1
|
Bhatraju PK, Zelnick LR, Herting J, Katz R, Mikacenic C, Kosamo S, Morrell ED, Robinson-Cohen C, Calfee CS, Christie JD, Liu KD, Matthay MA, Hahn WO, Dmyterko V, Slivinski NSJ, Russell JA, Walley KR, Christiani DC, Liles WC, Himmelfarb J, Wurfel MM. Identification of Acute Kidney Injury Subphenotypes with Differing Molecular Signatures and Responses to Vasopressin Therapy. Am J Respir Crit Care Med 2020; 199:863-872. [PMID: 30334632 DOI: 10.1164/rccm.201807-1346oc] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
RATIONALE Currently, no safe and effective pharmacologic interventions exist for acute kidney injury (AKI). One reason may be that heterogeneity exists within the AKI population, thereby hampering the identification of specific pathophysiologic pathways and therapeutic targets. OBJECTIVE The aim of this study was to identify and test whether AKI subphenotypes have prognostic and therapeutic implications. METHODS First, latent class analysis methodology was applied independently in two critically ill populations (discovery [n = 794] and replication [n = 425]) with AKI. Second, a parsimonious classification model was developed to identify AKI subphenotypes. Third, the classification model was applied to patients with AKI in VASST (Vasopressin and Septic Shock Trial; n = 271), and differences in treatment response were determined. In all three populations, AKI was defined using serum creatinine and urine output. MEASUREMENTS AND MAIN RESULTS A two-subphenotype latent class analysis model had the best fit in both the discovery (P = 0.004) and replication (P = 0.004) AKI groups. The risk of 7-day renal nonrecovery and 28-day mortality was greater with AKI subphenotype 2 (AKI-SP2) relative to AKI subphenotype 1 (AKI-SP1). The AKI subphenotypes discriminated risk for poor clinical outcomes better than the Kidney Disease: Improving Global Outcomes stages of AKI. A three-variable model that included markers of endothelial dysfunction and inflammation accurately determined subphenotype membership (C-statistic 0.92). In VASST, vasopressin compared with norepinephrine was associated with improved 90-day mortality in AKI-SP1 (27% vs. 46%, respectively; P = 0.02), but no significant difference was observed in AKI-SP2 (45% vs. 49%, respectively; P = 0.99) and the P value for interaction was 0.05. CONCLUSIONS This analysis identified two molecularly distinct AKI subphenotypes with different clinical outcomes and responses to vasopressin therapy. Identification of AKI subphenotypes could improve risk prognostication and may be useful for predictive enrichment in clinical trials.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
125 |
2
|
Puthumana J, Thiessen-Philbrook H, Xu L, Coca SG, Garg AX, Himmelfarb J, Bhatraju PK, Ikizler TA, Siew ED, Ware LB, Liu KD, Go AS, Kaufman JS, Kimmel PL, Chinchilli VM, Cantley LG, Parikh CR. Biomarkers of inflammation and repair in kidney disease progression. J Clin Invest 2021; 131:139927. [PMID: 33290282 PMCID: PMC7843225 DOI: 10.1172/jci139927] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/01/2020] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTIONAcute kidney injury and chronic kidney disease (CKD) are common in hospitalized patients. To inform clinical decision making, more accurate information regarding risk of long-term progression to kidney failure is required.METHODSWe enrolled 1538 hospitalized patients in a multicenter, prospective cohort study. Monocyte chemoattractant protein 1 (MCP-1/CCL2), uromodulin (UMOD), and YKL-40 (CHI3L1) were measured in urine samples collected during outpatient follow-up at 3 months. We followed patients for a median of 4.3 years and assessed the relationship between biomarker levels and changes in estimated glomerular filtration rate (eGFR) over time and the development of a composite kidney outcome (CKD incidence, CKD progression, or end-stage renal disease). We paired these clinical studies with investigations in mouse models of renal atrophy and renal repair to further understand the molecular basis of these markers in kidney disease progression.RESULTSHigher MCP-1 and YKL-40 levels were associated with greater eGFR decline and increased incidence of the composite renal outcome, whereas higher UMOD levels were associated with smaller eGFR declines and decreased incidence of the composite kidney outcome. A multimarker score increased prognostic accuracy and reclassification compared with traditional clinical variables alone. The mouse model of renal atrophy showed greater Ccl2 and Chi3l1 mRNA expression in infiltrating macrophages and neutrophils, respectively, and evidence of progressive renal fibrosis compared with the repair model. The repair model showed greater Umod expression in the loop of Henle and correspondingly less fibrosis.CONCLUSIONSBiomarker levels at 3 months after hospitalization identify patients at risk for kidney disease progression.FUNDINGNIH.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
117 |
3
|
Bhatraju PK, Zelnick LR, Chinchilli VM, Moledina DG, Coca SG, Parikh CR, Garg AX, Hsu CY, Go AS, Liu KD, Ikizler TA, Siew ED, Kaufman JS, Kimmel PL, Himmelfarb J, Wurfel MM. Association Between Early Recovery of Kidney Function After Acute Kidney Injury and Long-term Clinical Outcomes. JAMA Netw Open 2020; 3:e202682. [PMID: 32282046 PMCID: PMC7154800 DOI: 10.1001/jamanetworkopen.2020.2682] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
IMPORTANCE The severity of acute kidney injury (AKI) is usually determined based on the maximum serum creatinine concentration. However, the trajectory of kidney function recovery could be an additional important dimension of AKI severity. OBJECTIVE To assess whether the trajectory of kidney function recovery within 72 hours after AKI is associated with long-term risk of clinical outcomes. DESIGN, SETTING, AND PARTICIPANTS This prospective, multicenter cohort study enrolled 1538 adults with or without AKI 3 months after hospital discharge between December 1, 2009, and February 28, 2015. Statistical analyses were completed November 1, 2018. Participants with or without AKI were matched based on demographic characteristics, site, comorbidities, and prehospitalization estimated glomerular filtration rate. Participants with AKI were classified as having resolving or nonresolving AKI based on previously published definitions. Resolving AKI was defined as a decrease in serum creatinine concentration of 0.3 mg/dL or more or 25% or more from maximum in the first 72 hours after AKI diagnosis. Nonresolving AKI was defined as AKI not meeting the definition for resolving AKI. MAIN OUTCOMES AND MEASURES The primary outcome was a composite of major adverse kidney events (MAKE), defined as incident or progressive chronic kidney disease, long-term dialysis, or all-cause death during study follow-up. RESULTS Among 1538 participants (964 men; mean [SD] age, 64.6 [12.7] years), 769 (50%) had no AKI, 475 (31%) had a resolving AKI pattern, and 294 (19%) had a nonresolving AKI pattern. After a median follow-up of 4.7 years, the outcome of MAKE occurred in 550 (36%) of all participants. The adjusted hazard ratio for MAKE was higher for patients with resolving AKI (adjusted hazard ratio, 1.52; 95% CI, 1.01-2.29; P = .04) and those with nonresolving AKI (adjusted hazard ratio 2.30; 95% CI, 1.52-3.48; P < .001) compared with participants without AKI. Within the population of patients with AKI, nonresolving AKI was associated with a 51% greater risk of MAKE (95% CI, 22%-88%; P < .001) compared with resolving AKI. The higher risk of MAKE among patients with nonresolving AKI was explained by a higher risk of incident and progressive chronic kidney disease. CONCLUSIONS AND RELEVANCE This study suggests that the 72-hour period immediately after AKI distinguishes the risk of clinically important kidney-specific long-term outcomes. The identification of different AKI recovery patterns may improve patient risk stratification, facilitate prognostic enrichment in clinical trials, and enable recognition of patients who may benefit from nephrology consultation.
Collapse
|
Multicenter Study |
5 |
94 |
4
|
Khan A, Turchin MC, Patki A, Srinivasasainagendra V, Shang N, Nadukuru R, Jones AC, Malolepsza E, Dikilitas O, Kullo IJ, Schaid DJ, Karlson E, Ge T, Meigs JB, Smoller JW, Lange C, Crosslin DR, Jarvik GP, Bhatraju PK, Hellwege JN, Chandler P, Torvik LR, Fedotov A, Liu C, Kachulis C, Lennon N, Abul-Husn NS, Cho JH, Ionita-Laza I, Gharavi AG, Chung WK, Hripcsak G, Weng C, Nadkarni G, Irvin MR, Tiwari HK, Kenny EE, Limdi NA, Kiryluk K. Genome-wide polygenic score to predict chronic kidney disease across ancestries. Nat Med 2022; 28:1412-1420. [PMID: 35710995 PMCID: PMC9329233 DOI: 10.1038/s41591-022-01869-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/11/2022] [Indexed: 01/03/2023]
Abstract
Chronic kidney disease (CKD) is a common complex condition associated with high morbidity and mortality. Polygenic prediction could enhance CKD screening and prevention; however, this approach has not been optimized for ancestrally diverse populations. By combining APOL1 risk genotypes with genome-wide association studies (GWAS) of kidney function, we designed, optimized and validated a genome-wide polygenic score (GPS) for CKD. The new GPS was tested in 15 independent cohorts, including 3 cohorts of European ancestry (n = 97,050), 6 cohorts of African ancestry (n = 14,544), 4 cohorts of Asian ancestry (n = 8,625) and 2 admixed Latinx cohorts (n = 3,625). We demonstrated score transferability with reproducible performance across all tested cohorts. The top 2% of the GPS was associated with nearly threefold increased risk of CKD across ancestries. In African ancestry cohorts, the APOL1 risk genotype and polygenic component of the GPS had additive effects on the risk of CKD.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
86 |
5
|
Bhatraju PK, Mukherjee P, Robinson-Cohen C, O'Keefe GE, Frank AJ, Christie JD, Meyer NJ, Liu KD, Matthay MA, Calfee CS, Christiani DC, Himmelfarb J, Wurfel MM. Acute kidney injury subphenotypes based on creatinine trajectory identifies patients at increased risk of death. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2016; 20:372. [PMID: 27852290 PMCID: PMC5112626 DOI: 10.1186/s13054-016-1546-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/28/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) is common among intensive care unit (ICU) patients. AKI is highly heterogeneous, with variable links to poor outcomes. Current approaches to classify AKI severity and identify patients at highest risk for poor outcomes focus on the maximum change in serum creatinine (SCr) values. However, these scores are hampered by the need for a reliable baseline SCr value and the absence of a component differentiating transient from persistent rises in SCr. We hypothesized that identification of resolving or nonresolving AKI subphenotypes based on the early trajectory of SCr values in the ICU would better differentiate patients at risk of hospital mortality. METHODS We performed a secondary analysis of two prospective studies of ICU patients admitted to a trauma ICU (group 1; n = 1914) or general medical-surgical ICUs (group 2; n = 1867). In group 1, we tested definitions for resolving and nonresolving AKI subphenotypes and selected the definitions resulting in subphenotypes with the greatest separation in risk of death relative to non-AKI controls. We applied this definition to group 2 and tested whether the subphenotypes were independently associated with hospital mortality after adjustment for AKI severity. RESULTS AKI occurred in 46% and 69% of patients in groups 1 and 2, respectively. In group 1, a resolving AKI subphenotype (defined as a decrease in SCr of 0.3 mg/dl or 25% from maximum in the first 72 h of study enrollment) was associated with a low risk of death. A nonresolving AKI subphenotype (defined as all AKI cases not meeting the "resolving" definition) was associated with a high risk of death. In group 2, the resolving AKI subphenotype was not associated with increased mortality (relative risk [RR] 0.86, 95% CI 0.63-1.17), whereas the nonresolving AKI subphenotype was associated with higher mortality (RR 1.68, 95% CI 1.15-2.44) even after adjustment for AKI severity stage. CONCLUSIONS The trajectory of SCr levels identifies AKI subphenotypes with different risks for death, even among AKI cases of similar severity. These AKI subphenotypes might better define the patients at risk for poor outcomes who might benefit from novel interventions.
Collapse
|
Research Support, N.I.H., Extramural |
9 |
67 |
6
|
Morrell ED, Bhatraju PK, Mikacenic CR, Radella F, Manicone AM, Stapleton RD, Wurfel MM, Gharib SA. Alveolar Macrophage Transcriptional Programs Are Associated with Outcomes in Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2019; 200:732-741. [PMID: 30990758 PMCID: PMC6775881 DOI: 10.1164/rccm.201807-1381oc] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 04/16/2019] [Indexed: 11/16/2022] Open
Abstract
Rationale: Serial measurements of alveolar macrophage (AM) transcriptional changes in patients with acute respiratory distress syndrome (ARDS) could identify cell-specific biological programs that are associated with clinical outcomes.Objectives: To determine whether AM transcriptional programs are associated with prolonged mechanical ventilation and 28-day mortality in individuals with ARDS.Methods: We performed genome-wide transcriptional profiling of AMs purified from BAL fluid collected from 35 subjects with ARDS. Cells were obtained at baseline (Day 1), Day 4, and Day 8 after ARDS onset (N = 68 total samples). We identified biological pathways that were enriched at each time point in subjects alive and extubated within 28 days after ARDS onset (alive/extubatedDay28) versus those dead or persistently supported on mechanical ventilation at Day 28 (dead/intubatedDay28).Measurements and Main Results: "M1-like" (classically activated) and proinflammatory gene sets such as IL-6/JAK/STAT5 (Janus kinase/signal transducer and activator of transcription 5) signaling were significantly enriched in AMs isolated on Day 1 in alive/extubatedDay28 versus dead/intubatedDay28 subjects. In contrast, by Day 8, many of these same proinflammatory gene sets were enriched in AMs collected from dead/intubatedDay28 compared with alive/extubatedDay28 subjects. Serially sampled alive/extubatedDay28 subjects were characterized by an AM temporal expression pattern of Day 1 enrichment of innate immune programs followed by prompt downregulation on Days 4 and 8. Dead/intubatedDay28 subjects exhibited an opposite pattern, characterized by progressive upregulation of proinflammatory programs over the course of ARDS. The relationship between AM expression profiles and 28-day clinical status was distinct in subjects with direct (pulmonary) versus indirect (extrapulmonary) ARDS.Conclusions: Clinical outcomes in ARDS are associated with highly distinct AM transcriptional programs.
Collapse
|
Comparative Study |
6 |
57 |
7
|
Witt CE, Rudd KE, Bhatraju P, Rivara FP, Hawes SE, Weiss NS. Neonatal abstinence syndrome and early childhood morbidity and mortality in Washington state: a retrospective cohort study. J Perinatol 2017; 37:1124-1129. [PMID: 28682319 PMCID: PMC5630496 DOI: 10.1038/jp.2017.106] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/24/2017] [Accepted: 05/22/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The objective of the study was to evaluate the association between neonatal abstinence syndrome (NAS) and long-term childhood morbidity and infant mortality. STUDY DESIGN We conducted a cohort study of infants born in Washington State during 1990 to 2008 who were diagnosed with NAS (n=1900) or were unexposed (n=12,283, frequency matched by birth year). 5-year hospital readmissions and infant mortality were ascertained. RESULTS Children with history of NAS had increased risk of readmission during the first 5 years of life relative to unexposed children; this remained statistically significant after adjustment for maternal age, maternal education, gestational age and intrapartum smoking status (readmission rates: NAS=21.3%, unexposed=12.7%, adjusted relative risk (aRR) 1.54, 95% confidence interval (CI) 1.37 to 1.73). NAS was associated with increased unadjusted infant mortality risk, but this did not persist after adjustment (aRR 1.94, 95% CI 0.99 to 3.80). CONCLUSION The observed increased risk for childhood hospital readmission following NAS diagnosis argues for development of early childhood interventions to prevent morbidity.Journal of Perinatology advance online publication,.
Collapse
|
research-article |
8 |
50 |
8
|
Vaara ST, Bhatraju PK, Stanski NL, McMahon BA, Liu K, Joannidis M, Bagshaw SM. Subphenotypes in acute kidney injury: a narrative review. Crit Care 2022; 26:251. [PMID: 35986336 PMCID: PMC9389711 DOI: 10.1186/s13054-022-04121-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
Acute kidney injury (AKI) is a frequently encountered syndrome especially among the critically ill. Current diagnosis of AKI is based on acute deterioration of kidney function, indicated by an increase in creatinine and/or reduced urine output. However, this syndromic definition encompasses a wide variety of distinct clinical features, varying pathophysiology, etiology and risk factors, and finally very different short- and long-term outcomes. Lumping all AKI together may conceal unique pathophysiologic processes specific to certain AKI populations, and discovering these AKI subphenotypes might help to develop targeted therapies tackling unique pathophysiological processes. In this review, we discuss the concept of AKI subphenotypes, current knowledge regarding both clinical and biomarker-driven subphenotypes, interplay with AKI subphenotypes and other ICU syndromes, and potential future and clinical implications.
Collapse
|
Review |
3 |
42 |
9
|
Bhatraju PK, Zelnick LR, Shlipak M, Katz R, Kestenbaum B. Association of Soluble TNFR-1 Concentrations with Long-Term Decline in Kidney Function: The Multi-Ethnic Study of Atherosclerosis. J Am Soc Nephrol 2018; 29:2713-2721. [PMID: 30287518 DOI: 10.1681/asn.2018070719] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/20/2018] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND TNF receptor-1 (TNFR-1), which plays a causative role in endothelial cell dysfunction and inflammation, is expressed on the cell surface in glomerular and peritubular capillary endothelium of the kidneys. Higher soluble TNF receptor-1 (sTNFR-1) concentrations are associated with kidney disease progression among persons with established diabetic kidney disease. However, no studies have assessed sTNFR-1's role in long-term kidney function changes in a multiethnic population without cardiovascular disease at baseline. METHODS We tested associations between baseline sTNFR-1 concentrations and 10-year decline in eGFR (incident ≥40% decline and annual proportional decline) among 2548 participants in the Multi-Ethnic Study of Atherosclerosis (MESA), a prospective cohort study. Serum creatinine concentrations were determined at enrollment and study years 3, 5, and 10. RESULTS Mean age of participants was 61 years old, 53% were women, and mean baseline eGFR was 79 ml/min per 1.73 m2. Serum sTNFR-1 was inversely associated with baseline eGFR. Over median follow-up of 9.3 years, 110 participants developed ≥40% decline in eGFR; each SD higher concentration of sTNFR1 was associated with higher risk of 40% eGFR decline (adjusted hazard ratio, 1.43; 95% confidence interval [95% CI], 1.16 to 1.77; P<0.001). The highest sTNFR-1 tertile was associated with adjusted annualized decline in eGFR of 1.94% (95% CI, 1.79 to 2.09). Associations persisted across subgroups defined by demographics, hypertension, diabetes, and baseline CKD status. CONCLUSIONS Elevated serum sTNFR-1 concentrations are associated with faster declines in eGFR over the course of a decade in a multiethnic population, independent of previously known risk factors for kidney disease progression.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
41 |
10
|
Bhatraju P, Crawford J, Hall M, Lang JD. Inhaled nitric oxide: Current clinical concepts. Nitric Oxide 2015; 50:114-128. [DOI: 10.1016/j.niox.2015.08.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/31/2015] [Accepted: 08/26/2015] [Indexed: 12/12/2022]
|
|
10 |
34 |
11
|
Vlasschaert C, Robinson-Cohen C, Chen J, Akwo E, Parker AC, Silver SA, Bhatraju PK, Poisner H, Cao S, Jiang M, Wang Y, Niu A, Siew E, Van Amburg JC, Kramer HJ, Kottgen A, Franceschini N, Psaty BM, Tracy RP, Alonso A, Arking DE, Coresh J, Ballantyne CM, Boerwinkle E, Grams M, Zhang MZ, Kestenbaum B, Lanktree MB, Rauh MJ, Harris RC, Bick AG. Clonal hematopoiesis of indeterminate potential is associated with acute kidney injury. Nat Med 2024; 30:810-817. [PMID: 38454125 PMCID: PMC10957477 DOI: 10.1038/s41591-024-02854-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024]
Abstract
Age is a predominant risk factor for acute kidney injury (AKI), yet the biological mechanisms underlying this risk are largely unknown. Clonal hematopoiesis of indeterminate potential (CHIP) confers increased risk for several chronic diseases associated with aging. Here we sought to test whether CHIP increases the risk of AKI. In three population-based epidemiology cohorts, we found that CHIP was associated with a greater risk of incident AKI, which was more pronounced in patients with AKI requiring dialysis and in individuals with somatic mutations in genes other than DNMT3A, including mutations in TET2 and JAK2. Mendelian randomization analyses supported a causal role for CHIP in promoting AKI. Non-DNMT3A-CHIP was also associated with a nonresolving pattern of injury in patients with AKI. To gain mechanistic insight, we evaluated the role of Tet2-CHIP and Jak2V617F-CHIP in two mouse models of AKI. In both models, CHIP was associated with more severe AKI, greater renal proinflammatory macrophage infiltration and greater post-AKI kidney fibrosis. In summary, this work establishes CHIP as a genetic mechanism conferring impaired kidney function recovery after AKI via an aberrant inflammatory response mediated by renal macrophages.
Collapse
|
|
1 |
32 |
12
|
Helms L, Marchiano S, Stanaway IB, Hsiang TY, Juliar BA, Saini S, Zhao YT, Khanna A, Menon R, Alakwaa F, Mikacenic C, Morrell ED, Wurfel MM, Kretzler M, Harder JL, Murry CE, Himmelfarb J, Ruohola-Baker H, Bhatraju PK, Gale M, Freedman BS. Cross-validation of SARS-CoV-2 responses in kidney organoids and clinical populations. JCI Insight 2021; 6:e154882. [PMID: 34767537 PMCID: PMC8783682 DOI: 10.1172/jci.insight.154882] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Kidneys are critical target organs of COVID-19, but susceptibility and responses to infection remain poorly understood. Here, we combine SARS-CoV-2 variants with genome-edited kidney organoids and clinical data to investigate tropism, mechanism, and therapeutics. SARS-CoV-2 specifically infects organoid proximal tubules among diverse cell types. Infections produce replicating virus, apoptosis, and disrupted cell morphology, features of which are revealed in the context of polycystic kidney disease. Cross-validation of gene expression patterns in organoids reflects proteomic signatures of COVID-19 in the urine of critically ill patients indicating interferon pathway upregulation. SARS-CoV-2 viral variants alpha, beta, gamma, kappa, and delta exhibit comparable levels of infection in organoids. Infection is ameliorated in ACE2-/- organoids and blocked via treatment with de novo-designed spike binder peptides. Collectively, these studies clarify the impact of kidney infection in COVID-19 as reflected in organoids and clinical populations, enabling assessment of viral fitness and emerging therapies.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
29 |
13
|
Bhatraju PK, Morrell ED, Zelnick L, Sathe NA, Chai XY, Sakr SS, Sahi SK, Sader A, Lum DM, Liu T, Koetje N, Garay A, Barnes E, Lawson J, Cromer G, Bray MK, Pipavath S, Kestenbaum BR, Liles WC, Fink SL, West TE, Evans L, Mikacenic C, Wurfel MM. Comparison of host endothelial, epithelial and inflammatory response in ICU patients with and without COVID-19: a prospective observational cohort study. Crit Care 2021; 25:148. [PMID: 33874973 PMCID: PMC8054255 DOI: 10.1186/s13054-021-03547-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/22/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Analyses of blood biomarkers involved in the host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection can reveal distinct biological pathways and inform development and testing of therapeutics for COVID-19. Our objective was to evaluate host endothelial, epithelial and inflammatory biomarkers in COVID-19. METHODS We prospectively enrolled 171 ICU patients, including 78 (46%) patients positive and 93 (54%) negative for SARS-CoV-2 infection from April to September, 2020. We compared 22 plasma biomarkers in blood collected within 24 h and 3 days after ICU admission. RESULTS In critically ill COVID-19 and non-COVID-19 patients, the most common ICU admission diagnoses were respiratory failure or pneumonia, followed by sepsis and other diagnoses. Similar proportions of patients in both groups received invasive mechanical ventilation at the time of study enrollment. COVID-19 and non-COVID-19 patients had similar rates of acute respiratory distress syndrome, severe acute kidney injury, and in-hospital mortality. While concentrations of interleukin 6 and 8 were not different between groups, markers of epithelial cell injury (soluble receptor for advanced glycation end products, sRAGE) and acute phase proteins (serum amyloid A, SAA) were significantly higher in COVID-19 compared to non-COVID-19, adjusting for demographics and APACHE III scores. In contrast, angiopoietin 2:1 (Ang-2:1 ratio) and soluble tumor necrosis factor receptor 1 (sTNFR-1), markers of endothelial dysfunction and inflammation, were significantly lower in COVID-19 (p < 0.002). Ang-2:1 ratio and SAA were associated with mortality only in non-COVID-19 patients. CONCLUSIONS These studies demonstrate that, unlike other well-studied causes of critical illness, endothelial dysfunction may not be characteristic of severe COVID-19 early after ICU admission. Pathways resulting in elaboration of acute phase proteins and inducing epithelial cell injury may be promising targets for therapeutics in COVID-19.
Collapse
|
Comparative Study |
4 |
26 |
14
|
Esposito AJ, Bhatraju PK, Stapleton RD, Wurfel MM, Mikacenic C. Hyaluronic acid is associated with organ dysfunction in acute respiratory distress syndrome. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:304. [PMID: 29237497 PMCID: PMC5729515 DOI: 10.1186/s13054-017-1895-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
Abstract
Background Hyaluronic acid (HA), an extracellular matrix component, is degraded in response to local tissue injury or stress. In various animal models of lung injury, HA has been shown to play a mechanistic role in modulating inflammation and injury. While HA is present in the lungs of patients with acute respiratory distress syndrome (ARDS), its relationship to patient outcomes is unknown. Methods We studied 86 patients with ARDS previously enrolled in the Phase II Randomized Trial of Fish Oil in Patients with Acute Lung Injury (NCT00351533) at five North American medical centers. We examined paired serum and bronchoalveolar lavage fluid (BALF) samples obtained within 48 hours of diagnosis of ARDS. We evaluated the association of HA levels in serum and BALF with local (lung injury score (LIS)) and systemic (sequential organ failure assessment score (SOFA)) measures of organ dysfunction with regression analysis adjusting for age, sex, race, treatment group, and risk factor for ARDS. Results We found that both day-0 circulating and alveolar levels of HA were associated with worsening LIS (p = 0.04 and p = 0.003, respectively), particularly via associations with degree of hypoxemia (p = 0.02 and p < 0.001, respectively) and set positive end-expiratory pressure (p = 0.01 and p = 0.02, respectively). Circulating HA was associated with SOFA score (p < 0.001), driven by associations with the respiratory (p = 0.02), coagulation (p < 0.001), liver (p = 0.006), and renal (p = 0.01) components. Notably, the alveolar HA levels were associated with the respiratory component of the SOFA score (p = 0.003) but not the composite SOFA score (p = 0.27). Conclusions Elevated alveolar levels of HA are associated with LIS while circulating levels are associated with both lung injury and SOFA scores. These findings suggest that HA has a potential role in both local and systemic organ dysfunction in patients with ARDS. Electronic supplementary material The online version of this article (doi:10.1186/s13054-017-1895-7) contains supplementary material, which is available to authorized users.
Collapse
|
Randomized Controlled Trial |
8 |
25 |
15
|
Bhatraju PK, Cohen M, Nagao RJ, Morrell ED, Kosamo S, Chai XY, Nance R, Dmyterko V, Delaney J, Christie JD, Liu KD, Mikacenic C, Gharib SA, Liles WC, Zheng Y, Christiani DC, Himmelfarb J, Wurfel MM. Genetic variation implicates plasma angiopoietin-2 in the development of acute kidney injury sub-phenotypes. BMC Nephrol 2020; 21:284. [PMID: 32680471 PMCID: PMC7368773 DOI: 10.1186/s12882-020-01935-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/07/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND We previously identified two acute kidney injury (AKI) sub-phenotypes (AKI-SP1 and AKI-SP2) with different risk of poor clinical outcomes and response to vasopressor therapy. Plasma biomarkers of endothelial dysfunction (tumor necrosis factor receptor-1, angiopoietin-1 and 2) differentiated the AKI sub-phenotypes. However, it is unknown whether these biomarkers are simply markers or causal mediators in the development of AKI sub-phenotypes. METHODS We tested for associations between single-nucleotide polymorphisms within the Angiopoietin-1, Angiopoietin-2, and Tumor Necrosis Factor Receptor 1A genes and AKI- SP2 in 421 critically ill subjects of European ancestry. Top performing single-nucleotide polymorphisms (FDR < 0.05) were tested for cis-biomarker expression and whether genetic risk for AKI-SP2 is mediated through circulating biomarkers. We also completed in vitro studies using human kidney microvascular endothelial cells. Finally, we calculated the renal clearance of plasma biomarkers using 20 different timed urine collections. RESULTS A genetic variant, rs2920656C > T, near ANGPT2 was associated with reduced risk of AKI-SP2 (odds ratio, 0.45; 95% CI, 0.31-0.66; adjusted FDR = 0.003) and decreased plasma angiopoietin-2 (p = 0.002). Causal inference analysis showed that for each minor allele (T) the risk of developing AKI-SP2 decreases by 16%. Plasma angiopoietin-2 mediated 41.5% of the rs2920656 related risk for AKI-SP2. Human kidney microvascular endothelial cells carrying the T allele of rs2920656 produced numerically lower levels of angiopoietin-2 although this was not statistically significant (p = 0.07). Finally, analyses demonstrated that angiopoietin-2 is minimally renally cleared in critically ill subjects. CONCLUSION Genetic mediation analysis provides supportive evidence that angiopoietin-2 plays a causal role in risk for AKI-SP2.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
23 |
16
|
Legrand M, Bagshaw SM, Bhatraju PK, Bihorac A, Caniglia E, Khanna AK, Kellum JA, Koyner J, Harhay MO, Zampieri FG, Zarbock A, Chung K, Liu K, Mehta R, Pickkers P, Ryan A, Bernholz J, Dember L, Gallagher M, Rossignol P, Ostermann M. Sepsis-associated acute kidney injury: recent advances in enrichment strategies, sub-phenotyping and clinical trials. Crit Care 2024; 28:92. [PMID: 38515121 PMCID: PMC10958912 DOI: 10.1186/s13054-024-04877-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/17/2024] [Indexed: 03/23/2024] Open
Abstract
Acute kidney injury (AKI) often complicates sepsis and is associated with high morbidity and mortality. In recent years, several important clinical trials have improved our understanding of sepsis-associated AKI (SA-AKI) and impacted clinical care. Advances in sub-phenotyping of sepsis and AKI and clinical trial design offer unprecedented opportunities to fill gaps in knowledge and generate better evidence for improving the outcome of critically ill patients with SA-AKI. In this manuscript, we review the recent literature of clinical trials in sepsis with focus on studies that explore SA-AKI as a primary or secondary outcome. We discuss lessons learned and potential opportunities to improve the design of clinical trials and generate actionable evidence in future research. We specifically discuss the role of enrichment strategies to target populations that are most likely to derive benefit and the importance of patient-centered clinical trial endpoints and appropriate trial designs with the aim to provide guidance in designing future trials.
Collapse
|
Review |
1 |
21 |
17
|
Morrell ED, Bhatraju PK, Sathe NA, Lawson J, Mabrey L, Holton SE, Presnell SR, Wiedeman A, Acosta-Vega C, Mitchem MA, Liu T, Chai XY, Sahi S, Brager C, Orlov M, Sakr SS, Sader A, Lum DM, Koetje N, Garay A, Barnes E, Cromer G, Bray MK, Pipavath S, Fink SL, Evans L, Long SA, West TE, Wurfel MM, Mikacenic C. Chemokines, soluble PD-L1, and immune cell hyporesponsiveness are distinct features of SARS-CoV-2 critical illness. Am J Physiol Lung Cell Mol Physiol 2022; 323:L14-L26. [PMID: 35608267 PMCID: PMC9208434 DOI: 10.1152/ajplung.00049.2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/03/2022] [Accepted: 05/19/2022] [Indexed: 12/15/2022] Open
Abstract
Critically ill patients manifest many of the same immune features seen in coronavirus disease 2019 (COVID-19), including both "cytokine storm" and "immune suppression." However, direct comparisons of molecular and cellular profiles between contemporaneously enrolled critically ill patients with and without severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are limited. We sought to identify immune signatures specifically enriched in critically ill patients with COVID-19 compared with patients without COVID-19. We enrolled a multisite prospective cohort of patients admitted under suspicion for COVID-19, who were then determined to be SARS-CoV-2-positive (n = 204) or -negative (n = 122). SARS-CoV-2-positive patients had higher plasma levels of CXCL10, sPD-L1, IFN-γ, CCL26, C-reactive protein (CRP), and TNF-α relative to SARS-CoV-2-negative patients adjusting for demographics and severity of illness (Bonferroni P value < 0.05). In contrast, the levels of IL-6, IL-8, IL-10, and IL-17A were not significantly different between the two groups. In SARS-CoV-2-positive patients, higher plasma levels of sPD-L1 and TNF-α were associated with fewer ventilator-free days (VFDs) and higher mortality rates (Bonferroni P value < 0.05). Lymphocyte chemoattractants such as CCL17 were associated with more severe respiratory failure in SARS-CoV-2-positive patients, but less severe respiratory failure in SARS-CoV-2-negative patients (P value for interaction < 0.01). Circulating T cells and monocytes from SARS-CoV-2-positive subjects were hyporesponsive to in vitro stimulation compared with SARS-CoV-2-negative subjects. Critically ill SARS-CoV-2-positive patients exhibit an immune signature of high interferon-induced lymphocyte chemoattractants (e.g., CXCL10 and CCL17) and immune cell hyporesponsiveness when directly compared with SARS-CoV-2-negative patients. This suggests a specific role for T-cell migration coupled with an immune-checkpoint regulatory response in COVID-19-related critical illness.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
19 |
18
|
Mansour SG, Bhatraju PK, Coca SG, Obeid W, Wilson FP, Stanaway IB, Jia Y, Thiessen-Philbrook H, Go AS, Ikizler TA, Siew ED, Chinchilli VM, Hsu CY, Garg AX, Reeves WB, Liu KD, Kimmel PL, Kaufman JS, Wurfel MM, Himmelfarb J, Parikh SM, Parikh CR. Angiopoietins as Prognostic Markers for Future Kidney Disease and Heart Failure Events after Acute Kidney Injury. J Am Soc Nephrol 2022; 33:613-627. [PMID: 35017169 PMCID: PMC8975075 DOI: 10.1681/asn.2021060757] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/15/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The mechanisms underlying long-term sequelae after AKI remain unclear. Vessel instability, an early response to endothelial injury, may reflect a shared mechanism and early trigger for CKD and heart failure. METHODS To investigate whether plasma angiopoietins, markers of vessel homeostasis, are associated with CKD progression and heart failure admissions after hospitalization in patients with and without AKI, we conducted a prospective cohort study to analyze the balance between angiopoietin-1 (Angpt-1), which maintains vessel stability, and angiopoietin-2 (Angpt-2), which increases vessel destabilization. Three months after discharge, we evaluated the associations between angiopoietins and development of the primary outcomes of CKD progression and heart failure and the secondary outcome of all-cause mortality 3 months after discharge or later. RESULTS Median age for the 1503 participants was 65.8 years; 746 (50%) had AKI. Compared with the lowest quartile, the highest quartile of the Angpt-1:Angpt-2 ratio was associated with 72% lower risk of CKD progression (adjusted hazard ratio [aHR], 0.28; 95% confidence interval [CI], 0.15 to 0.51), 94% lower risk of heart failure (aHR, 0.06; 95% CI, 0.02 to 0.15), and 82% lower risk of mortality (aHR, 0.18; 95% CI, 0.09 to 0.35) for those with AKI. Among those without AKI, the highest quartile of Angpt-1:Angpt-2 ratio was associated with 71% lower risk of heart failure (aHR, 0.29; 95% CI, 0.12 to 0.69) and 68% less mortality (aHR, 0.32; 95% CI, 0.15 to 0.68). There were no associations with CKD progression. CONCLUSIONS A higher Angpt-1:Angpt-2 ratio was strongly associated with less CKD progression, heart failure, and mortality in the setting of AKI.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
15 |
19
|
Bhatraju PK, Robinson-Cohen C, Mikacenic C, Harju-Baker S, Dmyterko V, Slivinski NSJ, Liles WC, Himmelfarb J, Heckbert SR, Wurfel MM. Circulating levels of soluble Fas (sCD95) are associated with risk for development of a nonresolving acute kidney injury subphenotype. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:217. [PMID: 28814331 PMCID: PMC5559814 DOI: 10.1186/s13054-017-1807-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/01/2017] [Indexed: 12/16/2022]
Abstract
Background Critically ill patients with acute kidney injury (AKI) can be divided into two subphenotypes, resolving or nonresolving, on the basis of the trajectory of serum creatinine. It is unknown if the biology underlying these two AKI recovery patterns is different. Methods We measured eight circulating biomarkers in plasma obtained from a cohort of patients admitted to an intensive care unit (ICU) (n = 1241) with systemic inflammatory response syndrome. The biomarkers were representative of several biologic processes: apoptosis (soluble Fas), inflammation (soluble tumor necrosis factor receptor 1, interleukin 6, interleukin 8) and endothelial dysfunction, (angiopoietin 1, angiopoietin 2, and soluble vascular cell adhesion molecule 1). We tested for associations between biomarker levels and AKI subphenotypes using relative risk regression accounting for multiple hypotheses with the Bonferroni correction. Results During the first 3 days of ICU admission, 868 (70%) subjects developed AKI; 502 (40%) had a resolving subphenotype, and 366 (29%) had a nonresolving subphenotype. Hospital mortality was 12% in the resolving subphenotype and 21% in the nonresolving subphenotype. Soluble Fas was the only biomarker associated with a nonresolving subphenotype after adjustment for age, body mass index, diabetes, and Acute Physiology and Chronic Health Evaluation III score (p = 0.005). Conclusions Identifying modifiable targets in the Fas-mediated pathway may lead to strategies for prevention and treatment of a clinically important form of AKI. Electronic supplementary material The online version of this article (doi:10.1186/s13054-017-1807-x) contains supplementary material, which is available to authorized users.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
15 |
20
|
Ortiz A, Trivedi A, Desbiens J, Blazes M, Robinson C, Gupta S, Dodhia R, Bhatraju PK, Liles WC, Lee A, Ferres JML. Effective deep learning approaches for predicting COVID-19 outcomes from chest computed tomography volumes. Sci Rep 2022; 12:1716. [PMID: 35110593 PMCID: PMC8810911 DOI: 10.1038/s41598-022-05532-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/13/2022] [Indexed: 12/23/2022] Open
Abstract
The rapid evolution of the novel coronavirus disease (COVID-19) pandemic has resulted in an urgent need for effective clinical tools to reduce transmission and manage severe illness. Numerous teams are quickly developing artificial intelligence approaches to these problems, including using deep learning to predict COVID-19 diagnosis and prognosis from chest computed tomography (CT) imaging data. In this work, we assess the value of aggregated chest CT data for COVID-19 prognosis compared to clinical metadata alone. We develop a novel patient-level algorithm to aggregate the chest CT volume into a 2D representation that can be easily integrated with clinical metadata to distinguish COVID-19 pneumonia from chest CT volumes from healthy participants and participants with other viral pneumonia. Furthermore, we present a multitask model for joint segmentation of different classes of pulmonary lesions present in COVID-19 infected lungs that can outperform individual segmentation models for each task. We directly compare this multitask segmentation approach to combining feature-agnostic volumetric CT classification feature maps with clinical metadata for predicting mortality. We show that the combination of features derived from the chest CT volumes improve the AUC performance to 0.80 from the 0.52 obtained by using patients' clinical data alone. These approaches enable the automated extraction of clinically relevant features from chest CT volumes for risk stratification of COVID-19 patients.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
13 |
21
|
Sathe NA, Morrell ED, Bhatraju PK, Fessler MB, Stapleton RD, Wurfel MM, Mikacenic C. Alveolar Biomarker Profiles in Subphenotypes of the Acute Respiratory Distress Syndrome. Crit Care Med 2023; 51:e13-e18. [PMID: 36519995 PMCID: PMC9764239 DOI: 10.1097/ccm.0000000000005704] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES We sought to determine whether hyperinflammatory acute respiratory distress syndrome (ARDS) and hypoinflammatory ARDS, which have been associated with differences in plasma biomarkers and mortality risk, also display differences in bronchoalveolar lavage (BALF) biomarker profiles. We then described the relationship between hyperinflammatory ARDS and hypoinflammatory ARDS to novel subphenotypes derived using BALF biomarkers. DESIGN Secondary analysis of a randomized control trial testing omega-3 fatty acids for the treatment of ARDS. SETTING Five North American intensive care units. PATIENTS Adults (n = 88) on invasive mechanical ventilation within 48 hours of ARDS onset. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We classified 57 patients as hypoinflammatory and 31 patients as hyperinflammatory using a previously validated logistic regression model. Of 14 BALF biomarkers analyzed, interleukin-6 and granulocyte colony stimulating factor were higher among patients with hyperinflammatory ARDS compared with hypoinflammatory ARDS, though the differences were not robust to multiple hypothesis testing. We then performed a de novo latent class analysis of the 14 BALF biomarkers to identify two classes well separated by alveolar profiles. Class 2 (n = 63) displayed significantly higher interleukin-6, von Willebrand factor, soluble programmed cell death receptor-1, % neutrophils, and other biomarkers of inflammation compared with class 1 (n = 25). These BALF-derived classes had minimal overlap with the plasma-derived hyperinflammatory and hypoinflammatory classes, and the majority of both plasma-derived classes were in BALF-derived class 2 and characterized by high BALF biomarkers. Additionally, the BALF-derived classes were associated with clinical severity of pulmonary disease, with class 2 exhibiting lower Pao2 to Fio2 and distinct ventilatory parameters, unlike the plasma-derived classes, which were only related to nonpulmonary organ dysfunction. CONCLUSIONS Hyperinflammatory and hypoinflammatory ARDS subphenotypes did not display significant differences in alveolar biologic profiles. Identifying ARDS subgroups using BALF measurements is a unique approach that complements information obtained from plasma, with potential to inform enrichment strategies in trials of lung-targeted therapies.
Collapse
|
Randomized Controlled Trial |
2 |
13 |
22
|
Coca SG, Vasquez-Rios G, Mansour SG, Moledina DG, Thiessen-Philbrook H, Wurfel MM, Bhatraju P, Himmelfarb J, Siew E, Garg AX, Hsu CY, Liu KD, Kimmel PL, Chinchilli VM, Kaufman JS, Wilson M, Banks RE, Packington R, McCole E, Kurth MJ, Richardson C, Go AS, Selby NM, Parikh CR. Plasma Soluble Tumor Necrosis Factor Receptor Concentrations and Clinical Events After Hospitalization: Findings From the ASSESS-AKI and ARID Studies. Am J Kidney Dis 2023; 81:190-200. [PMID: 36108888 PMCID: PMC9868060 DOI: 10.1053/j.ajkd.2022.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/04/2022] [Indexed: 01/26/2023]
Abstract
RATIONALE & OBJECTIVE The role of plasma soluble tumor necrosis factor receptor 1 (sTNFR1) and sTNFR2 in the prognosis of clinical events after hospitalization with or without acute kidney injury (AKI) is unknown. STUDY DESIGN Prospective cohort. SETTING & PARTICIPANTS Hospital survivors from the ASSESS-AKI (Assessment, Serial Evaluation, and Subsequent Sequelae of Acute Kidney Injury) and ARID (AKI Risk in Derby) studies with and without AKI during the index hospitalization who had baseline serum samples for biomarker measurements. PREDICTORS We measured sTNFR1 and sTNFR2 from plasma samples obtained 3 months after discharge. OUTCOMES The associations of biomarkers with longitudinal kidney disease incidence and progression, heart failure, and death were evaluated. ANALYTICAL APPROACH Cox proportional hazard models. RESULTS Among 1,474 participants with plasma biomarker measurements, 19% had kidney disease progression, 14% had later heart failure, and 21% died during a median follow-up of 4.4 years. For the kidney outcome, the adjusted HRs (AHRs) per doubling in concentration were 2.9 (95% CI, 2.2-3.9) for sTNFR1 and 1.9 (95% CI, 1.5-2.5) for sTNFR2. AKI during the index hospitalization did not modify the association between biomarkers and kidney events. For heart failure, the AHRs per doubling in concentration were 1.9 (95% CI, 1.4-2.5) for sTNFR1 and 1.5 (95% CI, 1.2-2.0) for sTNFR2. For mortality, the AHRs were 3.3 (95% CI, 2.5-4.3) for sTNFR1 and 2.5 (95% CI, 2.0-3.1) for sTNFR2. The findings in ARID were qualitatively similar in terms of the magnitude of association between biomarkers and outcomes. LIMITATIONS Different biomarker platforms and AKI definitions; limited generalizability to other ethnic groups. CONCLUSIONS Plasma sTNFR1 and sTNFR2 measured 3 months after hospital discharge were independently associated with clinical events regardless of AKI status during the index admission. sTNFR1 and sTNFR2 may assist with the risk stratification of patients during follow-up.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
13 |
23
|
Sathe NA, Zelnick LR, Mikacenic C, Morrell ED, Bhatraju PK, McNeil JB, Kosamo S, Hough CL, Liles WC, Ware LB, Wurfel MM. Identification of persistent and resolving subphenotypes of acute hypoxemic respiratory failure in two independent cohorts. Crit Care 2021; 25:336. [PMID: 34526076 PMCID: PMC8442814 DOI: 10.1186/s13054-021-03755-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/31/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Acute hypoxemic respiratory failure (HRF) is associated with high morbidity and mortality, but its heterogeneity challenges the identification of effective therapies. Defining subphenotypes with distinct prognoses or biologic features can improve therapeutic trials, but prior work has focused on ARDS, which excludes many acute HRF patients. We aimed to characterize persistent and resolving subphenotypes in the broader HRF population. METHODS In this secondary analysis of 2 independent prospective ICU cohorts, we included adults with acute HRF, defined by invasive mechanical ventilation and PaO2-to-FIO2 ratio ≤ 300 on cohort enrollment (n = 768 in the discovery cohort and n = 1715 in the validation cohort). We classified patients as persistent HRF if still requiring mechanical ventilation with PaO2-to-FIO2 ratio ≤ 300 on day 3 following ICU admission, or resolving HRF if otherwise. We estimated relative risk of 28-day hospital mortality associated with persistent HRF, compared to resolving HRF, using generalized linear models. We also estimated fold difference in circulating biomarkers of inflammation and endothelial activation on cohort enrollment among persistent HRF compared to resolving HRF. Finally, we stratified our analyses by ARDS to understand whether this was driving differences between persistent and resolving HRF. RESULTS Over 50% developed persistent HRF in both the discovery (n = 386) and validation (n = 1032) cohorts. Persistent HRF was associated with higher risk of death relative to resolving HRF in both the discovery (1.68-fold, 95% CI 1.11, 2.54) and validation cohorts (1.93-fold, 95% CI 1.50, 2.47), after adjustment for age, sex, chronic respiratory illness, and acute illness severity on enrollment (APACHE-III in discovery, APACHE-II in validation). Patients with persistent HRF displayed higher biomarkers of inflammation (interleukin-6, interleukin-8) and endothelial dysfunction (angiopoietin-2) than resolving HRF after adjustment. Only half of persistent HRF patients had ARDS, yet exhibited higher mortality and biomarkers than resolving HRF regardless of whether they qualified for ARDS. CONCLUSION Patients with persistent HRF are common and have higher mortality and elevated circulating markers of lung injury compared to resolving HRF, and yet only a subset are captured by ARDS definitions. Persistent HRF may represent a clinically important, inclusive target for future therapeutic trials in HRF.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
12 |
24
|
Menez S, Wen Y, Xu L, Moledina DG, Thiessen-Philbrook H, Hu D, Obeid W, Bhatraju PK, Ikizler TA, Siew ED, Chinchilli VM, Garg AX, Go AS, Liu KD, Kaufman JS, Kimmel PL, Himmelfarb J, Coca SG, Cantley LG, Parikh CR. The ASSESS-AKI Study found urinary epidermal growth factor is associated with reduced risk of major adverse kidney events. Kidney Int 2023; 104:1194-1205. [PMID: 37652206 PMCID: PMC10840723 DOI: 10.1016/j.kint.2023.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/28/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Biomarkers of tubular function such as epidermal growth factor (EGF) may improve prognostication of participants at highest risk for chronic kidney disease (CKD) after hospitalization. To examine this, we measured urinary EGF (uEGF) from samples collected in the Assessment, Serial Evaluation, and Subsequent Sequelae of Acute Kidney Injury (ASSESS-AKI) Study, a multi-center, prospective, observational cohort of hospitalized participants with and without AKI. Cox proportional hazards regression was used to investigate the association of uEGF/Cr at hospitalization, three months post-discharge, and the change between these time points with major adverse kidney events (MAKE): CKD incidence, progression, or development of kidney failure. Clinical findings were paired with mechanistic studies comparing relative Egf expression in mouse models of kidney atrophy or repair after ischemia-reperfusion injury. MAKE was observed in 20% of 1,509 participants over 4.3 years of follow-up. Each 2-fold higher level of uEGF/Cr at three months was associated with decreased risk of MAKE (adjusted hazards ratio 0.46, 95% confidence interval: 0.39-0.55). Participants with the highest increase in uEGF/Cr from hospitalization to three-month follow-up had a lower risk of MAKE (adjusted hazards ratio 0.52; 95% confidence interval: 0.36-0.74) compared to those with the least change in uEGF/Cr. A model using uEGF/Cr at three months combined with clinical variables yielded moderate discrimination for MAKE (area under the curve 0.73; 95% confidence interval: 0.69-0.77) and strong discrimination for kidney failure at four years (area under the curve 0.96; 95% confidence interval: 0.92-1.00). Accelerated restoration of Egf expression in mice was seen in the model of adaptive repair after injury, compared to a model of progressive atrophy. Thus, urinary EGF/Cr may be a biomarker of distal tubular health, with higher concentrations and increased uEGF/Cr post-discharge independently associated with reduced risk of MAKE in hospitalized patients.
Collapse
|
Observational Study |
2 |
11 |
25
|
Thau MR, Liu T, Sathe NA, O’Keefe GE, Robinson BRH, Bulger E, Wade CE, Fox EE, Holcomb JB, Liles WC, Stanaway IB, Mikacenic C, Wurfel MM, Bhatraju PK, Morrell ED. Association of Trauma Molecular Endotypes With Differential Response to Transfusion Resuscitation Strategies. JAMA Surg 2023; 158:728-736. [PMID: 37099286 PMCID: PMC10134038 DOI: 10.1001/jamasurg.2023.0819] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/12/2022] [Indexed: 04/27/2023]
Abstract
Importance It is not clear which severely injured patients with hemorrhagic shock may benefit most from a 1:1:1 vs 1:1:2 (plasma:platelets:red blood cells) resuscitation strategy. Identification of trauma molecular endotypes may reveal subgroups of patients with differential treatment response to various resuscitation strategies. Objective To derive trauma endotypes (TEs) from molecular data and determine whether these endotypes are associated with mortality and differential treatment response to 1:1:1 vs 1:1:2 resuscitation strategies. Design, Setting, and Participants This was a secondary analysis of the Pragmatic, Randomized Optimal Platelet and Plasma Ratios (PROPPR) randomized clinical trial. The study cohort included individuals with severe injury from 12 North American trauma centers. The cohort was taken from the participants in the PROPPR trial who had complete plasma biomarker data available. Study data were analyzed on August 2, 2021, to October 25, 2022. Exposures TEs identified by K-means clustering of plasma biomarkers collected at hospital arrival. Main Outcomes and Measures An association between TEs and 30-day mortality was tested using multivariable relative risk (RR) regression adjusting for age, sex, trauma center, mechanism of injury, and injury severity score (ISS). Differential treatment response to transfusion strategy was assessed using an RR regression model for 30-day mortality by incorporating an interaction term for the product of endotype and treatment group adjusting for age, sex, trauma center, mechanism of injury, and ISS. Results A total of 478 participants (median [IQR] age, 34.5 [25-51] years; 384 male [80%]) of the 680 participants in the PROPPR trial were included in this study analysis. A 2-class model that had optimal performance in K-means clustering was found. TE-1 (n = 270) was characterized by higher plasma concentrations of inflammatory biomarkers (eg, interleukin 8 and tumor necrosis factor α) and significantly higher 30-day mortality compared with TE-2 (n = 208). There was a significant interaction between treatment arm and TE for 30-day mortality. Mortality in TE-1 was 28.6% with 1:1:2 treatment vs 32.6% with 1:1:1 treatment, whereas mortality in TE-2 was 24.5% with 1:1:2 treatment vs 7.3% with 1:1:1 treatment (P for interaction = .001). Conclusions and Relevance Results of this secondary analysis suggest that endotypes derived from plasma biomarkers in trauma patients at hospital arrival were associated with a differential response to 1:1:1 vs 1:1:2 resuscitation strategies in trauma patients with severe injury. These findings support the concept of molecular heterogeneity in critically ill trauma populations and have implications for tailoring therapy for patients at high risk for adverse outcomes.
Collapse
|
Research Support, N.I.H., Extramural |
2 |
11 |