1
|
Goodwin A, Kersulyte D, Sisson G, Veldhuyzen van Zanten SJ, Berg DE, Hoffman PS. Metronidazole resistance in Helicobacter pylori is due to null mutations in a gene (rdxA) that encodes an oxygen-insensitive NADPH nitroreductase. Mol Microbiol 1998; 28:383-93. [PMID: 9622362 DOI: 10.1046/j.1365-2958.1998.00806.x] [Citation(s) in RCA: 255] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metronidazole (Mtz) is a critical component of combination therapies that are used against Helicobacter pylori, the major cause of peptic ulcer disease. Many H. pylori strains are Mtz resistant (MtzR), however, and here we show that MtzR results from loss of oxygen-insensitive NADPH nitroreductase activity. The underlying gene (called 'rdxA') was identified in several steps: transformation of Mtz-susceptible (MtzS) H. pylori with cosmids from a MtzR strain, subcloning, polymerase chain reaction (PCR) and DNA sequencing. We also found that (i) E. coli (normally MtzR) was rendered MtzS by a functional H. pylori rdxA gene; (ii) introduction of rdxA on a shuttle vector plasmid into formerly MtzR H. pylori rendered it MtzS; and (iii) replacement of rdxA in MtzS H. pylori with an rdxA::camR null insertion allele resulted in a MtzR phenotype. The 630 bp rdxA genes of five pairs of H. pylori isolates from infections that were mixed (MtzR/MtzS), but uniform in overall genotype, were sequenced. In each case, the paired rdxA genes differed from one another by one to three base substitutions. Typical rdxA genes from unrelated isolates differ by 5% in DNA sequence. Therefore, the near identity of rdxA genes from paired MtzR and MtzS isolates implicates de novo mutation, rather than horizontal gene transfer in the development of MtzR. Horizontal gene transfer could readily be demonstrated under laboratory conditions with mutant rdxA alleles. RdxA is a homologue of the classical nitroreductases (CNRs) of the enteric bacteria, but differs in cysteine content (6 vs. 1 or 2 in CNRs) and isoelectric point (pI=7.99 vs. 5.4-5.6), which might account for its reduction of low redox drugs such as Mtz. We suggest that many rdxA (MtzR) mutations may have been selected by prior use of Mtz against other infections. H. pylori itself is an early risk factor for gastric cancer; the possibility that its carcinogenic effects are exacerbated by Mtz use, which is frequent in many societies, or the reduction of nitroaromatic compounds to toxic, mutagenic and carcinogenic products, may be of significant concern in public health.
Collapse
|
|
27 |
255 |
2
|
Hoffman PS, Sisson G, Croxen MA, Welch K, Harman WD, Cremades N, Morash MG. Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori, selected anaerobic bacteria and parasites, and Campylobacter jejuni. Antimicrob Agents Chemother 2006; 51:868-76. [PMID: 17158936 PMCID: PMC1803158 DOI: 10.1128/aac.01159-06] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nitazoxanide (NTZ) exhibits broad-spectrum activity against anaerobic bacteria and parasites and the ulcer-causing pathogen Helicobacter pylori. Here we show that NTZ is a noncompetitive inhibitor (K(i), 2 to 10 microM) of the pyruvate:ferredoxin/flavodoxin oxidoreductases (PFORs) of Trichomonas vaginalis, Entamoeba histolytica, Giardia intestinalis, Clostridium difficile, Clostridium perfringens, H. pylori, and Campylobacter jejuni and is weakly active against the pyruvate dehydrogenase of Escherichia coli. To further mechanistic studies, the PFOR operon of H. pylori was cloned and overexpressed in E. coli, and the multisubunit complex was purified by ion-exchange chromatography. Pyruvate-dependent PFOR activity with NTZ, as measured by a decrease in absorbance at 418 nm (spectral shift from 418 to 351 nm), unlike the reduction of viologen dyes, did not result in the accumulation of products (acetyl coenzyme A and CO(2)) and pyruvate was not consumed in the reaction. NTZ did not displace the thiamine pyrophosphate (TPP) cofactor of PFOR, and the 351-nm absorbing form of NTZ was inactive. Optical scans and (1)H nuclear magnetic resonance analyses determined that the spectral shift (A(418) to A(351)) of NTZ was due to protonation of the anion (NTZ(-)) of the 2-amino group of the thiazole ring which could be generated with the pure compound under acidic solutions (pK(a) = 6.18). We propose that NTZ(-) intercepts PFOR at an early step in the formation of the lactyl-TPP transition intermediate, resulting in the reversal of pyruvate binding prior to decarboxylation and in coordination with proton transfer to NTZ. Thus, NTZ might be the first example of an antimicrobial that targets the "activated cofactor" of an enzymatic reaction rather than its substrate or catalytic sites, a novel mechanism that may escape mutation-based drug resistance.
Collapse
|
Research Support, Non-U.S. Gov't |
19 |
183 |
3
|
Garduño RA, Garduño E, Hoffman PS. Surface-associated hsp60 chaperonin of Legionella pneumophila mediates invasion in a HeLa cell model. Infect Immun 1998; 66:4602-10. [PMID: 9746556 PMCID: PMC108567 DOI: 10.1128/iai.66.10.4602-4610.1998] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HeLa cells have been previously used to demonstrate that virulent strains of Legionella pneumophila (but not salt-tolerant avirulent strains) efficiently invade nonphagocytic cells. Hsp60, a member of the GroEL family of chaperonins, is displayed on the surface of virulent L. pneumophila (R. A. Garduño et al., J. Bacteriol. 180:505-513, 1988). Because Hsp60 is largely involved in protein-protein interactions, we investigated its role in adherence-invasion in the HeLa cell model. Hsp60-specific antibodies inhibited the adherence and invasiveness of two virulent L. pneumophila strains in a dose-dependent manner but had no effect on the association of their salt-tolerant avirulent derivatives with HeLa cells. A monospecific anti-OmpS (major outer membrane protein) serum inhibited the association of both virulent and avirulent strains of L. pneumophila to HeLa cells, suggesting that while both Hsp60 and OmpS may mediate bacterial association to HeLa cells, only virulent strains selectively displayed Hsp60 on their surfaces. Furthermore, the surface-associated Hsp60 of virulent bacterial cells was susceptible to the action of trypsin, which rendered the bacteria noninvasive. Additionally, pretreatment of HeLa cells with purified Hsp60 or precoating of the plastic surface where HeLa cells attached with Hsp60 reduced the adherence and invasiveness of the two virulent strains. Finally, recombinant Hsp60 covalently bound to latex beads promoted the early association of beads with HeLa cells by a factor of 20 over bovine serum albumin (BSA)-coated beads and competed with virulent strains for association with HeLa cells. Hsp60-coated beads were internalized in large numbers by HeLa cells and remained in tight endosomes that did not fuse with other vesicles, whereas internalized BSA-coated beads, for which endocytic trafficking is well established, resided in more loose or elongated endosomes. Mature intracellular forms of L. pneumophila, which were up to 100-fold more efficient than agar-grown bacteria at associating with HeLa cells, were enriched for Hsp60 on the bacterial surface, as determined by immunolocalization techniques. Collectively, these results establish a role for surface-exposed Hsp60 in invasion of HeLa cells by L. pneumophila.
Collapse
|
research-article |
27 |
161 |
4
|
Baker LM, Raudonikiene A, Hoffman PS, Poole LB. Essential thioredoxin-dependent peroxiredoxin system from Helicobacter pylori: genetic and kinetic characterization. J Bacteriol 2001; 183:1961-73. [PMID: 11222594 PMCID: PMC95091 DOI: 10.1128/jb.183.6.1961-1973.2001] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori, an oxygen-sensitive microaerophile, contains an alkyl hydroperoxide reductase homologue (AhpC, HP1563) that is more closely related to 2-Cys peroxiredoxins of higher organisms than to most other eubacterial AhpC proteins. Allelic replacement mutagenesis revealed ahpC to be essential, suggesting a critical role for AhpC in defending H. pylori against oxygen toxicity. Characterization of the ahpC promoter region divulged two putative regulatory elements and identified the transcription initiation site, which was mapped to 96 and 94 bp upstream of the initiation codon. No homologue of ahpF, which encodes the dedicated AhpC reductase in most eubacteria, was found in the H. pylori genome. Instead, homologues of Escherichia coli thioredoxin (Trx) reductase (TrxR, HP0825) and Trx (Trx1, HP0824) formed a reductase system for H. pylori AhpC. A second Trx homologue (Trx2, HP1458) was identified but was incapable of AhpC reduction, although Trx2 exhibited disulfide reductase activity with other substrates [insulin and 5,5'-dithiobis(2-nitrobenzoic acid)]. AhpC interactions with each substrate, Trx1 and hydroperoxide, were bimolecular and nonsaturable (infinite V(max) and K(m) values) but rapid enough (at 1 x 10(5) to 2 x 10(5) M(-1) s(-1)) to suggest an important role for AhpC in cellular peroxide metabolism. AhpC also exhibited a wide specificity for hydroperoxide substrates, which, taken together with the above results, suggests a minimal binding site for hydroperoxides composed of little more than the cysteinyl (Cys49) active site. H. pylori AhpC was not reduced by Salmonella typhimurium AhpF and was slightly more active with E. coli TrxR and Trx1 than was S. typhimurium AhpC, demonstrating the specialized catalytic properties of this peroxiredoxin.
Collapse
|
research-article |
24 |
151 |
5
|
Chalker AF, Minehart HW, Hughes NJ, Koretke KK, Lonetto MA, Brinkman KK, Warren PV, Lupas A, Stanhope MJ, Brown JR, Hoffman PS. Systematic identification of selective essential genes in Helicobacter pylori by genome prioritization and allelic replacement mutagenesis. J Bacteriol 2001; 183:1259-68. [PMID: 11157938 PMCID: PMC94999 DOI: 10.1128/jb.183.4.1259-1268.2001] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2000] [Accepted: 11/17/2000] [Indexed: 12/12/2022] Open
Abstract
A comparative genomic approach was used to identify Helicobacter pylori 26695 open reading frames (ORFs) which are conserved in H. pylori J99 but highly diverged in other eubacteria. A survey of selected pathways of central intermediary metabolism was also carried out, and genes with a potentially selective role in H. pylori were identified. Forty-five ORFs identified in these two analyses were screened using a rapid vector-free allelic replacement mutagenesis technique, and 33 were shown to be essential in vitro. Notably, 13 ORFs gave essentiality results which are unexpected in view of their known or proposed functions, and phylogenetic analysis was used to investigate the annotation of 7 such ORFs which are highly diverged. We propose that the products of a number of these H. pylori-specific essential genes may be suitable targets for novel anti-H. pylori therapies.
Collapse
|
Comparative Study |
24 |
136 |
6
|
Retzlaff C, Yamamoto Y, Hoffman PS, Friedman H, Klein TW. Bacterial heat shock proteins directly induce cytokine mRNA and interleukin-1 secretion in macrophage cultures. Infect Immun 1994; 62:5689-93. [PMID: 7960155 PMCID: PMC303322 DOI: 10.1128/iai.62.12.5689-5693.1994] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Bacterial heat shock proteins (hsp) have been shown to be important immunogens stimulating both T cells and B cells. However, little is known concerning the direct interactions between hsp and macrophages. In this study, we demonstrated that treatment of macrophage cultures with purified bacterial hsp, including Legionella pneumophila hsp60, Escherichia coli GroEL, Mycobacterium tuberculosis hsp70, Mycobacterium leprae hsp65, and Mycobacterium bovis BCG hsp65, increased the steady-state levels of cytokine mRNA for interleukin-1 alpha (IL-1 alpha), IL-1 beta, IL-6, tumor necrosis factor alpha, and granulocyte-macrophage colony-stimulating factor as well as supernatant IL-1 secretion. This effect was shown not to be due to contamination of the hsp preparations with bacterial lipopolysaccharide. However, not all hsp induced cytokines; M. tuberculosis hsp10 showed minimal activity in our study. These results suggest that bacterial hsp might modulate immunity by rapidly and directly increasing cytokine production in macrophages.
Collapse
|
research-article |
31 |
133 |
7
|
Sisson G, Goodwin A, Raudonikiene A, Hughes NJ, Mukhopadhyay AK, Berg DE, Hoffman PS. Enzymes associated with reductive activation and action of nitazoxanide, nitrofurans, and metronidazole in Helicobacter pylori. Antimicrob Agents Chemother 2002; 46:2116-23. [PMID: 12069963 PMCID: PMC127316 DOI: 10.1128/aac.46.7.2116-2123.2002] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitazoxanide (NTZ) is a redox-active nitrothiazolyl-salicylamide prodrug that kills Helicobacter pylori and also many anaerobic bacterial, protozoan, and helminthic species. Here we describe development and use of a spectrophotometric assay, based on nitroreduction of NTZ at 412 nm, to identify H. pylori enzymes responsible for its activation and mode of action. Three enzymes that reduce NTZ were identified: two related NADPH nitroreductases, which also mediate susceptibility to metronidazole (MTZ) (RdxA and FrxA), and pyruvate oxidoreductase (POR). Recombinant His-tagged RdxA, FrxA, and POR, overexpressed in nitroreductase-deficient Escherichia coli, each rapidly reduced NTZ, whereas only FrxA and to a lesser extent POR reduced nitrofuran substrates (furazolidone, nitrofurantoin, and nitrofurazone). POR exhibited no MTZ reductase activity either in extracts of H. pylori or following overexpression in E. coli; RdxA exhibited no nitrofuran reductase activity, and FrxA exhibited no MTZ reductase activity. Analysis of mutation to rifampin resistance (Rif(r)) indicated that NTZ was not mutagenic and that nitrofurans were only weakly mutagenic. Alkaline gel DNA electrophoresis indicated that none of these prodrugs caused DNA breakage. In contrast, MTZ caused DNA damage and was strongly mutagenic. We conclude that POR, an essential enzyme, is responsible for most or all of the bactericidal effects of NTZ against H. pylori. While loss-of-function mutations in rdxA and frxA produce a Mtz(r) phenotype, they do not contribute much to the innate susceptibility of H. pylori to NTZ or nitrofurans.
Collapse
|
research-article |
23 |
131 |
8
|
George HA, Hoffman PS, Smibert RM, Krieg NR. Improved media for growth and aerotolerance of Campylobacter fetus. J Clin Microbiol 1978; 8:36-41. [PMID: 670386 PMCID: PMC275110 DOI: 10.1128/jcm.8.1.36-41.1978] [Citation(s) in RCA: 127] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The microaerophilic nature of Campylobacter fetus has complicated its recovery from human and animal sources. In this study, modifications of brucella agar and broth were tested for enhancement of growth and aerotolerance of 64 strains of C. fetus, representing each subspecies. Brucella agar supplemented with 0.025% each FeSO4 7H2O, sodium metabisulfite, and sodium pyruvate, supported growth of 98, 77, and 63% of the strains at 6% O2, 17% O2, and 21% O2, respectively. Unsupplemented brucella agar supported growth of 94, 48, and 20% of the strains. Brucella broth supplemented with 0.2% FeSO4.7H2O, 0.025% sodium metabisulfite, and 0.05% sodium pyruvate supported growth of 98% of the strains at 21% O2, compared to 75% with unsupplemented brucella broth. With both the supplemented agar and broth, growth responses occurred 1 to 2 days earlier than usual. Growth and aerotolerance of three strains of Campylobacter sputorum subsp. bubulus were not enhanced by the supplements.
Collapse
|
research-article |
47 |
127 |
9
|
Croxen MA, Sisson G, Melano R, Hoffman PS. The Helicobacter pylori chemotaxis receptor TlpB (HP0103) is required for pH taxis and for colonization of the gastric mucosa. J Bacteriol 2006; 188:2656-65. [PMID: 16547053 PMCID: PMC1428400 DOI: 10.1128/jb.188.7.2656-2665.2006] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The location of Helicobacter pylori in the gastric mucosa of mammals is defined by natural pH gradients within the gastric mucus, which are more alkaline proximal to the mucosal epithelial cells and more acidic toward the lumen. We have used a microscope slide-based pH gradient assay and video data collection system to document pH-tactic behavior. In response to hydrochloric acid (HCl), H. pylori changes its swimming pattern from straight-line random swimming to arcing or circular patterns that move the motile population away from the strong acid. Bacteria in more-alkaline regions did not swim toward the acid, suggesting the pH taxis is a form of negative chemotaxis. To identify the chemoreceptor(s) responsible for the transduction of pH-tactic signals, a vector-free allelic replacement strategy was used to construct mutations in each of the four annotated chemoreceptor genes (tlpA, tlpB, tlpC, and tlpD) in H. pylori strain SS1 and a motile variant of strain KE26695. All deletion mutants were motile and displayed normal chemotaxis in brucella soft agar, but only tlpB mutants were defective for pH taxis. tlpD mutants exhibited more tumbling and arcing swimming, while tlpC mutants were hypermotile and responsive to acid. While tlpA, tlpC, and tlpD mutants colonized mice to near wild-type levels, tlpB mutants were defective for colonization of highly permissive C57BL/6 interleukin-12 (IL-12) (p40-/-)-deficient mice. Complementation of the tlpB mutant (tlpB expressed from the rdxA locus) restored pH taxis and infectivity for mice. pH taxis, like motility and urease activity, is essential for colonization and persistence in the gastric mucosa, and thus TlpB function might represent a novel target in the development of therapeutics that blind tactic behavior.
Collapse
|
Journal Article |
19 |
126 |
10
|
Garduño RA, Garduño E, Hiltz M, Hoffman PS. Intracellular growth of Legionella pneumophila gives rise to a differentiated form dissimilar to stationary-phase forms. Infect Immun 2002; 70:6273-83. [PMID: 12379706 PMCID: PMC130304 DOI: 10.1128/iai.70.11.6273-6283.2002] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When Legionella pneumophila grows in HeLa cells, it alternates between a replicative form and a morphologically distinct "cyst-like" form termed MIF (mature intracellular form). MIFs are also formed in natural amoebic hosts and to a lesser extent in macrophages, but they do not develop in vitro. Since MIFs accumulate at the end of each growth cycle, we investigated the possibility that they are in vivo equivalents of stationary-phase (SP) bacteria, which are enriched for virulence traits. By electron microscopy, MIFs appeared as short, stubby rods with an electron-dense, laminar outer membrane layer and a cytoplasm largely occupied by inclusions of poly-beta-hydroxybutyrate and laminations of internal membranes originating from the cytoplasmic membrane. These features may be responsible for the bright red appearance of MIFs by light microscopy following staining with the phenolic Giménez stain. In contrast, SP bacteria appeared as dull red rods after Giménez staining and displayed a typical gram-negative cell wall ultrastructure. Outer membranes from MIFs and SP bacteria were equivalent in terms of the content of the peptidoglycan-bound and disulfide bond cross-linked OmpS porin, although additional proteins, including Hsp60 (which acts as an invasin for HeLa cells), were detected only in preparations from MIFs. Proteomic analysis revealed differences between MIFs and SP forms; in particular, MIFs were enriched for an approximately 20-kDa protein, a potential marker of development. Compared with SP bacteria, MIFs were 10-fold more infectious by plaque assay, displayed increased resistance to rifampin (3- to 5-fold) and gentamicin (10- to 1,000-fold), resisted detergent-mediated lysis, and tolerated high pH. Finally, MIFs had a very low respiration rate, consistent with a decreased metabolic activity. Collectively, these results suggest that intracellular L. pneumophila differentiates into a cyst-like, environmentally resilient, highly infectious, post-SP form that is distinct from in vitro SP bacteria. Therefore, MIFs may represent the transmissible environmental forms associated with Legionnaires' disease.
Collapse
|
research-article |
23 |
120 |
11
|
|
News |
23 |
104 |
12
|
Jeong JY, Mukhopadhyay AK, Dailidiene D, Wang Y, Velapatiño B, Gilman RH, Parkinson AJ, Nair GB, Wong BC, Lam SK, Mistry R, Segal I, Yuan Y, Gao H, Alarcon T, Brea ML, Ito Y, Kersulyte D, Lee HK, Gong Y, Goodwin A, Hoffman PS, Berg DE. Sequential inactivation of rdxA (HP0954) and frxA (HP0642) nitroreductase genes causes moderate and high-level metronidazole resistance in Helicobacter pylori. J Bacteriol 2000; 182:5082-90. [PMID: 10960091 PMCID: PMC94655 DOI: 10.1128/jb.182.18.5082-5090.2000] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Helicobacter pylori is a human-pathogenic bacterial species that is subdivided geographically, with different genotypes predominating in different parts of the world. Here we test and extend an earlier conclusion that metronidazole (Mtz) resistance is due to mutation in rdxA (HP0954), which encodes a nitroreductase that converts Mtz from prodrug to bactericidal agent. We found that (i) rdxA genes PCR amplified from 50 representative Mtz(r) strains from previously unstudied populations in Asia, South Africa, Europe, and the Americas could, in each case, transform Mtz(s) H. pylori to Mtz(r); (ii) Mtz(r) mutant derivatives of a cultured Mtz(s) strain resulted from mutation in rdxA; and (iii) transformation of Mtz(s) strains with rdxA-null alleles usually resulted in moderate level Mtz resistance (16 microg/ml). However, resistance to higher Mtz levels was common among clinical isolates, a result that implicates at least one additional gene. Expression in Escherichia coli of frxA (HP0642; flavin oxidoreductase), an rdxA paralog, made this normally resistant species Mtz(s), and frxA inactivation enhanced Mtz resistance in rdxA-deficient cells but had little effect on the Mtz susceptibility of rdxA(+) cells. Strains carrying frxA-null and rdxA-null alleles could mutate to even higher resistance, a result implicating one or more additional genes in residual Mtz susceptibility and hyperresistance. We conclude that most Mtz resistance in H. pylori depends on rdxA inactivation, that mutations in frxA can enhance resistance, and that genes that confer Mtz resistance without rdxA inactivation are rare or nonexistent in H. pylori populations.
Collapse
|
research-article |
25 |
97 |
13
|
Sisson G, Jeong JY, Goodwin A, Bryden L, Rossler N, Lim-Morrison S, Raudonikiene A, Berg DE, Hoffman PS. Metronidazole activation is mutagenic and causes DNA fragmentation in Helicobacter pylori and in Escherichia coli containing a cloned H. pylori RdxA(+) (Nitroreductase) gene. J Bacteriol 2000; 182:5091-6. [PMID: 10960092 PMCID: PMC94656 DOI: 10.1128/jb.182.18.5091-5096.2000] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Much of the normal high sensitivity of wild-type Helicobacter pylori to metronidazole (Mtz) depends on rdxA (HP0954), a gene encoding a novel nitroreductase that catalyzes the conversion of Mtz from a harmless prodrug to a bactericidal agent. Here we report that levels of Mtz that partially inhibit growth stimulate forward mutation to rifampin resistance in rdxA(+) (Mtz(s)) and also in rdxA (Mtz(r)) H. pylori strains, and that expression of rdxA in Escherichia coli results in equivalent Mtz-induced mutation. A reversion test using defined lac tester strains of E. coli carrying rdxA(+) indicated that CG-to-GC transversions and AT-to-GC transitions are induced more frequently than other base substitutions. Alkaline gel electrophoretic tests showed that Mtz concentrations near or higher than the MIC for growth also caused DNA breakage in H. pylori and in E. coli carrying rdxA(+), suggesting that this damage may account for most of the bactericidal action of Mtz. Coculture of Mtz(s) H. pylori with E. coli (highly resistant to Mtz) in the presence of Mtz did not stimulate forward mutation in E. coli, indicating that the mutagenic and bactericidal products of Mtz metabolism do not diffuse significantly to neighboring (bystander) cells. Our results suggest that the widespread use of Mtz against other pathogens in people chronically infected with H. pylori may stimulate mutation and recombination in H. pylori, thereby speeding host-specific adaptation, the evolution of virulence, and the emergence of resistance against Mtz and other clinically useful antimicrobials.
Collapse
|
research-article |
25 |
96 |
14
|
Hoffman PS, Goodwin A, Johnsen J, Magee K, Veldhuyzen van Zanten SJ. Metabolic activities of metronidazole-sensitive and -resistant strains of Helicobacter pylori: repression of pyruvate oxidoreductase and expression of isocitrate lyase activity correlate with resistance. J Bacteriol 1996; 178:4822-9. [PMID: 8759844 PMCID: PMC178263 DOI: 10.1128/jb.178.16.4822-4829.1996] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In this study, we compared metronidazole (Mtz)-sensitive and -resistant strains of Helicobacter pylori for metabolic differences that might correlate with drug resistance. Included in this study was an isogenic Mtz(r) strain, HP1107, that was constructed by transforming genomic DNA from Mtz(r) strain HP439 into Mtz(s) strain HP500. Enzyme activities were also measured for Mtz(r) strains grown in the presence or absence of 18 micrograms of metronidazole per ml (ca. one-half of the MIC). These studies confirmed the presence of the Embden-Meyerhof-Parnas, Entner-Doudoroff, and pentose pathways. H. pylori strains expressed enzymatic activities indicative of a complete and active Krebs cycle. All strains expressed pyruvate oxidoreductase (POR) and alpha-ketoglutarate oxidoreductase (KOR) as measured with the redox-active dye benzyl viologen (30 to 96 nmol/min/mg of protein for POR and 30 nmol/min/mg of protein for KOR). When grown in the presence of Mtz at > or = 3.5 micrograms/ml, Mtz(r) strains expressed no detectable POR or KOR activity. The apparent repression of POR and KOR activities by Mtz affected bacterial growth as manifest by extended lag periods and growth yield reductions of > 30%. A dose-dependent relationship was demonstrated between the metronidazole concentration in the growth medium and the specific activity of POR measured in bacterial cell extracts. The observed repression was not due to inactivation of POR by Mtz. In addition to repression of POR and KOR activities, growth in the presence of Mtz also led to decreases in the activities of various Krebs cycle enzymes, including aconitase, isocitrate dehydrogenase and succinate dehydrogenase. All of the Mtz(r) strains examined expressed isocitrate lyase and malate synthase activities indicative of the glyoxylate bypass. No isocitrate lyase activity was detected in Mtz(s) strain HP500. Isocitrate lyase activity was expressed by HP500 following transformation to Mtz resistance (Mtz(r) strain HP1107) with DNA from an Mtz(r) strain. The results of this study suggest that Mtz resistance may be a recessive trait, possibly involving inactivation of a regulatory gene, that results in constitutive expression of isocitrate lyase. Repression of POR and KOR activities in response to low levels of Mtz may be a general response of H. pylori strains to Mtz, but only resistant strains manage to survive via activation of compensatory metabolic pathways.
Collapse
|
research-article |
29 |
95 |
15
|
Devasahayam G, Scheld WM, Hoffman PS. Newer antibacterial drugs for a new century. Expert Opin Investig Drugs 2010; 19:215-34. [PMID: 20053150 DOI: 10.1517/13543780903505092] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
IMPORTANCE OF THE FIELD Antibacterial drug discovery and development has slowed considerably in recent years, with novel classes discovered decades ago and regulatory approvals tougher to get. Traditional approaches and the newer genomic mining approaches have not yielded novel classes of antibacterial compounds. Instead, improved analogues of existing classes of antibacterial drugs have been developed by improving potency, minimizing resistance and alleviating toxicity. AREAS COVERED IN THIS REVIEW This article is a comprehensive review of newer classes of antibacterial drugs introduced or approved after year 2000. WHAT THE READER WILL GAIN It describes their mechanisms of action/resistance, improved analogues, spectrum of activity and clinical trials. It also discusses new compounds in development with novel mechanisms of action, as well as novel unexploited bacterial targets and strategies that may pave the way for combating drug resistance and emerging pathogens in the twenty-first century. TAKE HOME MESSAGE The outlook of antibacterial drug discovery, though challenging, may not be insurmountable in the years ahead, with legislation on incentives and funding introduced for developing an antimicrobial discovery program and efforts to conserve antibacterial drug use.
Collapse
|
Review |
15 |
93 |
16
|
Garduño RA, Faulkner G, Trevors MA, Vats N, Hoffman PS. Immunolocalization of Hsp60 in Legionella pneumophila. J Bacteriol 1998; 180:505-13. [PMID: 9457851 PMCID: PMC106915 DOI: 10.1128/jb.180.3.505-513.1998] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
One of the most abundant proteins synthesized by Legionella pneumophila, particularly during growth in a variety of eukaryotic host cells, is Hsp60, a member of the GroEL family of molecular chaperones. The present study was initiated in response to a growing number of reports suggesting that for some bacteria, including L. pneumophila, Hsp60 may exist in extracytoplasmic locations. Immunolocalization techniques with Hsp60-specific monoclonal and polyclonal antibodies were used to define the subcellular location and distribution of Hsp60 in L. pneumophila grown in vitro, or in vivo inside of HeLa cells. For comparative purposes Escherichia coli, expressing recombinant L. pneumophila Hsp60, was employed. In contrast to E. coli, where Hsp60 was localized exclusively in the cytoplasm, in L. pneumophila Hsp60 was predominantly associated with the cell envelope, conforming to a distribution pattern typical of surface molecules that included the major outer membrane protein OmpS and lipopolysaccharide. Interestingly, heat-shocked L. pneumophila organisms exhibited decreased overall levels of cell-associated Hsp60 epitopes and increased relative levels of surface epitopes, suggesting that Hsp60 was released by stressed bacteria. Putative secretion of Hsp60 by L. pneumophila was further indicated by the accumulation of Hsp60 in the endosomal space, between replicating intracellular bacteria. These results are consistent with an extracytoplasmic location for Hsp60 in L. pneumophila and further suggest both the existence of a novel secretion mechanism (not present in E. coli) and a potential role in pathogenesis.
Collapse
|
research-article |
27 |
91 |
17
|
|
Review |
39 |
90 |
18
|
Hoffman PS, George HA, Krieg NR, Smibert RM. Studies of the microaerophilic nature of Campylobacter fetus subsp. jejuni. II. Role of exogenous superoxide anions and hydrogen peroxide. Can J Microbiol 1979; 25:8-16. [PMID: 218715 DOI: 10.1139/m79-002] [Citation(s) in RCA: 83] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The addition of bovine superoxide dismutase to Brucella broth or Brucellar agar greatly echanced the oxygen tolerance of Campylobacter fetus subsp. jejuni strain H840 (ATCC 29428). Catalase also enhanced oxygen tolerance, but to a lesser extent. These enzymes must act externally to the bacteria. All of the diverse compounds which enhance oxygen tolerance of C. fetus, including nor-epinephrine and a combination of ferrous sulfate, sodium metabisulfite, and sodium pyruvate, share the ability to quench either superoxide anions or hydrogen peroxide. On the basis of these and other data, we propose that C. fetus is more sensitive to exogenous superoxide anions and hydrogen peroxide than are aerotolerant bacteria, despite the occurrence of superoxide dismutase and catalse activities in C. fetus. Compounds that enhance oxygen tolerance in C. fetus appear to act by quenching superoxide anions and hydrogen peroxide which occur spontaneously in the culture medium.
Collapse
|
|
46 |
83 |
19
|
Hoffman PS, Houston L, Butler CA. Legionella pneumophila htpAB heat shock operon: nucleotide sequence and expression of the 60-kilodalton antigen in L. pneumophila-infected HeLa cells. Infect Immun 1990; 58:3380-7. [PMID: 2205580 PMCID: PMC313664 DOI: 10.1128/iai.58.10.3380-3387.1990] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A 60-kilodalton (kDa) immunodominant antigen of Legionella pneumophila is a heat shock protein (HSP) of the GroEL class of HSPs. The gene (htpB) coding the 60-kDa protein was localized to a 3.2-kilobase DNA fragment of L. pneumophila cloned into pUC19 (pSH16) (P. S. Hoffman, C. A. Butler, and F. D. Quinn, Infect. Immun. 57:1731-1739, 1989). The nucleotide sequence of the DNA fragment cloned into M13 confirmed two open reading frames, htpA and htpB, that code for proteins of 96 and 548 amino acids, respectively. A consensus heat shock promoter sequence upstream of the start of htpA was identified, and no obvious promoter sequences were detected upstream of htpB. Amino acid sequence comparison studies revealed that the L. pneumophila HtpB protein exhibited 76% homology with the 65-kDa protein of Mycobacterium tuberculosis and 85% homology with both GroEL of Escherichia coli and HtpB of Coxiella burnetii. A comparison of the amino acid sequences among these proteins revealed several regions of nearly absolute sequence conservation, with the variable regions occurring in common areas. The purified L. pneumophila 60-kDa protein was antigenic for human T lymphocytes. Indirect fluorescent antibody studies indicated that the 60-kDa protein may be located in the periplasm or expressed on the surface by intracellular bacteria, suggesting that a stress-related mechanism may be involved in the expression of this immunodominant antigen.
Collapse
|
research-article |
35 |
78 |
20
|
Hoffman PS, Pine L, Bell S. Production of superoxide and hydrogen peroxide in medium used to culture Legionella pneumophila: catalytic decomposition by charcoal. Appl Environ Microbiol 1983; 45:784-91. [PMID: 6303219 PMCID: PMC242371 DOI: 10.1128/aem.45.3.784-791.1983] [Citation(s) in RCA: 76] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The difficulties associated with the growth of Legionella species in common laboratory media may be due to the sensitivity of these organisms to low levels of hydrogen peroxide and superoxide radicals. Exposure of yeast extract (YE) broth to fluorescent light generated superoxide radicals (3 microM/h) and hydrogen peroxide (16 microM/h). Autoclaved YE medium was more prone to photochemical oxidation than YE medium sterilized by filtration. Activated charcoals and, to a lesser extent, graphite, but not starch, prevented photochemical oxidation of YE medium, decomposed hydrogen peroxide and superoxide radicals, and prevented light-accelerated autooxidation of cysteine. Also, suspensions of charcoal in phosphate buffer and in charcoal yeast extract medium readily decomposed exogenous peroxide (17 and 23 nmol/ml per min, respectively). Combinations of bovine superoxide dismutase and catalase also decreased the rate of photooxidation of YE medium. Medium protected from light did not accumulate appreciable levels of hydrogen peroxide, and autoclaved YE medium protected from light supported good growth of Legionella micdadei. Various species of Legionella (10(4) cells per ml) exhibited sensitivity to relatively low levels of hydrogen peroxide (26.5 microM) in challenge experiments. The level of hydrogen peroxide that accumulated in YE medium over a period of several hours (greater than 50 microM) was in excess of the level tolerated by Legionella pneumophila, which contained no measurable catalase activity. Strains of L. micdadei, Legionella dumoffi, and Legionella bozmanii contained this enzyme, but the presence of catalase did not appear to confer appreciable tolerance to exogenously generated hydrogen peroxide.
Collapse
|
research-article |
42 |
76 |
21
|
Hoffman PS, Goodman TG. Respiratory physiology and energy conservation efficiency of Campylobacter jejuni. J Bacteriol 1982; 150:319-26. [PMID: 6277867 PMCID: PMC220116 DOI: 10.1128/jb.150.1.319-326.1982] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A study of the electron transport chain of the human intestinal pathogen Campylobacter jejuni revealed a rich complement of b- and c-type cytochromes. Two c-type cytochromes were partially purified: one, possibly an oxidase, bound carbon monoxide whereas the other, of high potential was unreactive with carbon monoxide. Respiratory activities determined with membrane vesicles were 50- to 100-fold higher with formate and hydrogen than with succinate, lactate, malate, or NADH as substrates. Evidence for three terminal respiratory components was obtained from respiratory kinetic studies employing cyanide, and the following Ki values for cyanide were determined from Dixon plots: ascorbate + reduced N,N,N', N'-tetramethyl-p-phenylenediamine, K1 + 3.5 muM; malate, K1 = 55 muM; and hydrogen, K1 = 4.5 muM. Two oxidases (K1 = 90 muM, 4.5 mM) participated in the oxidation of succinate, lactate, and formate. Except with formate, 37 muM HQNO inhibited respiration by approximately 50%. Carbon monoxide had little inhibitory effect on respiration except under low oxygen tension (less than 10% air saturation). The stoichiometry of respiratory-driven proton translocation (H+/O) determined with whole cells was approximately 2 for all substrates examined except hydrogen (H+/) = 3.7) and formate (H+/O = 2.5). The higher stoichiometries observed with hydrogen and formate are consistent with their respective dehydrogenase being located on the periplasmic face of the cytoplasmic membrane. The results of this study suggest that the oxidation of hydrogen and formate probably serves as the major sources of energy for growth.
Collapse
|
research-article |
43 |
73 |
22
|
Hoffman PS, Butler CA, Quinn FD. Cloning and temperature-dependent expression in Escherichia coli of a Legionella pneumophila gene coding for a genus-common 60-kilodalton antigen. Infect Immun 1989; 57:1731-9. [PMID: 2566581 PMCID: PMC313348 DOI: 10.1128/iai.57.6.1731-1739.1989] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All Legionella species express a 60-kilodalton (kDa) protein which contains a genus-specific epitope recognized by murine monoclonal antibody GW2X4B8B2H6. A genomic cosmid library of Legionella pneumophila chromosomal DNA was constructed in pHC79 and screened for 60-kDa antigen-expressing clones with the monoclonal antibody. A 3.2-kilobase EcoRI fragment from cosmid 14B11 expressing a 60-kDa protein was subcloned into pUC19 (pSH16), and deletion of a 1.2-kilobase HindIII fragment (pSH16A) generated a 33-kDa truncated polypeptide no longer reactive with the monoclonal antibody. Southern blot analysis of chromosomal DNA from selected Legionella species restricted with EcoRI and probed with the 1.2-kilobase fragment coding for the carboxyl region of the protein revealed DNA homology which was not observed with DNA from Escherichia coli. Maxicell analysis of pSH16 identified a second polypeptide of approximately 15 kDa expressed from a gene (htpA) upstream of the gene coding the 60-kDa protein (htpB). Both proteins were preferentially synthesized by L. pneumophila following heat shock (temperature shift from 25 to 42 degrees C), and under steady-state growth conditions the relative level of 60-kDa protein was unaffected by temperature. In E. coli, expression of a 60-kDa protein from pSH16 also increased following heat shock (25 to 42 degrees C), but under steady-state conditions expression was temperature dependent. Temperature-dependent expression from pSH16 was not observed in an rpoH (htpR) mutant strain of E. coli. The Legionella 60-kDa protein appears to be a heat shock protein which shares cross-reactive epitopes with the GroEL homolog of E. coli. In addition, a region of htpB encoding the 27-kDa carboxyl portion of the protein containing the monoclonal antibody-reactive epitope also contains DNA sequences unique to and conserved within the genus.
Collapse
|
research-article |
36 |
70 |
23
|
Fernandez RC, Logan SM, Lee SH, Hoffman PS. Elevated levels of Legionella pneumophila stress protein Hsp60 early in infection of human monocytes and L929 cells correlate with virulence. Infect Immun 1996; 64:1968-76. [PMID: 8675295 PMCID: PMC174024 DOI: 10.1128/iai.64.6.1968-1976.1996] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Legionella pneumophila 2064 was selectively radiolabelled in mouse L929 cells and human monocytes to identify proteins expressed early in the course of infection. Polypeptide profiles (sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography) of adherent or intracellular bacteria indicated that a 60-kDa stress protein (Hsp60) was preferentially synthesized. Hsp60 synthesis was not induced by medium alone. The synthesis of many polypeptides, including OmpS (major outer membrane protein), diminished over the 1-h period postinfection. However, by 17 h postinfection OmpS and Hsp60 were the dominant proteins synthesized by 2064. To establish whether induction of Hsp60 was a correlate of virulence, an isogenic avirulent strain (2064M) of 2064 was isolated following selection on a nonpermissive medium. 2064M did not exhibit a stress response when adherent or intracellular in L929 cells or in human monocytes and failed to abrogate phagosome-lysosome fusion. When grown in vitro, 2064M exhibited no deficiencies in the heat shock response and its polypeptide profile resembled that of 2064. Immunogold electron microscopy was used to localize Hsp60 in L. pneumophila-infected L929 cells. There was an increase in the number of gold particles associated with phagosomes for phagosomes harboring single 2064 bacteria compared with those harboring 2064M. Moreover, by 1 h postinfection, a sixfold increase in the number of gold spheres associated with the membranes of phagosomes was observed for phagosomes harboring 2064 compared with those harboring 2064M. These studies indicate that virulent, but not NaCl-tolerant avirulent, strains of L. pneumophila respond to host-cell-associated environmental signals early in the course of infection. This response includes increased synthesis and possibly extracellular secretion of Hsp60 concomitant with repression of the expression of other genes, including ompS.
Collapse
|
research-article |
29 |
62 |
24
|
Jeong JY, Mukhopadhyay AK, Akada JK, Dailidiene D, Hoffman PS, Berg DE. Roles of FrxA and RdxA nitroreductases of Helicobacter pylori in susceptibility and resistance to metronidazole. J Bacteriol 2001; 183:5155-62. [PMID: 11489869 PMCID: PMC95392 DOI: 10.1128/jb.183.17.5155-5162.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2000] [Accepted: 06/06/2001] [Indexed: 01/28/2023] Open
Abstract
The relative importance of the frxA and rdxA nitroreductase genes of Helicobacter pylori in metronidazole (MTZ) susceptibility and resistance has been controversial. Jeong et al. (J. Bacteriol. 182:5082--5090, 2000) had interpreted that Mtz(s) H. pylori were of two types: type I, requiring only inactivation of rdxA to became resistant, and type II, requiring inactivation of both rdxA and frxA to become resistant; frxA inactivation by itself was not sufficient to confer resistance. In contrast, Kwon et al. (Antimicrob. Agents Chemother. 44:2133--2142, 2000) had interpreted that resistance resulted from inactivation either of frxA or rdxA. These two interpretations were tested here. Resistance was defined as efficient colony formation by single cells from diluted cultures rather than as growth responses of more dense inocula on MTZ-containing medium. Tests of three of Kwon's Mtz(s) strains showed that each was type II, requiring inactivation of both rdxA and frxA to become resistant. In additional tests, derivatives of frxA mutant strains recovered from MTZ-containing medium were found to contain new mutations in rdxA, and frxA inactivation slowed MTZ-induced killing of Mtz(s) strains. Northern blot analyses indicated that frxA mRNA, and perhaps also rdxA mRNA, were more abundant in type II than in type I strains. We conclude that development of MTZ resistance in H. pylori requires inactivation of rdxA alone or of both rdxA and frxA, depending on bacterial genotype, but rarely, if ever, inactivation of frxA alone, and that H. pylori strains differ in regulation of nitroreductase gene expression. We suggest that such regulatory differences may be significant functionally during human infection.
Collapse
|
research-article |
24 |
62 |
25
|
Debets-Ossenkopp YJ, Pot RG, van Westerloo DJ, Goodwin A, Vandenbroucke-Grauls CM, Berg DE, Hoffman PS, Kusters JG. Insertion of mini-IS605 and deletion of adjacent sequences in the nitroreductase (rdxA) gene cause metronidazole resistance in Helicobacter pylori NCTC11637. Antimicrob Agents Chemother 1999; 43:2657-62. [PMID: 10543743 PMCID: PMC89539 DOI: 10.1128/aac.43.11.2657] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We found that NCTC11637, the type strain of Helicobacter pylori, the causative agent of peptic ulcer disease and an early risk factor for gastric cancer, is metronidazole resistant. DNA transformation, PCR-based restriction analysis, and DNA sequencing collectively showed that the metronidazole resistance of this strain was due to mutation in rdxA (gene HP0954 in the full genome sequence of H. pylori 26695) and that resistance did not depend on mutation in any of the other genes that had previously been suggested: catalase (katA), ferredoxin (fdx), flavodoxin (fldA), pyruvate:flavodoxin oxidoreductase (porgammadeltaalphabeta), RecA (recA), or superoxide dismutase (sodB). This is in accord with another recent study that attributed metronidazole resistance to point mutations in rdxA. However, the mechanism of rdxA inactivation that we found in NCTC11637 is itself also novel: insertion of mini-IS605, one of the endogenous transposable elements of H. pylori, and deletion of adjacent DNA sequences including 462 bp of the 851-bp-long rdxA gene.
Collapse
|
research-article |
26 |
62 |