptor is located on integrin alphaVbeta3 at the Arg-Gly-Asp recognition site important to the binding by the integrin of extracellular matrix proteins. l-Thyroxine (T(4)) is bound with greater affinity at this site than 3,5,3'-triiodo-l-thyronine (T(3)). Mitogen-activated protein kinase (MAPK; ERK1/2) transduces the hormone signal into complex cellular/nuclear events including angiogenesis and tumor cell proliferation. Acting at the integrin receptor and without cell entry, thyroid hormone can foster ERK1/2-dependent serine phosphorylation of nuclear thyroid hormone receptor-beta1 (TRbeta1) and de-repress the latter. The integrin receptor also mediates actions of the hormone on intracellular protein trafficking and on plasma membrane ion pumps, including the sodium/protein antiporter. Tetraiodothyroacetic (tetrac) is a T(4) analog that inhibits binding of iodothyronines to the integrin receptor and is a probe for the participation of this receptor in cellular actions of the hormone. Tetrac blocks thyroid hormone effects on angiogenesis and cancer cell proliferation. Acting on a truncated form of nuclear TRalpha1 (TRDeltaalpha1) located in cytoplasm, T(4) and 3,3',5'-triiodothyronine (reverse T(3)), but not T(3), cause conversion of soluble actin to fibrous (F) actin that is important to cell motility, e.g., in cells such as glia and neurons. Normal development of the central nervous system requires such motility. TRbeta1 in cytoplasm mediates action of T(3) on expression of certain genes via phosphatidylinositol 3-kinase (PI 3-K) and the protein kinase B/Akt pathway. PI 3-K and, possibly, cytoplasmic TRbeta1 are involved in stimulation by T(3) of insertion of Na,K-ATPase in the plasma membrane and of increase in activity of this pump. Because ambient thyroid hormone levels are constant in the euthyroid intact organism, these nongenomic hormone actions are likely to be contributors to basal rate-setting of transcription of certain genes and of complex cellular events such as angiogenesis and cancer cell proliferation.
Collapse
|
Review |
17 |
227 |
7
|
Ross AK, Davis PJ, Dear Gd GL, Ginsberg B, McGowan FX, Stiller RD, Henson LG, Huffman C, Muir KT. Pharmacokinetics of remifentanil in anesthetized pediatric patients undergoing elective surgery or diagnostic procedures. Anesth Analg 2001; 93:1393-401, table of contents. [PMID: 11726413 DOI: 10.1097/00000539-200112000-00008] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED Remifentanil hydrochloride is an ultra-short-acting opioid that undergoes rapid metabolism by tissue and plasma esterases. We aimed to characterize the pharmacokinetics and determine the hemodynamic profile of remifentanil after a single-bolus dose in children aged 0 to 18 yr. Forty-two children undergoing elective surgical procedures received remifentanil 5 microg/kg infused over 1 min. Patients were divided into age groups as follows: young infants (< or =2 mo), older infants (> 2 mo to < 2 yr), young children (2 to < 7 yr), older children (7 to < 13 yr), adolescents (13 to < 16 yr), and young adults (16 to < 18 yr). Arterial blood samples were collected and analyzed by mass spectroscopy to determine remifentanil pharmacokinetic profiles. Hemodynamic measurements for remifentanil's effect were made after the infusion. Methods of statistical analysis included analysis of variance and linear regression, with significance at P < or = 0.05. Complete remifentanil pharmacokinetic data were obtained from 34 patients. The volume of distribution was largest in the infants < 2 mo (mean, 452 mL/kg) and decreased to means of 223 to 308 mL/kg in the older patients. There was a more rapid clearance in the infants < 2 mo of age (90 mL. kg(-1). min(-1)) and infants 2 mo to 2 yr (92 mL. kg(-1). min(-1)) than in the other groups (means, 46 to 76 mL. kg(-1). min(-1)). The half-life was similar in all age groups, with means of 3.4 to 5.7 min. Seven subjects (17%) developed hypotension related to the remifentanil bolus. Remifentanil showed an extremely rapid elimination similar to that in adults. The fast clearance rates observed in neonates and infants, as well as the lack of age-related changes in half-life, are in sharp contrast to the pharmacokinetic profile of other opioids. Remifentanil in a bolus dose of 5 microg/kg may cause hypotension in anesthetized children. IMPLICATIONS The pharmacokinetics of remifentanil were studied in children from birth to 18 yr. Remifentanil was found to have age-related changes in clearance and volume of distribution, but not half-life. The increased clearance observed in young infants is in contrast to other opioids.
Collapse
|
Multicenter Study |
24 |
222 |
8
|
Abstract
This paper is a review concerning the way in which heat treatment can modify the allergenicity of food proteins. Any food protein may be allergenic if it can be absorbed intact, or as substantial fragments, through the gut mucosa and then evoke an immune (allergic) response. The intrinsic properties of the protein, the overall composition of the food, and the past processing history (especially thermal processing) all have an effect on the allergic potential. When a protein is denatured by heat, most of the original tertiary structure is lost, so that many of the sites recognized by antibodies on the native molecule are destroyed. There are many examples of allergenicity being reduced, but not eliminated, by heating. But heat-denatured proteins can also present new antigenic sites, uncovered by the unfolding process or created by new chemical reactions with other molecules present in the food (e.g., beta-lactoglobulin associating with alpha-lactalbumin in milk). We have found that heat-denatured beta-lactoglobulin has at least one new epitope, not found in the native state. Therefore, thermal processing can be part of a procedure for making hypoallergenic food, but will rarely be sufficient on its own. Increased understanding will help in evaluating novel proteins and processes.
Collapse
|
Review |
27 |
203 |
9
|
Lin HY, Sun M, Tang HY, Lin C, Luidens MK, Mousa SA, Incerpi S, Drusano GL, Davis FB, Davis PJ. l-Thyroxine vs. 3,5,3′-triiodo-l-thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Am J Physiol Cell Physiol 2009; 296:C980-91. [DOI: 10.1152/ajpcell.00305.2008] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
3,5,3′-Triiodo-l-thyronine (T3), but not l-thyroxine (T4), activated Src kinase and, downstream, phosphatidylinositol 3-kinase (PI3-kinase) by means of an αvβ3 integrin receptor on human glioblastoma U-87 MG cells. Although both T3 and T4 stimulated extracellular signal-regulated kinase (ERK) 1/2, activated ERK1/2 did not contribute to T3-induced Src kinase or PI3-kinase activation, and an inhibitor of PI3-kinase, LY-294002, did not block activation of ERK1/2 by physiological concentrations of T3 and T4. Thus the PI3-kinase, Src kinase, and ERK1/2 signaling cascades are parallel pathways in T3-treated U-87 MG cells. T3 and T4 both caused proliferation of U-87 MG cells; these effects were blocked by the ERK1/2 inhibitor PD-98059 but not by LY-294002. Small-interfering RNA knockdown of PI3-kinase confirmed that PI3-kinase was not involved in the proliferative action of T3 on U-87 MG cells. PI3-kinase-dependent actions of T3 in these cells included shuttling of nuclear thyroid hormone receptor-α (TRα) from cytoplasm to nucleus and accumulation of hypoxia-inducible factor ( HIF)- 1α mRNA; LY-294002 inhibited these actions. Results of studies involving αvβ3 receptor antagonists tetraiodothyroacetic acid (tetrac) and Arg-Gly-Asp (RGD) peptide, together with mathematical modeling of the kinetics of displacement of radiolabeled T3 from the integrin by unlabeled T3 and by unlabeled T4, are consistent with the presence of two iodothyronine receptor domains on the integrin. A model proposes that one site binds T3 exclusively, activates PI3-kinase via Src kinase, and stimulates TRα trafficking and HIF- 1α gene expression. Tetrac and RGD peptide both inhibit T3 action at this site. The second site binds T4 and T3, and, via this receptor, the iodothyronines stimulate ERK1/2-dependent tumor cell proliferation. T3 action here is inhibited by tetrac alone, but the effect of T4 is blocked by both tetrac and the RGD peptide.
Collapse
|
|
16 |
196 |
10
|
Abstract
Nongenomic actions of thyroid hormone are by definition independent of nuclear receptors for the hormone and have been described at the plasma membrane, various cell organelles, the cytoskeleton, and in cytoplasm. The actions include alterations in solute transport (Ca2+, Na+, glucose), changes in activities of several kinases, including protein kinase C, cAMP-dependent protein kinase and pyruvate kinase M2 (PKM2), effects on efficiency of specific mRNA translation and mRNA t1/2, modulation of mitochondrial respiration, and regulation of actin polymerization (promotion of formation of F-actin). Iodothyronines also can regulate nongenomically the state of contractile elements in vascular smooth muscle cells (VSMC). The physiologic significance at the cellular level of certain of these actions has been demonstrated, for example, in the cases of myocardiocyte Na+ current, red cell Ca2+ content, and the control by hormone-induced alterations in actin solubility of cell surface activity of iodothyronine 5'-monodeiodinase activity and the intracellular distribution of protein disulfide isomerase activity. The physiologic significance of these actions at the organ or system level is less clear, but extranuclear effects of thyroid hormone on myocardial Na+ channel, sarcoplasmic reticulum Ca(2+)-ATPase activity, and contractile state of VSMC may each contribute to acute effects of thyroid hormone on cardiac output that have recently been described clinically. The molecular mechanisms for nongenomic actions are incompletely understood; relevant binding sites and signal transduction pathways have been described for hormone actions on plasma membrane Ca(2+)-ATPase activity, and PKM2 monomer is known to bind T3 and, as a result, prevent activation of the kinase via tetramer formation. Nongenomic actions of thyroid hormone may have different structure-activity relationships of iodothyronines from those effects that depend upon nuclear receptors; they may have different time courses and may invoke complex signal transduction pathways before the action is detected.
Collapse
|
Review |
29 |
189 |
11
|
Sarner JB, Levine M, Davis PJ, Lerman J, Cook DR, Motoyama EK. Clinical characteristics of sevoflurane in children. A comparison with halothane. Anesthesiology 1995; 82:38-46. [PMID: 7832332 DOI: 10.1097/00000542-199501000-00006] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND For pediatric patients, sevoflurane may be an alternative to halothane, the anesthetic agent used most commonly for inhalational induction. The induction, maintenance, and emergence characteristics were studied in 120 unpremedicated children 1-12 yr of age randomly assigned to receive one of three anesthesia regimens: sevoflurane with oxygen (group S), sevoflurane with nitrous oxide and oxygen (group SN), or halothane with nitrous oxide and oxygen (group HN). METHODS Anesthetic was administered (via a Mapleson D, F or Bain circuit) beginning with face mask application in incremental doses to deliver maximum inspired concentrations of 4.5% halothane or 7% sevoflurane. End-tidal concentrations of anesthetic agents and vocal cord position were noted at the time of intubation. Elapsed time intervals from face mask application to loss of the eyelash reflex, intubation, surgical incision, and discontinuation of the anesthetic were measured. Heart rate, systolic, diastolic, and mean blood pressures, and end-tidal anesthetic concentrations were measured at fixed intervals. Anesthetic MAC-hour durations were calculated. The end-tidal concentration of anesthetic was adjusted to 1 MAC (0.9% halothane, 2.5% sevoflurane) for at least the last 10 min of surgery. Intervals from discontinuation of anesthetic to hip flexion or bucking, extubation, administration of first postoperative analgesic, and attaining discharge criteria from recovery room were measured. Venous blood was sampled at anesthetic induction, at the end of anesthesia, and 1, 4, 6, 12, and 18-24 h after discontinuation of the anesthetic for determination of plasma inorganic fluoride content. RESULTS Induction of anesthesia was satisfactory in groups SN and HN. Induction in group S was associated with a significantly greater incidence of excitement (35%) than in the other groups (5%), resulting in a longer time to intubation. The end-tidal minimum alveolar concentration multiple of potent inhalational anesthetic at the time of intubation was significantly greater in patients receiving halothane than in patients receiving sevoflurane. Induction time, vocal cord position at intubation, time to incision, duration of anesthesia, and MAC-hour duration were similar in the three groups. During emergence, the time to hip flexion was similar among the three groups, whereas the time to extubation, time to first analgesic, and time to attaining discharge criteria were significantly greater in group HN than in groups S and SN. Mean heart rate and systolic blood pressure decreased during induction in group HN but not in groups S and SN. The maximum serum fluoride concentration among all patients was 28 microM. CONCLUSIONS Sevoflurane with nitrous oxide provides satisfactory anesthetic induction and intubating conditions; however, induction using sevoflurane without nitrous oxide is associated with a high incidence of patient excitement and prolonged time to intubation. There were greater decreases in heart rate and systolic blood pressure during induction with halothane than with sevoflurane; however, these differences may be dose-related. The more rapid emergence with sevoflurane when compared with halothane is consistent with the low solubility of sevoflurane in blood and tissues. Children receiving sevoflurane for up to 9.6 MAC-hours did not develop high serum fluoride concentrations.
Collapse
|
Clinical Trial |
30 |
188 |
12
|
Cavanagh D, Davis PJ, Mockett AP. Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralization epitopes. Virus Res 1988; 11:141-50. [PMID: 2462314 PMCID: PMC7134048 DOI: 10.1016/0168-1702(88)90039-1] [Citation(s) in RCA: 186] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/1988] [Revised: 05/11/1988] [Accepted: 05/13/1988] [Indexed: 01/01/2023]
Abstract
The spike glycoprotein (S) gene of IBV codes for a precursor protein which is cleaved into the N-terminal S1 and C-terminal S2 glycopolypeptides. The S1 glycopolypeptide, which induces neutralizing antibody, comprises approximately 520 amino acid residues. We have determined the nucleotide sequence of S1 of seven strains of the Massachusetts (Mass) serotype and the first 337 bases of two additional Mass strains. Despite the fact that the strains had been isolated over three decades in Europe and the U.S.A. there was only 4% base and 6% amino acid variation within the group. Nearly one third of the 32 amino acid differences in S1 were in two hypervariable regions (HVRs 1 and 2) comprising residues 38-51 and 99-115, identified by Niesters et al. (1986), showing that HVRs 1 and 2 are a feature of the Mass serotype. Amino acid variation within HVRs 1 and 2 was 29% and 40% respectively. Five vaccine strains could be distinguished from each other by sequencing of the first 337 nucleotides. Variants of M41 which resisted neutralization by two monoclonal antibodies (A13 and A38) had the same, single base change at position 134, resulting in substitution of proline residue 45 by histidine. This indicates that residues within HVR 1 are associated with epitopes which induce neutralizing antibody.
Collapse
|
research-article |
37 |
186 |
13
|
Abstract
Research to date has paid remarkably little heed to gender differences in autobiographical memory. To redress this, the author examined memory for childhood events in adult men and women remembering back to childhood, and in children themselves. Five studies were conducted, and results revealed that females consistently recalled more childhood memories than males did and were generally faster in accessing the memories recalled. Furthermore, the gender difference observed was specific to memories of events associated with emotion and was apparent across a diverse range of emotions experienced by both the self and others. The overall pattern of findings obtained is consistent with the proposition that gender-differentiated socialization processes influence the content and complexity of representations of autobiographical emotional events in memory. To some extent, then, autobiographical memory appears to be a socially constructed phenomenon.
Collapse
|
|
26 |
175 |
14
|
Lin HY, Davis FB, Gordinier JK, Martino LJ, Davis PJ. Thyroid hormone induces activation of mitogen-activated protein kinase in cultured cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C1014-24. [PMID: 10329948 DOI: 10.1152/ajpcell.1999.276.5.c1014] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Thyroid hormone [L-thyroxine (T4)] rapidly induced phosphorylation and nuclear translocation (activation) of mitogen-activated protein kinase (MAPK) in HeLa and CV-1 cells in the absence of cytokine or growth factor. A pertussis toxin-sensitive and guanosine 5'-O-(3-thiotriphosphate)-sensitive cell surface mechanism responsive to T4 and agarose-T4, suggesting a G protein-coupled receptor, was implicated. Cells depleted of MAPK or treated with MAPK pathway inhibitors showed reduced activation of MAPK and of the signal transducer and activator of transcription STAT1alpha by T4; they also showed reduced T4 potentiation of the antiviral action of interferon-gamma (IFN-gamma). T4 treatment caused tyrosine-phosphorylated MAPK-STAT1alpha nuclear complex formation and enhanced Ser-727 phosphorylation of STAT1alpha, in the presence or absence of IFN-gamma. STAT1alpha-deficient cells transfected with STAT1alpha containing an alanine-for-serine substitution at residue 727 (STAT1alphaA727) showed minimal T4-stimulated STAT1alpha activation. IFN-gamma induced the antiviral state in cells containing wild-type STAT1alpha (STAT1alphawt) or STAT1alphaA727; T4 potentiated IFN-gamma action in STAT1alphawt cells but not in STAT1alphaA727 cells. T4-directed STAT1alpha Ser-727 phosphorylation is MAPK mediated and results in potentiated STAT1alpha activation and enhanced IFN-gamma activity.
Collapse
|
|
26 |
173 |
15
|
Cavanagh D, Davis PJ, Cook JK, Li D, Kant A, Koch G. Location of the amino acid differences in the S1 spike glycoprotein subunit of closely related serotypes of infectious bronchitis virus. Avian Pathol 2008; 21:33-43. [PMID: 18670913 DOI: 10.1080/03079459208418816] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Four UK strains of three different serotypes were found to differ by only 2-3% of their S1 amino acids. The S1 sequences were also very similar to those of three Dutch isolates (D207, D274 and D3896), the greatest difference between two of the seven isolates being 4.4%. The few amino acid differences between the seven isolates were located largely between residues 19-122 and 251-347 of the mature S1 subunit. The seven isolates could be differentiated using 16 monoclonal antibodies in an enzyme-linked immunosorbent assay. Some virus neutralizing (VN) antibody-inducing epitopes were common to all seven isolates even though the strains had been differentiated into three serotypes by polyclonal sera. The results indicate that the most antigenic of the VN antibody-inducing epitopes are formed by very few amino acids and that these occur in the first and third quarters of the S1 subunit. We suggest that serology-based epizootiological studies of IBV should, therefore, be augmented by the inclusion of nucleic acid sequencing and/or monoclonal antibody analysis.
Collapse
|
Journal Article |
17 |
170 |
16
|
Lerman J, Davis PJ, Welborn LG, Orr RJ, Rabb M, Carpenter R, Motoyama E, Hannallah R, Haberkern CM. Induction, recovery, and safety characteristics of sevoflurane in children undergoing ambulatory surgery. A comparison with halothane. Anesthesiology 1996; 84:1332-40. [PMID: 8669674 DOI: 10.1097/00000542-199606000-00009] [Citation(s) in RCA: 168] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Sevoflurane is an inhalational anesthetic with characteristics suited for use in children. To determine whether the induction, recovery, and safety characteristics of sevoflurane differ from those of halothane, the following open-labeled, multicenter, randomized, controlled, phase III study in children undergoing ambulatory surgery was designed. METHODS Three hundred seventy-five children, ASA physical status 1 or 2, were randomly assigned in a 2:1 ratio to receive either sevoflurance or halothane, both in 60% N2O and 40% O2. Anesthesia was induced using a mask with an Ayre's t piece or Bain circuit in four of the centers and a mask with a circle circuit in the fifth center. Maximum inspired concentrations during induction of anesthesia were 7% sevoflurane and 4.3% halothane. Anesthesia was maintained by spontaneous ventilation, without tracheal intubation. End-tidal concentrations of both inhalational anesthetics were adjusted to 1.0 MAC for at least 10 min before the end of surgery. Induction and recovery characteristics and all side effects were recorded. The plasma concentration of inorganic fluoride was measured at induction of and 1 h after anesthesia. RESULTS During induction of anesthesia, the time to loss of the eyelash reflex with sevoflurane was 0.3 min faster than with halothane (P < 0.001). The incidence of airway reflex responses was similar, albeit infrequent with both anesthetics. The total MAC.h exposure to sevoflurane was 11% less than the exposure to halothane (P < 0.013), although the end-tidal MAC multiple during the final 10 min of anesthesia was similar for both groups. Early recovery as evidenced by the time to response to commands after sevoflurane was 33% more rapid than it was after halothane (P < 0.001), although the time to discharge from hospital was similar for both anesthetics. The mean ( +/- SD) plasma concentration of inorganic fluoride 1 h after discontinuation of sevoflurane was 10.3 +/- 3.5 microM. The overall incidence of adverse events attributable to sevoflurane was similar to that of halothane, although the incidence of agitation attributable to sevoflurane was almost threefold greater than that attributable to halothane (P < 0.004). CONCLUSIONS Sevoflurane compared favorably with halothane. Early recovery after sevoflurane was predictably more rapid than after halothane, although this was not reflected in a more rapid discharge from the hospital. The incidence of adverse events was similar for both anesthetics. Clinically, the induction, recovery, and safety characteristics of sevoflurane and halothane are similar. Sevoflurane is a suitable alternative to halothane for use in children undergoing minor ambulatory surgery.
Collapse
|
Clinical Trial |
29 |
168 |
17
|
Davis FB, Mousa SA, O'Connor L, Mohamed S, Lin HY, Cao HJ, Davis PJ. Proangiogenic action of thyroid hormone is fibroblast growth factor-dependent and is initiated at the cell surface. Circ Res 2004; 94:1500-6. [PMID: 15117822 DOI: 10.1161/01.res.0000130784.90237.4a] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The effects of thyroid hormone analogues on modulation of angiogenesis have been studied in the chick chorioallantoic membrane model. Generation of new blood vessels from existing vessels was increased 3-fold by either l-thyroxine (T4; 10(-7) mol/L) or 3,5,3'-triiodo-l-thyronine (10(-9) mol/L). T4-agarose reproduced the effects of T4, and tetraiodothyroacetic acid (tetrac) inhibited the effects of both T4 and T4-agarose. Tetrac itself was inactive and is known to block actions of T4 on signal transduction that are initiated at the plasma membrane. T4 and basic fibroblast growth factor (FGF2) were comparably effective as inducers of angiogenesis. Low concentrations of FGF2 combined with submaximal concentrations of T4 produced an additive angiogenic response. Anti-FGF2 inhibited the angiogenic effect of T4. The proangiogenic effects of T4 and FGF2 were blocked by PD 98059, a mitogen-activated protein kinase (MAPK) pathway inhibitor. Endothelial cells (ECV304) treated with T4 or FGF2 for 15 minutes demonstrated activation of MAPK, an effect inhibited by PD 98059 and the protein kinase C inhibitor CGP41251. Reverse transcription-polymerase chain reaction of RNA extracted from endothelial cells treated with T4 revealed increased abundance of FGF2 transcript at 6 to 48 hours, and after 72 hours, the medium of treated cells showed increased FGF2 content, an effect inhibited by PD 98059. Thus, thyroid hormone is shown to be a proangiogenic factor. This action, initiated at the plasma membrane, is MAPK dependent and mediated by FGF2.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
21 |
160 |
18
|
Davis PJ, Shih A, Lin HY, Martino LJ, Davis FB. Thyroxine promotes association of mitogen-activated protein kinase and nuclear thyroid hormone receptor (TR) and causes serine phosphorylation of TR. J Biol Chem 2000; 275:38032-9. [PMID: 10982791 DOI: 10.1074/jbc.m002560200] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activated nongenomically by l-thyroxine (T(4)), mitogen-activated protein kinase (MAPK) complexed in 10-20 min with endogenous nuclear thyroid hormone receptor (TRbeta1 or TR) in nuclear fractions of 293T cells, resulting in serine phosphorylation of TR. Treatment of cells with the MAPK kinase inhibitor, PD 98059, prevented both T(4)-induced nuclear MAPK-TR co-immunoprecipitation and serine phosphorylation of TR. T(4) treatment caused dissociation of TR and SMRT (silencing mediator of retinoid and thyroid hormone receptor), an effect also inhibited by PD 98059 and presumptively a result of association of nuclear MAPK with TR. Transfection into CV-1 cells of TR gene constructs in which one or both zinc fingers in the TR DNA-binding domain were replaced with those from the glucocorticoid receptor localized the site of TR phosphorylation by T(4)-activated MAPK to a serine in the second zinc finger of the TR DNA-binding domain. In an in vitro cell- and hormone-free system, purified activated MAPK phosphorylated recombinant human TRbeta1 (). Thus, T(4) activates MAPK and causes MAPK-mediated serine phosphorylation of TRbeta1 and dissociation of TR and the co-repressor SMRT.
Collapse
|
|
25 |
157 |
19
|
Abstract
Bilateral adrenal gland hemorrhage was found in 22 of 2,000 (1.1%) consecutive general hospital autopsies. Clinical features of these 22 patients with diffuse or focal bilateral adrenal hemorrhage have been analyzed and compared with previous series. In our experience, patients with this postmortem finding rarely manifest features of adrenocortical insufficiency and appear instead to die as a consequence of concomitant overwhelming illness, such as septicemia, body surface burns or cardiovascular catastrophe. Two-thirds of the current series had impaired renal function at the time of adrenal hemorrhage and three patients had pituitary gland necrosis. Experimental and clinical observations indicate that the "stressed" adrenal gland--under substantive endogenous or exogenous ACTH stimulation--is unusually susceptible to hemorrhage. While our own experience indicates that bilateral adrenal hemorrhage can infrequently be implicated as a factor contributing to patients' death, the possibility of adrenocortical insufficiency must be considered in patients at risk for adrenal hemorrhage. Such patients are those who are azotemic and have bacteremia, burns, or recent cardiovascular catastrophe, particularly when the latter is managed with anticoagulant administration. In these patients, unexplained clinical deterioration or the appearance of findings consistent with adrenocortical insufficiency mandate measurement of serum cortisol concentration and institution of stress-level corticosteroid replacement therapy until a diagnosis of acute adrenocortical insufficiency can be established or refuted.
Collapse
|
|
47 |
157 |
20
|
Davis PJ, Davis FB. Hyperthyroidism in patients over the age of 60 years. Clinical features in 85 patients. Medicine (Baltimore) 1974; 53:161-81. [PMID: 4133091 DOI: 10.1097/00005792-197405000-00001] [Citation(s) in RCA: 155] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
|
51 |
155 |
21
|
Cavanagh D, Davis PJ, Darbyshire JH, Peters RW. Coronavirus IBV: virus retaining spike glycopolypeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination-inhibiting antibody, or induce chicken tracheal protection. J Gen Virol 1986; 67 ( Pt 7):1435-42. [PMID: 3014053 DOI: 10.1099/0022-1317-67-7-1435] [Citation(s) in RCA: 154] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Avian infectious bronchitis coronavirus (IBV) inactivated by beta-propiolactone induced partial protection of the trachea in up to 40% of chickens following one intramuscular inoculation 4 to 6 weeks prior to challenge. Retention of an intact tracheal ciliated epithelium 4 days after challenge was the criterion of protection. There was no correlation between protection and serum titres of virus-neutralizing (VN) and haemagglutination-inhibiting (HI) antibody, which were maximal at about 4 weeks after inoculation. Virus from which the S1 but not the S2 (spike-anchoring) spike glycopolypeptide had been removed by urea did not induce protection or VN or HI antibody. Four intramuscular inoculations of monomeric S1 induced VN and HI antibody in two and four chickens respectively. These results indicate that VN and HI antibodies are induced primarily by S1, that intact spikes are a major requirement for the induction of protective immunity and that this property is probably associated with S1.
Collapse
|
|
39 |
154 |
22
|
Abstract
This study was performed to determine the prevalence of hypodontia and hyperdontia of permanent teeth amongst Southern Chinese children in Hong Kong. The sample consisted of 1093 12-yr-old children on whom a panoramic radiograph was taken. The prevalence of congenitally missing teeth (third molars excluded) was 6.1% in boys, 7.7% in girls, and 6.9% for both sexes combined. On the average, each child was missing 1.5 teeth. The most commonly absent tooth was the mandibular incisor, affecting 58.7% of the children with hypodontia. Thirty children (2.7%) had supernumerary teeth, with a male:female ratio of 6.5:1; in four cases the tooth had erupted. Three children had fourth molars and one case of a supplemental premolar was recorded (all unerupted). Four cases of a maxillary supernumerary tooth and hypodontia in the mandible were seen.
Collapse
|
|
38 |
153 |
23
|
Tang HY, Lin HY, Zhang S, Davis FB, Davis PJ. Thyroid hormone causes mitogen-activated protein kinase-dependent phosphorylation of the nuclear estrogen receptor. Endocrinology 2004; 145:3265-72. [PMID: 15059947 DOI: 10.1210/en.2004-0308] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activated by thyroid hormone, the MAPK (ERK1/2) signaling pathway causes serine phosphorylation by MAPK of several nucleoproteins, including the nuclear thyroid hormone receptor beta1. Because estrogen can activate MAPK and cause MAPK-dependent serine phosphorylation of nuclear estrogen receptor (ER)alpha, we studied whether thyroid hormone also promoted MAPK-mediated ERalpha phosphorylation. Human breast cancer (MCF-7) cells were incubated with physiological concentrations of l-T(4) or 17beta-estradiol (E(2)) for 15 min to 24 h, and nuclear ERalpha and serine-118-phosphorylated ERalpha were identified by Western blotting. Serine-118-phosphorylated ERalpha was recovered at 15 min in nuclei of MCF-7 cells exposed to either T(4) or E(2). The T(4) effect was apparent at 15 min and peaked at 2 h, whereas the E(2) effect was maximal at 4-6 h. T(4)-agarose was as effective as T(4) in causing phosphorylation of ERalpha. T(4) action on ERalpha was inhibited by PD 98059, an inhibitor of ERK1/2 phosphorylation, and by tetraiodothyroacetic acid, a T(4) analog that blocks cell surface-initiated actions of T(4) but is not itself an agonist. Electrophoretic mobility shift assay of nuclear extracts from T(4)-treated and E(2)-treated cells showed similar specific protein-DNA-binding. Indexed by [(3)H]thymidine incorporation and nuclear proliferating cell nuclear antigen, MCF-7 cell proliferation was stimulated by T(4) and T(4)-agarose to an extent comparable with the effect of E(2). This T(4) effect was blocked by either PD 98059 or ICI 182,780, an ER antagonist. Thus, T(4), like E(2), causes phosphorylation by MAPK of nuclear ERalpha at serine-118 in MCF-7 cells and promotes cell proliferation through the ER by a MAPK-dependent pathway.
Collapse
|
|
21 |
144 |
24
|
Abstract
Extranuclear or nongenomic actions of thyroid hormone do not require formation of a nuclear complex between the hormone and its traditional 3,5,3'-triiodo-L-thyronine (T3) receptor (TR). Among nongenomic actions of iodothyronines that are relevant to the heart are those on membrane ion channels or pumps. These include stimulation of the sarcolemmal Na+ channel, inward-rectifying K+ channel, voltage-activated potassium channels, and calcium pump (Ca2+-adenosine triphosphatases [ATPases]) and have been shown in intact cells or isolated membranes. Because circulating levels of thyroid hormone are relatively stable, actions on channels or pumps may contribute to setting of basal activity of these transport functions. The mechanism of certain of these membrane effects may involve actions of the hormone on signal transducing protein kinases that modulate levels of activity of plasma membrane channels. Thyroid hormone nongenomically enhances myocardial contractility in isolated myocardial cells, in the isolated perfused rat heart and in human subjects. Iodothyronines also decrease vasomotor tone in a variety of models and in man by a mechanism independent of cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), or nitric oxide generation. Acutely increased myocardial mitochondrial respiration has been demonstrated in isolated organelles exposed to thyroid hormone. Genomic and nongenomic actions of thyroid hormone can interface, e.g., at the level of sarcoplasmic reticulum Ca2+-ATPase, where gene expression is regulated by the TR-T3 complex and activity of the enzyme can be modulated nongenomically. The relevance of nongenomic actions of thyroid hormone on the heart has been demonstrated in acute effects of the hormone on cardiac output and systemic vascular resistance in human subjects.
Collapse
|
Review |
23 |
142 |
25
|
Davis PJ, Davis FB, Mousa SA, Luidens MK, Lin HY. Membrane receptor for thyroid hormone: physiologic and pharmacologic implications. Annu Rev Pharmacol Toxicol 2011; 51:99-115. [PMID: 20868274 DOI: 10.1146/annurev-pharmtox-010510-100512] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasma membrane integrin αvβ3 is a cell surface receptor for thyroid hormone at which nongenomic actions are initiated. L-thyroxine (T₄) and 3,3',5-triiodo-L-thyronine (T₃) promote angiogenesis and tumor cell proliferation via the receptor. Tetraiodothyroacetic acid (tetrac), a deaminated T₄ derivative, blocks the nongenomic proliferative and proangiogenic actions of T₄ and T₃. Acting at the integrin independently of T₄ and T₃, tetrac and a novel nanoparticulate formulation of tetrac that acts exclusively at the cell surface have oncologically desirable antiproliferative actions on multiple tumor cell survival pathway genes. These agents also block the angiogenic activity of vascular growth factors. Volume and vascular support of xenografts of human pancreatic, kidney, lung, and breast cancers are downregulated by tetrac formulations. The integrin αvβ3 receptor site for thyroid hormone selectively regulates signal transduction pathways and distinguishes between unmodified tetrac and the nanoparticulate formulation. The receptor also mediates nongenomic thyroid hormone effects on plasma membrane ion transporters and on intracellular protein trafficking.
Collapse
|
Review |
14 |
140 |