1
|
Tumbarello DA, Manna PT, Allen M, Bycroft M, Arden SD, Kendrick-Jones J, Buss F. The Autophagy Receptor TAX1BP1 and the Molecular Motor Myosin VI Are Required for Clearance of Salmonella Typhimurium by Autophagy. PLoS Pathog 2015; 11:e1005174. [PMID: 26451915 PMCID: PMC4599966 DOI: 10.1371/journal.ppat.1005174] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/28/2015] [Indexed: 01/12/2023] Open
Abstract
Autophagy plays a key role during Salmonella infection, by eliminating these pathogens following escape into the cytosol. In this process, selective autophagy receptors, including the myosin VI adaptor proteins optineurin and NDP52, have been shown to recognize cytosolic pathogens. Here, we demonstrate that myosin VI and TAX1BP1 are recruited to ubiquitylated Salmonella and play a key role in xenophagy. The absence of TAX1BP1 causes an accumulation of ubiquitin-positive Salmonella, whereas loss of myosin VI leads to an increase in ubiquitylated and LC3-positive bacteria. Our structural studies demonstrate that the ubiquitin-binding site of TAX1BP1 overlaps with the myosin VI binding site and point mutations in the TAX1BP1 zinc finger domains that affect ubiquitin binding also ablate binding to myosin VI. This mutually exclusive binding and the association of TAX1BP1 with LC3 on the outer limiting membrane of autophagosomes may suggest a molecular mechanism for recruitment of this motor to autophagosomes. The predominant role of TAX1BP1, a paralogue of NDP52, in xenophagy is supported by our evolutionary analysis, which demonstrates that functionally intact NDP52 is missing in Xenopus and mice, whereas TAX1BP1 is expressed in all vertebrates analysed. In summary, this work highlights the importance of TAX1BP1 as a novel autophagy receptor in myosin VI-mediated xenophagy. Our study identifies essential new machinery for the autophagy-dependent clearance of Salmonella typhimurium and suggests modulation of myosin VI motor activity as a potential therapeutic target in cellular immunity.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
163 |
2
|
Edgar JR, Manna PT, Nishimura S, Banting G, Robinson MS. Tetherin is an exosomal tether. eLife 2016; 5. [PMID: 27657169 PMCID: PMC5033606 DOI: 10.7554/elife.17180] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/25/2016] [Indexed: 12/19/2022] Open
Abstract
Exosomes are extracellular vesicles that are released when endosomes fuse with the plasma membrane. They have been implicated in various functions in both health and disease, including intercellular communication, antigen presentation, prion transmission, and tumour cell metastasis. Here we show that inactivating the vacuolar ATPase in HeLa cells causes a dramatic increase in the production of exosomes, which display endocytosed tracers, cholesterol, and CD63. The exosomes remain clustered on the cell surface, similar to retroviruses, which are attached to the plasma membrane by tetherin. To determine whether tetherin also attaches exosomes, we knocked it out and found a 4-fold reduction in plasma membrane-associated exosomes, with a concomitant increase in exosomes discharged into the medium. This phenotype could be rescued by wild-type tetherin but not tetherin lacking its GPI anchor. We propose that tetherin may play a key role in exosome fate, determining whether they participate in long-range or short-range interactions.
Collapse
|
Journal Article |
9 |
126 |
3
|
Manna PT, Boehm C, Leung KF, Natesan SK, Field MC. Life and times: synthesis, trafficking, and evolution of VSG. Trends Parasitol 2014; 30:251-8. [PMID: 24731931 PMCID: PMC4007029 DOI: 10.1016/j.pt.2014.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 11/30/2022]
Abstract
Evasion of the acquired immune response in African trypanosomes is principally mediated by antigenic variation, the sequential expression of distinct variant surface glycoproteins (VSGs) at extremely high density on the cell surface. Sequence diversity between VSGs facilitates escape of a subpopulation of trypanosomes from antibody-mediated killing. Significant advances have increased understanding of the mechanisms underpinning synthesis and maintenance of the VSG coat. In this review, we discuss the biosynthesis, trafficking, and turnover of VSG, emphasising those unusual mechanisms that act to maintain coat integrity and to protect against immunological attack. We also highlight new findings that suggest the presence of unique or highly divergent proteins that may offer therapeutic opportunities, as well as considering aspects of VSG biology that remain to be fully explored.
Collapse
|
Review |
11 |
49 |
4
|
Manna PT, Smith AJ, Taneja TK, Howell GJ, Lippiat JD, Sivaprasadarao A. Constitutive endocytic recycling and protein kinase C-mediated lysosomal degradation control K(ATP) channel surface density. J Biol Chem 2010; 285:5963-73. [PMID: 20026601 PMCID: PMC2820821 DOI: 10.1074/jbc.m109.066902] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 12/07/2009] [Indexed: 11/06/2022] Open
Abstract
Pancreatic ATP-sensitive potassium (K(ATP)) channels control insulin secretion by coupling the excitability of the pancreatic beta-cell to glucose metabolism. Little is currently known about how the plasma membrane density of these channels is regulated. We therefore set out to examine in detail the endocytosis and recycling of these channels and how these processes are regulated. To achieve this goal, we expressed K(ATP) channels bearing an extracellular hemagglutinin epitope in human embryonic kidney cells and followed their fate along the endocytic pathway. Our results show that K(ATP) channels undergo multiple rounds of endocytosis and recycling. Further, activation of protein kinase C (PKC) with phorbol 12-myristate 13-acetate significantly decreases K(ATP) channel surface density by reducing channel recycling and diverting the channel to lysosomal degradation. These findings were recapitulated in the model pancreatic beta-cell line INS1e, where activation of PKC leads to a decrease in the surface density of native K(ATP) channels. Because sorting of internalized channels between lysosomal and recycling pathways could have opposite effects on the excitability of pancreatic beta-cells, we propose that PKC-regulated K(ATP) channel trafficking may play a role in the regulation of insulin secretion.
Collapse
|
research-article |
15 |
44 |
5
|
Manna PT, Kelly S, Field MC. Adaptin evolution in kinetoplastids and emergence of the variant surface glycoprotein coat in African trypanosomatids. Mol Phylogenet Evol 2013; 67:123-8. [PMID: 23337175 PMCID: PMC3650584 DOI: 10.1016/j.ympev.2013.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/20/2012] [Accepted: 01/07/2013] [Indexed: 11/25/2022]
Abstract
The kinetoplastids are an important group of protozoa from the Excavata supergroup, and cause numerous diseases with wide environmental, economic and ecological impact. Trypanosoma brucei, the causative agent of human African trypanosomiasis, expresses a dense variant surface glycoprotein (VSG) coat, facilitating immune evasion via rapid switching and antigenic variation. Coupled to VSG switching is efficient clathrin-mediated endocytosis (CME), which removes anti-VSG antibody from the parasite surface. While the precise molecular basis for an extreme CME flux is unknown, genes encoding the AP2 complex, central to CME in most organisms, are absent from T. brucei, suggesting a mechanistic divergence in trypanosome CME. Here we identify the AP complex gene cohorts of all available kinetoplastid genomes and a new Trypanosoma grayi genome. We find multiple secondary losses of AP complexes, but that loss of AP2 is restricted to T. brucei and closest relatives. Further, loss of AP2 correlates precisely with the presence of VSG genes, supporting a model whereby these two adaptations may function synergistically in immune evasion.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
40 |
6
|
Mango D, Ricci S, Manna P, Miggiano GA, Serra GB. Clinical and hormonal effects of ethinylestradiol combined with gestodene and desogestrel in young women with acne vulgaris. Contraception 1996; 53:163-70. [PMID: 8689881 DOI: 10.1016/0010-7824(96)00005-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effect of gestodene 75 micrograms (GTD) versus desogestrel 150 micrograms (DSG) combined with 30 micrograms of ethinylestradiol (EE) on acne lesions and plasma androstenedione (A), total testosterone (T), sex hormone binding globulin (SHBG) and "free androgen index" (FAI) was evaluated in an open study on 19 patients aged 18-35 years affected with postpubertal or persistent non-severe acne vulgaris. The patients were randomly allocated into two groups receiving EE-GTD (n = 8) and EE-DSG (n = 11), 21 tablets per cycle for 9 consecutive cycles. Clinical and hormonal evaluations were made between days 17-21 in the cycle before treatment and between days 17-21 of the cycle 3, 6 and 9 of treatment. During treatment, acne improved in most patients, reaching at cycle 9 a low score (absent or minimal) in 62% of the cases in the GTD group (mean acne score = 1.25) and in 90% of the cases in the DSG group (mean acne score = 0.90). Before treatment, about 75% of the patients showed one or more signs of biochemical hyperandrogenism, including elevated FAI (57%), elevated A (15%), elevated total T (15%) and decreased SHBG (21%), and there was evidence of inverse correlation between SHBG and acne scores (p < 0.05). The echogenic texture of the ovaries was multifollicular in 55% of the cases. By the end of the third cycle of treatment, the hormonal changes observed in both groups included significant decreases, with normalization of individual elevated levels of T, and a 3-fold rise of the initial values of plasma SHBG, which showed a further gradual increase at cycle 9 of EE-DSG administration. At cycle 9, normalization of the echogenic ovarian texture was observed. Acne improvement under treatments with estrogen and progestin (EP) could be significantly correlated with the normalization of biochemical hyperandrogenism. In conclusion, the biochemical and clinical efficacy of EE-GTD and EE-DSG indicate that both these preparations can be a good choice in the therapy of acne vulgaris, with a non-significant better clinical result with EE-DSG.
Collapse
|
Clinical Trial |
29 |
39 |
7
|
Kelly S, Ivens A, Manna PT, Gibson W, Field MC. A draft genome for the African crocodilian trypanosome Trypanosoma grayi. Sci Data 2014; 1:140024. [PMID: 25977781 PMCID: PMC4322581 DOI: 10.1038/sdata.2014.24] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/09/2014] [Indexed: 02/01/2023] Open
Abstract
The availability of genome sequence data has greatly enhanced our understanding of the adaptations of trypanosomatid parasites to their respective host environments. However, these studies remain somewhat restricted by modest taxon sampling, generally due to focus on the most important pathogens of humans. To address this problem, at least in part, we are releasing a draft genome sequence for the African crocodilian trypanosome, Trypanosoma grayi ANR4. This dataset comprises genomic DNA sequences assembled de novo into contigs, encompassing over 10,000 annotated putative open reading frames and predicted protein products. Using phylogenomic approaches we demonstrate that T. grayi is more closely related to Trypanosoma cruzi than it is to the African trypanosomes T. brucei, T. congolense and T. vivax, despite the fact T. grayi and the African trypanosomes are each transmitted by tsetse flies. The data are deposited in publicly accessible repositories where we hope they will prove useful to the community in evolutionary studies of the trypanosomatids.
Collapse
|
Dataset |
11 |
37 |
8
|
Yang W, Manna PT, Zou J, Luo J, Beech DJ, Sivaprasadarao A, Jiang LH. Zinc inactivates melastatin transient receptor potential 2 channels via the outer pore. J Biol Chem 2011; 286:23789-98. [PMID: 21602277 PMCID: PMC3129160 DOI: 10.1074/jbc.m111.247478] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/19/2011] [Indexed: 10/18/2022] Open
Abstract
Zinc ion (Zn(2+)) is an endogenous allosteric modulator that regulates the activity of a wide variety of ion channels in a reversible and concentration-dependent fashion. Here we used patch clamp recording to study the effects of Zn(2+) on the melastatin transient receptor potential 2 (TRPM2) channel. Zn(2+) inhibited the human (h) TRPM2 channel currents, and the steady-state inhibition was largely not reversed upon washout and concentration-independent in the range of 30-1000 μM, suggesting that Zn(2+) induces channel inactivation. Zn(2+) inactivated the channels fully when they conducted inward currents, but only by half when they passed outward currents, indicating profound influence of the permeant ion on Zn(2+) inactivation. Alanine substitution scanning mutagenesis of 20 Zn(2+)-interacting candidate residues in the outer pore region of the hTRPM2 channel showed that mutation of Lys(952) in the extracellular end of the fifth transmembrane segment and Asp(1002) in the large turret strongly attenuated or abolished Zn(2+) inactivation, and mutation of several other residues dramatically changed the inactivation kinetics. The mouse (m) TRPM2 channels were also inactivated by Zn(2+), but the kinetics were remarkably slower. Reciprocal mutation of His(995) in the hTRPM2 channel and the equivalent Gln(992) in the mTRPM2 channel completely swapped the kinetics, but no such opposing effects resulted from exchanging another pair of species-specific residues, Arg(961)/Ser(958). We conclude from these results that Zn(2+) inactivates the TRPM2 channels and that residues in the outer pore are critical determinants of the inactivation.
Collapse
|
research-article |
14 |
37 |
9
|
Navarro Negredo P, Edgar JR, Manna PT, Antrobus R, Robinson MS. The WDR11 complex facilitates the tethering of AP-1-derived vesicles. Nat Commun 2018; 9:596. [PMID: 29426865 PMCID: PMC5807400 DOI: 10.1038/s41467-018-02919-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/02/2018] [Indexed: 12/14/2022] Open
Abstract
Vesicluar transport of proteins from endosomes to the trans-Golgi network (TGN) is an essential cellular pathway, but much of its machinery is still unknown. A screen for genes involved in endosome-to-TGN trafficking produced two hits, the adaptor protein-1 (AP-1 complex), which facilitates vesicle budding, and WDR11. Here we demonstrate that WDR11 forms a stable complex with two other proteins, which localises to the TGN region and does not appear to be associated with AP-1, suggesting it may act downstream from budding. In a vesicle tethering assay, capture of vesicles by golgin-245 was substantially reduced in WDR11-knockout cells. Moreover, structured illumination microscopy and relocation assays indicate that the WDR11 complex is initially recruited onto vesicles rather than the TGN, where it may in turn recruit the golgin binding partner TBC1D23. We propose that the complex acts together with TBC1D23 to facilitate the golgin-mediated capture of vesicles that were generated using AP-1. Trafficking from endosomes to the trans-Golgi network requires recognition of vesicle tethers during membrane docking. Here, the authors identify a complex localised to AP-1 generated vesicles containing WDR11, C17orf75 and FAM91A, which together with TBC1D23 facilitates vesicle capture on Golgi membranes
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
29 |
10
|
Olack B, Manna P, Jaramillo A, Steward N, Swanson C, Kaesberg D, Poindexter N, Howard T, Mohanakumar T. Indirect recognition of porcine swine leukocyte Ag class I molecules expressed on islets by human CD4+ T lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1294-9. [PMID: 10903729 DOI: 10.4049/jimmunol.165.3.1294] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Xenotransplantation of porcine islets is considered a viable alternative treatment for type 1 diabetes mellitus. Therefore, we characterized human PBL responding to porcine islets both in vitro by coculture and in vivo using SCID mice reconstituted with human PBLs (HuPBL-SCID) and transplanted with porcine islets. T cell lines generated in vitro and graft-infiltrating T cells obtained from HuPBL-SCID mice were CD4+-proliferated specifically to porcine islets cultured with autologous APC. This proliferation was abrogated by an anti-human class II Ab. These T cell lines also proliferated to purified swine leukocyte Ag (SLA) class I molecules in the presence of self-APC, indicating that the primary xenoantigens recognized are peptides derived from SLA. This CD4+ T cell line lysed porcine islets but not splenocytes. CD4+ T cell clones with Th0, Th1, and Th2 cytokine profiles were isolated. The Th0 and Th1 clones lysed porcine islets, whereas the Th2 clone that secreted a large amount of IL-4 was not lytic. These results demonstrate that human T cells responding to porcine islets are primarily CD4+ and recognize porcine xenoantigens by the indirect Ag pathway presentation. These activated T cells produce cytokines that lyse islets. Furthermore, we demonstrate that the major porcine xenoantigens recognized are SLA class I molecules.
Collapse
|
|
25 |
28 |
11
|
Newton T, Allison R, Edgar JR, Lumb JH, Rodger CE, Manna PT, Rizo T, Kohl Z, Nygren AOH, Arning L, Schüle R, Depienne C, Goldberg L, Frahm C, Stevanin G, Durr A, Schöls L, Winner B, Beetz C, Reid E. Mechanistic basis of an epistatic interaction reducing age at onset in hereditary spastic paraplegia. Brain 2019; 141:1286-1299. [PMID: 29481671 PMCID: PMC5917785 DOI: 10.1093/brain/awy034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
Many genetic neurological disorders exhibit variable expression within affected families, often exemplified by variations in disease age at onset. Epistatic effects (i.e. effects of modifier genes on the disease gene) may underlie this variation, but the mechanistic basis for such epistatic interactions is rarely understood. Here we report a novel epistatic interaction between SPAST and the contiguous gene DPY30, which modifies age at onset in hereditary spastic paraplegia, a genetic axonopathy. We found that patients with hereditary spastic paraplegia caused by genomic deletions of SPAST that extended into DPY30 had a significantly younger age at onset. We show that, like spastin, the protein encoded by SPAST, the DPY30 protein controls endosomal tubule fission, traffic of mannose 6-phosphate receptors from endosomes to the Golgi, and lysosomal ultrastructural morphology. We propose that additive effects on this pathway explain the reduced age at onset of hereditary spastic paraplegia in patients who are haploinsufficient for both genes.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
27 |
12
|
Naylor J, Al-Shawaf E, McKeown L, Manna PT, Porter KE, O'Regan D, Muraki K, Beech DJ. TRPC5 channel sensitivities to antioxidants and hydroxylated stilbenes. J Biol Chem 2010; 286:5078-86. [PMID: 21127073 PMCID: PMC3037619 DOI: 10.1074/jbc.m110.196956] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Transient receptor potential canonical 5 (TRPC5) forms cationic channels that are polymodal sensors of factors including oxidized phospholipids, hydrogen peroxide, and reduced thioredoxin. The aim of this study was to expand knowledge of the chemical-sensing capabilities of TRPC5 by investigating dietary antioxidants. Human TRPC5 channels were expressed in HEK 293 cells and studied by patch clamp and intracellular Ca(2+) recording. GFP- and HA-tagged channels were used to quantify plasma membrane localization. Gallic acid and vitamin C suppressed TRPC5 activity if it was evoked by exogenous hydrogen peroxide or lanthanide ions but not by lysophosphatidylcholine or carbachol. Catalase mimicked the effects, suggesting that lanthanide-evoked activity depended on endogenous hydrogen peroxide. Trans-resveratrol, by contrast, inhibited all modes of TRPC5, and its effect was additive with that of vitamin C, suggesting antioxidant-independent action. The IC(50) was ∼10 μM. Diethylstilbestrol, a related hydroxylated stilbene, inhibited TRPC5 with a similar IC(50), but its action contrasted sharply with that of resveratrol in outside-out membrane patches where diethylstilbestrol caused strong and reversible inhibition and resveratrol had no effect, suggesting indirect modulation by resveratrol. Resveratrol did not affect channel surface density, but its effect was calcium-sensitive, indicating an action via a calcium-dependent intermediate. The data suggest previously unrecognized chemical-sensing properties of TRPC5 through multiple mechanisms: (i) inhibition by scavengers of reactive oxygen species because a mode of TRPC5 activity depends on endogenous hydrogen peroxide; (ii) direct channel blockade by diethylstilbestrol; and (iii) indirect, antioxidant-independent inhibition by resveratrol.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
27 |
13
|
Manna PT, Gadelha C, Puttick AE, Field MC. ENTH and ANTH domain proteins participate in AP2-independent clathrin-mediated endocytosis. J Cell Sci 2015; 128:2130-42. [PMID: 25908855 PMCID: PMC4450294 DOI: 10.1242/jcs.167726] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/13/2015] [Indexed: 01/17/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) is a major route of entry into eukaryotic cells. A core of evolutionarily ancient genes encodes many components of this system but much of our mechanistic understanding of CME is derived from a phylogenetically narrow sampling of a few model organisms. In the parasite Trypanosoma brucei, which is distantly related to the better characterised animals and fungi, exceptionally fast endocytic turnover aids its evasion of the host immune system. Although clathrin is absolutely essential for this process, the adaptor protein complex 2 (AP2) has been secondarily lost, suggesting mechanistic divergence. Here, we characterise two phosphoinositide-binding monomeric clathrin adaptors, T. brucei (Tb)EpsinR and TbCALM, which in trypanosomes are represented by single genes, unlike the expansions present in animals and fungi. Depletion of these gene products reveals essential, but partially redundant, activities in CME. Ultrastructural analysis of TbCALM and TbEpsinR double-knockdown cells demonstrated severe defects to clathrin-coated pit formation and morphology associated with a dramatic inhibition of endocytosis. Depletion of TbCALM alone, however, produced a distinct lysosomal segregation phenotype, indicating an additional non-redundant role for this protein. Therefore, TbEpsinR and TbCALM represent ancient phosphoinositide-binding proteins with distinct and vital roles in AP2-independent endocytosis.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
26 |
14
|
Kadison A, Kim J, Maldonado T, Crisera C, Prasadan K, Manna P, Preuett B, Hembree M, Longaker M, Gittes G. Retinoid signaling directs secondary lineage selection in pancreatic organogenesis. J Pediatr Surg 2001; 36:1150-6. [PMID: 11479845 DOI: 10.1053/jpsu.2001.25734] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND/PURPOSE Retinoid signaling plays an important role in many differentiation pathways. Retinoid signaling has been implicated in the induction of differentiation by pancreatic ductal cancer cell lines and in patients with pancreatic cancer. The authors wished to better understand the role of retinoid signaling in pancreatic development. METHODS Embryonic pancreas was harvested from mice at serial gestational ages and immunohistochemical analysis was performed for retinoic acid receptors (RAR-alpha, RAR-beta, RAR-gamma), and retinoid X receptors (RXR-alpha, RXR-beta, and RXR-gamma). Also, early embryonic pancreases were cultured for 7 days with exogenous 9-cis retinoic acid (9cRA) or all-trans retinoic acid (atRA) and analyzed histologically and immunohistochemically. RESULTS Retinoid receptors were expressed in a lineage-specific distribution, with stronger expression for many in the exocrine compartment. The receptors were not often expressed until late gestation. Exogenous 9cRA induced predominantly ducts instead of acini, plus more mature endocrine (islet) architecture. Exogenous atRA induced predominantly acini instead of ducts, with no apparent endocrine effect. CONCLUSIONS Retinoids may have an important role in pancreatic differentiation, with a particular effect on secondary lineage selection between ductal and acinar phenotype. Because the control of ductal versus acinar differentiation has been implicated strongly in the pathogenesis of pancreatic ductal carcinoma, these results may lay the groundwork for studies in the mechanism of induced differentiation of pancreatic ductal cancer by retinoids.
Collapse
|
Comparative Study |
24 |
25 |
15
|
Manna P, LoBrutto R, Eijckelhoff C, Dekker JP, Vermaas W. Role of Arg180 of the D2 protein in photosystem II structure and function. EUROPEAN JOURNAL OF BIOCHEMISTRY 1998; 251:142-54. [PMID: 9492278 DOI: 10.1046/j.1432-1327.1998.2510142.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
On the basis of sequence comparison with the M subunit of the reaction center of purple bacteria, no residues in photosystem II can be clearly identified that may be predicted to correspond to the His residue that binds one of the accessory bacteriochlorophylls in the purple bacterial reaction center. However, the Arg180 residue of the D2 protein is close to where this residue is predicted to be and could conceivably serve as a chlorophyll ligand. To analyze the function of Arg180, it was changed to nine different amino acids in the cyanobacterium Synechocystis sp. PCC 6803. Except for the Arg180-->Gln (R180Q) mutant, the resulting strains were no longer photoautotrophic. The properties of photosystem II upon mutation of Arg180 were probed in strains from which photosystem I had been deleted genetically. Mutations at the Arg180 residue affected oxygen evolution capacity and the amount of photosystem II that was present in thylakoids. Surprisingly, in the Arg180 mutants, EPR signals that may originate from the oxidized redoxactive Tyr160 of the D2 protein (Y(D)ox) were small and generally did not resemble the usual signal IIs, signifying an effect of the Arg180 mutations on the environment surrounding Tyr160. In addition, in most mutants, the charge recombination kinetics between the primary electron-accepting quinone in photosystem II (Q(A)-) and oxidized species on the donor side were faster upon introducing mutations at Arg180 suggesting an increased steady-state concentration of P680+ in the mutants. However, Arg180 mutations also affected Q(A)- oxidation by the secondary electron-accepting quinone (Q(B)). HPLC analysis showed that, in the Arg180 mutants that were assayed, the pheophytin/chlorophyll ratio of photosystem II had not changed, indicating that the mutations did not lead to a pheophytinization of one of the chlorophyll molecules. Even though the results presented do not provide positive evidence that Arg180 of the D2 protein corresponds in function to the ligand to the central Mg in an accessory bacteriochlorophyll in reaction centers of purple bacteria, it is clear that changes in Arg180 greatly affect Tyr160 and P680. Various scenarios are discussed that are compatible with the data presented, and include an apparently close interaction between Arg180, His189, and Tyr160, and the possibility of the involvement of multiple chlorophylls to together form P680.
Collapse
|
|
27 |
25 |
16
|
Boehm CM, Obado S, Gadelha C, Kaupisch A, Manna PT, Gould GW, Munson M, Chait BT, Rout MP, Field MC. The Trypanosome Exocyst: A Conserved Structure Revealing a New Role in Endocytosis. PLoS Pathog 2017; 13:e1006063. [PMID: 28114397 PMCID: PMC5256885 DOI: 10.1371/journal.ppat.1006063] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/14/2016] [Indexed: 01/10/2023] Open
Abstract
Membrane transport is an essential component of pathogenesis for most infectious organisms. In African trypanosomes, transport to and from the plasma membrane is closely coupled to immune evasion and antigenic variation. In mammals and fungi an octameric exocyst complex mediates late steps in exocytosis, but comparative genomics suggested that trypanosomes retain only six canonical subunits, implying mechanistic divergence. We directly determined the composition of the Trypanosoma brucei exocyst by affinity isolation and demonstrate that the parasite complex is nonameric, retaining all eight canonical subunits (albeit highly divergent at the sequence level) plus a novel essential subunit, Exo99. Exo99 and Sec15 knockdowns have remarkably similar phenotypes in terms of viability and impact on morphology and trafficking pathways. Significantly, both Sec15 and Exo99 have a clear function in endocytosis, and global proteomic analysis indicates an important role in maintaining the surface proteome. Taken together these data indicate additional exocyst functions in trypanosomes, which likely include endocytosis, recycling and control of surface composition. Knockdowns in HeLa cells suggest that the role in endocytosis is shared with metazoan cells. We conclude that, whilst the trypanosome exocyst has novel components, overall functionality appears conserved, and suggest that the unique subunit may provide therapeutic opportunities.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
24 |
17
|
Manna SK, Manna P, Sarkar A. Inhibition of RelA phosphorylation sensitizes apoptosis in constitutive NF-kappaB-expressing and chemoresistant cells. Cell Death Differ 2006; 14:158-70. [PMID: 16645640 DOI: 10.1038/sj.cdd.4401929] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The compound 5-(4-methoxyarylimino)-2-N-(3,4-dichlorophenyl)-3-oxo-1,2,4-thiadiazolidine (P(3)-25) is known to possess anti-bacterial, anti-fungal, anti-tubercular, and local anesthetic activities. We studied the anti-tumorigenic activity of P(3)-25 and the role of nuclear transcription factor kappaB (NF-kappaB) in this process. In constitutive NF-kappaB-expressing cells, treatment with P(3)-25 inhibited the expression of NF-kappaB-dependent reporter gene, adhesion molecules, and cyclooxygenase. It downregulated phosphorylation of p65 by inhibiting upstream kinases, such as protein kinase A and casein kinase II, but did not alter NF-kappaB DNA-binding activity. Alone, P(3)-25 induced apoptosis in NF-kappaB-expressing and doxorubicin-resistant breast cancer cells, and in the presence of other chemotherapeutic agents, it potentiated apoptosis. Overall, our results suggest that P(3)-25 exerts antitumorigenic activity by inhibiting phosphorylation of p65, the transcriptionally active subunit of NF-kappaB by inhibiting its upstream kinases, and potentiates apoptosis mediated by chemotherapeutic agents. These results suggest novel approaches for designing of anticancer drugs for combination chemotherapy.
Collapse
|
Retracted Publication |
19 |
23 |
18
|
Manna P, Vermaas W. Lumenal proteins involved in respiratory electron transport in the cyanobacterium Synechocystis sp. PCC6803. PLANT MOLECULAR BIOLOGY 1997; 35:407-416. [PMID: 9349264 DOI: 10.1023/a:1005875124387] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cyanobacterial thylakoids catalyze both photosynthetic and respiratory activities. In a photosystem I-less Synechocystis sp. PCC 6803 strain, electrons generated by photosystem II appear to be utilized by cytochrome oxidase. To identify the lumenal electron carriers (plastocyanin and/or cytochromes c553, c550, and possibly cM) that are involved in transfer of photosystem II-generated electrons to the terminal oxidase, deletion constructs for genes coding for these components were introduced into a photosystem I-less Synechocystis sp. PCC 6803 strain, and electron flow out of photosystem II was monitored in resulting strains through chlorophyll fluorescence yields. Loss of cytochrome c553 or plastocyanin, but not of cytochrome c550, decreased the rate of electron flow out of photosystem II. Surprisingly, cytochrome cM could not be deleted in a photosystem I-less background strain, and also a double-deletion mutant lacking both plastocyanin and cytochrome c553 could not be obtained. Cytochrome cM has some homology with the cytochrome c-binding regions of the cytochrome Caa3-type cytochrome oxidase from Bacillus spp. and Thermus thermophilus. We suggest that cytochrome cM is a component of cytochrome oxidase in cyanobacteria that serves as redox intermediate between soluble electron carriers and the cytochrome aa3 complex, and that either plastocyanin or cytochrome c553 can shuttle electrons from the cytochrome b6f complex to cytochrome cM.
Collapse
|
|
28 |
19 |
19
|
Camponeschi A, Kläsener K, Sundell T, Lundqvist C, Manna PT, Ayoubzadeh N, Sundqvist M, Thorarinsdottir K, Gatto M, Visentini M, Önnheim K, Aranburu A, Forsman H, Ekwall O, Fogelstrand L, Gjertsson I, Reth M, Mårtensson IL. Human CD38 regulates B cell antigen receptor dynamic organization in normal and malignant B cells. J Exp Med 2022; 219:213348. [PMID: 35819358 PMCID: PMC9280193 DOI: 10.1084/jem.20220201] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 01/14/2023] Open
Abstract
CD38 is a multifunctional protein expressed on the surface of B cells in healthy individuals but also in B cell malignancies. Previous studies have suggested a connection between CD38 and components of the IgM class B cell antigen receptor (IgM-BCR) and its coreceptor complex. Here, we provide evidence that CD38 is closely associated with CD19 in resting B cells and with the IgM-BCR upon engagement. We show that targeting CD38 with an antibody, or removing this molecule with CRISPR/Cas9, inhibits the association of CD19 with the IgM-BCR, impairing BCR signaling in normal and malignant B cells. Together, our data suggest that CD38 is a new member of the BCR coreceptor complex, where it exerts a modulatory effect on B cell activation upon antigen recognition by regulating CD19. Our study also reveals a new mechanism where α-CD38 antibodies could be a valuable option in therapeutic approaches to B cell malignancies driven by aberrant BCR signaling.
Collapse
|
research-article |
3 |
19 |
20
|
Manna P, Vermaas W. Mutational studies on conserved histidine residues in the chlorophyll-binding protein CP43 of photosystem II. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:666-72. [PMID: 9266711 DOI: 10.1111/j.1432-1033.1997.00666.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two chlorophyll-binding antenna proteins in the photosystem II core, CP43 and CP47, are structurally similar and are thought to have evolved from a common ancestor. Several conserved histidine residues in hydrophobic regions of CP47 have been shown to be important for photosystem II structure, function, and energy transfer. The purpose of this study was to determine whether similarly located histidine residues in CP43 function in a similar way. Three conserved histidine residues in presumed membrane-spanning regions of CP43, His40, His105, and His119, were mutated to glutamine (Q) and tyrosine (Y). The strains H105Q, H119Q, and H119Y were photoautotrophs whereas H40Q, H40Y, and H105Y were obligate photoheterotrophs. The H40Y and H105Y strains lacked detectable amounts of photosystem II reaction centers and hence could not evolve oxygen whereas H40Q retained a significant amount of photosystem II and oxygen evolution capacity. The observation that mutation of histidine residues to tyrosine has more drastic effects than mutation of these residues to glutamine is in agreement with results obtained for CP47 and suggests the involvement of these residues in chlorophyll binding. The drastic functional changes observed upon mutating His40 and His105 of CP43 are similar to those observed when mutating the corresponding histidine residues in CP47, thus suggesting that the similarity between CP43 and CP47 extends to the relative importance of functionally relevant residues. Interestingly, the His40-->Gln mutation in CP43 had significant effects on photosystem II electron transfer in that it affected the thermodynamics of Q(A)- oxidation by Q(B) and increased the charge recombination rate between Q(A)- and donor side components. This indicates that relatively minor changes in CP43 can significantly impact the properties of the photosystem II reaction center. The implications of this finding are discussed.
Collapse
|
|
28 |
14 |
21
|
Bonfante A, Monaco E, Langella G, Mercogliano P, Bucchignani E, Manna P, Terribile F. A dynamic viticultural zoning to explore the resilience of terroir concept under climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:294-308. [PMID: 29253777 DOI: 10.1016/j.scitotenv.2017.12.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 05/11/2023]
Abstract
Climate change (CC) directly influences agricultural sectors, presenting the need to identify both adaptation and mitigation actions that can make local farming communities and crop production more resilient. In this context, the viticultural sector is one of those most challenged by CC due to the need to combine grape quality, grapevine cultivar adaptation and therefore farmers' future incomes. Thus, understanding how suitability for viticulture is changing under CC is of primary interest in the development of adaptation strategies in traditional wine-growing regions. Considering that climate is an essential part of the terroir system, the expected variability in climate change could have a marked influence on terroir resilience with important effects on local farming communities in viticultural regions. From this perspective, the aim of this paper is to define a new dynamic viticultural zoning procedure that is able to integrate the effects of CC on grape quality responses and evaluate terroir resilience, providing a support tool for stakeholders involved in viticultural planning (winegrowers, winegrower consortiums, policy makers etc.). To achieve these aims, a Hybrid Land Evaluation System, combining qualitative (standard Land Evaluation) and quantitative (simulation model) approaches, was applied within a traditional region devoted to high quality wine production in Southern Italy (Valle Telesina, BN), for a specific grapevine cultivar (Aglianico). The work employed high resolution climate projections that were derived under two different IPCC scenarios, namely RCP 4.5 and RCP 8.5. The results obtained indicate that: (i) only 2% of the suitable area of Valle Telesina expresses the concept of terroir resilience orientated towards Aglianico ultra quality grape production; (ii) within 2010-2040, it is expected that 41% of the area suitable for Aglianico cultivation will need irrigation to achieve quality grape production; (iii) by 2100, climate change benefits for the cultivation of Aglianico will decrease, as well as the suitable areas.
Collapse
|
|
7 |
14 |
22
|
Ho AK, Wagstaff JL, Manna PT, Wartosch L, Qamar S, Garman EF, Freund SMV, Roberts RC. The topology, structure and PE interaction of LITAF underpin a Charcot-Marie-Tooth disease type 1C. BMC Biol 2016; 14:109. [PMID: 27927196 PMCID: PMC5142333 DOI: 10.1186/s12915-016-0332-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/16/2016] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Mutations in Lipopolysaccharide-induced tumour necrosis factor-α factor (LITAF) cause the autosomal dominant inherited peripheral neuropathy, Charcot-Marie-Tooth disease type 1C (CMT1C). LITAF encodes a 17 kDa protein containing an N-terminal proline-rich region followed by an evolutionarily-conserved C-terminal 'LITAF domain', which contains all reported CMT1C-associated pathogenic mutations. RESULTS Here, we report the first structural characterisation of LITAF using biochemical, cell biological, biophysical and NMR spectroscopic approaches. Our structural model demonstrates that LITAF is a monotopic zinc-binding membrane protein that embeds into intracellular membranes via a predicted hydrophobic, in-plane, helical anchor located within the LITAF domain. We show that specific residues within the LITAF domain interact with phosphoethanolamine (PE) head groups, and that the introduction of the V144M CMT1C-associated pathogenic mutation leads to protein aggregation in the presence of PE. CONCLUSIONS In addition to the structural characterisation of LITAF, these data lead us to propose that an aberrant LITAF-PE interaction on the surface of intracellular membranes contributes to the molecular pathogenesis that underlies this currently incurable disease.
Collapse
|
research-article |
9 |
12 |
23
|
Manna PT, Obado SO, Boehm C, Gadelha C, Sali A, Chait BT, Rout MP, Field MC. Lineage-specific proteins essential for endocytosis in trypanosomes. J Cell Sci 2017; 130:1379-1392. [PMID: 28232524 PMCID: PMC5399782 DOI: 10.1242/jcs.191478] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 02/13/2017] [Indexed: 01/05/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) is the most evolutionarily ancient endocytic mechanism known, and in many lineages the sole mechanism for internalisation. Significantly, in mammalian cells CME is responsible for the vast bulk of endocytic flux and has likely undergone multiple adaptations to accommodate specific requirements by individual species. In African trypanosomes, we previously demonstrated that CME is independent of the AP-2 adaptor protein complex, that orthologues to many of the animal and fungal CME protein cohort are absent, and that a novel, trypanosome-restricted protein cohort interacts with clathrin and drives CME. Here, we used a novel cryomilling affinity isolation strategy to preserve transient low-affinity interactions, giving the most comprehensive trypanosome clathrin interactome to date. We identified the trypanosome AP-1 complex, Trypanosoma brucei (Tb)EpsinR, several endosomal SNAREs plus orthologues of SMAP and the AP-2 associated kinase AAK1 as interacting with clathrin. Novel lineage-specific proteins were identified, which we designate TbCAP80 and TbCAP141. Their depletion produced extensive defects in endocytosis and endomembrane system organisation, revealing a novel molecular pathway subtending an early-branching and highly divergent form of CME, which is conserved and likely functionally important across the kinetoplastid parasites. Summary: Endocytosis is a vital process in most cells, and here we identify important proteins required for this process in trypanosomes. Significantly, these are unique and not present in animals, fungi or plants.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
12 |
24
|
Sahu BS, Manna PT, Edgar JR, Antrobus R, Mahata SK, Bartolomucci A, Borner GHH, Robinson MS. Role of clathrin in dense core vesicle biogenesis. Mol Biol Cell 2017; 28:2676-2685. [PMID: 28814506 PMCID: PMC5620375 DOI: 10.1091/mbc.e16-10-0742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 07/13/2017] [Accepted: 08/07/2017] [Indexed: 11/11/2022] Open
Abstract
The dense core vesicles (DCVs) of neuroendocrine cells are a rich source of bioactive molecules such as peptides, hormones, and neurotransmitters, but relatively little is known about how they are formed. Using fractionation profiling, a method that combines subcellular fractionation with mass spectrometry, we identified ∼1200 proteins in PC12 cell vesicle-enriched fractions, with DCV-associated proteins showing distinct profiles from proteins associated with other types of vesicles. To investigate the role of clathrin in DCV biogenesis, we stably transduced PC12 cells with an inducible short hairpin RNA targeting clathrin heavy chain, resulting in ∼85% protein loss. DCVs could still be observed in the cells by electron microscopy, but mature profiles were approximately fourfold less abundant than in mock-treated cells. By quantitative mass spectrometry, DCV-associated proteins were found to be reduced approximately twofold in clathrin-depleted cells as a whole and approximately fivefold in vesicle-enriched fractions. Our combined data sets enabled us to identify new candidate DCV components. Secretion assays revealed that clathrin depletion causes a near-complete block in secretagogue-induced exocytosis. Taken together, our data indicate that clathrin has a function in DCV biogenesis beyond its established role in removing unwanted proteins from the immature vesicle.
Collapse
|
Journal Article |
8 |
10 |
25
|
Mango D, Scirpa P, Spina MA, Battaglia F, Tartaglia E, Manna P, Ricci S, Iacona T. Ultrasonic and endocrinologic relationships in spontaneous and induced follicular phase. J Endocrinol Invest 1988; 11:7-13. [PMID: 3129487 DOI: 10.1007/bf03350085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To correlate ovarian growth and follicular size with 17 beta-estradiol (E2) and androstenedione (A) peripheral levels, 20 induced cycles, 6 spontaneous ovulatory cycles and 6 spontaneous anovulatory cycles from 32 women during follicular phase were examined in order to obtain a better insight in the events involved in multiple folliculogenesis. In spontaneous ovulatory cycles, a significant correlation was obtained between E2 plasma levels and volume of the dominant follicle (p less than 0.05) as well as total follicular volume (p less than 0.01). Plasma A was significantly related with sonographic features likely related to ovarian stroma as well as preantral and antral subordinated follicles, which usually fail to ovulate. Significant correlation between E2/A peripheral ratio and volume of the dominant follicle(s) was also found (p less than 0.01). In anovulatory cycles, inverse significant correlation between E2 and sonographic aspects of degenerating antral follicles (p less than 0.001) was found, whereas a positive significant correlation between E2 and ovarian stroma was obtained (p less than 0.001). No correlation between peripheral A and any ovarian sonographic compartment was evident. However in the anovulatory cycles group a significant correlation between A v E2 peripheral levels was found, too. During HMG regimen, all the ovarian compartments seemed to be responsible for E2 peripheral levels. Ovarian stroma as well as preantral and multiple antral follicles were related to A levels. E2/A peripheral ratio did not result to be a good indicator of the large follicles. During "pure" FSH therapy, exclusive correlations between estrogen and large follicles as well as total follicular volume were found.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
Comparative Study |
37 |
7 |