1
|
Kurz B, Jin M, Patwari P, Cheng DM, Lark MW, Grodzinsky AJ. Biosynthetic response and mechanical properties of articular cartilage after injurious compression. J Orthop Res 2001; 19:1140-6. [PMID: 11781016 DOI: 10.1016/s0736-0266(01)00033-x] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Traumatic joint injury is known to produce osteoarthritic degeneration of articular cartilage. To study the effects of injurious compression on the degradation and repair of cartilage in vitro, we developed a model that allows strain and strain rate-controlled loading of cartilage explants. The influence of strain rate on both cartilage matrix biosynthesis and mechanical properties was assessed after single injurious compressions. Loading with a strain rate of 0.01 s(-1) to a final strain of 50% resulted in no measured effect on the cells or on the extracellular matrix, although peak stresses reached levels of about 12 MPa. However, compression with strain rates of 0.1 and 1 s(-1) caused peak stresses of approximately 18 and 24 MPa, respectively, and resulted in significant decreases in both proteoglycan and total protein biosynthesis. The mechanical properties of the explants (compressive and shear stiffness) were also reduced with increasing strain rate. Additionally, cell viability decreased with increasing strain rate, and the remaining viable cells lost their ability to exhibit an increase in biosynthesis in response to low-amplitude dynamic mechanical stimulation. This latter decrease in reparative response was most dramatic in the tissue compressed at the highest strain rates. We conclude that strain rate (like peak stress or strain) is an important parameter in defining mechanical injury, and that cartilage injuriously compressed at high strain rates can lose its characteristic anabolic response to low-amplitude cyclic mechanical loading.
Collapse
|
|
24 |
150 |
2
|
Patwari P, Weissman NJ, Boppart SA, Jesser C, Stamper D, Fujimoto JG, Brezinski ME. Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound. Am J Cardiol 2000; 85:641-4. [PMID: 11078281 DOI: 10.1016/s0002-9149(99)00825-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study compares the ability of intravascular optical coherence tomography (OCT) and high-frequency intravascular ultrasound (IVUS) to image highly stenotic human coronary arteries in vitro. Current imaging modalities have insufficient resolution to perform risk stratification based on coronary plaque morphology. OCT is a new technology capable of imaging at a resolution of 5 to 20 microm, which has demonstrated the potential for coronary arterial imaging in prior experiments. Human postmortem coronary arteries with severely stenotic segments were imaged with catheter-based OCT and IVUS. The OCT system had an axial resolution of 20 microm and a transverse resolution of 30 microm. OCT was able to penetrate and image near-occlusive coronary plaques. Compared with IVUS, these OCT images demonstrated superior delineation of vessel layers and lack of ring-down artifact, leading to clearer visualization of the vessel plaque and intima. Histology confirmed the accuracy and high contrast of vessel layer boundaries seen on OCT images. Thus, catheter-based OCT systems are able to image near-occlusive coronary plaques with higher resolution than that of IVUS.
Collapse
|
Comparative Study |
25 |
124 |
3
|
Patwari P, Salewski V, Gutbrod K, Kreszies T, Dresen-Scholz B, Peisker H, Steiner U, Meyer AJ, Schreiber L, Dörmann P. Surface wax esters contribute to drought tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:727-744. [PMID: 30729606 DOI: 10.1111/tpj.14269] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/08/2019] [Accepted: 01/23/2019] [Indexed: 05/08/2023]
Abstract
Waxes are components of the cuticle covering the aerial organs of plants. Accumulation of waxes has previously been associated with protection against water loss, therefore contributing to drought tolerance. However, not much information is known about the function of individual wax components during water deficit. We studied the role of wax ester synthesis during drought. The wax ester load on Arabidopsis leaves and stems was increased during water deficiency. Expression of three genes, WSD1, WSD6 and WSD7 of the wax ester synthase/diacylglycerol acyltransferase (WS/DGAT or WSD) family was induced during drought, salt stress and abscisic acid treatment. WSD1 has previously been identified as the major wax ester synthase of stems. wsd1 mutants have shown reduced wax ester coverage on leaves and stems during normal or drought condition, while wax ester loads of wsd6, wsd7 and of the wsd6wsd7 double mutant were unchanged. The growth and relative water content of wsd1 plants were compromised during drought, while leaf water loss of wsd1 was increased. Enzyme assays with recombinant proteins expressed in insect cells revealed that WSD6 and WSD7 contain wax ester synthase activity, albeit with different substrate specificity compared with WSD1. WSD6 and WSD7 localize to the endoplasmic reticulum (ER)/Golgi. These results demonstrated that WSD1 is involved in the accumulation of wax esters during drought, while WSD6 and WSD7 might play other specific roles in wax ester metabolism during stress.
Collapse
|
|
6 |
77 |
4
|
Kerin A, Patwari P, Kuettner K, Cole A, Grodzinsky A. Molecular basis of osteoarthritis: biomechanical aspects. Cell Mol Life Sci 2002; 59:27-35. [PMID: 11846029 PMCID: PMC11337500 DOI: 10.1007/s00018-002-8402-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The unique biomechanical properties of healthy cartilage ensure that articular cartilage is able to transmit force between the joints while maintaining almost friction-free limb movement. In osteoarthritis, the biomechanical properties are compromised, but we still do not understood whether this precedes the onset of the disease or is a result of it. This review focuses on the physical changes to cartilage with age, disease, and mechanical loading, with specific reference to the increased collagen cross-linking that occurs with age (nonenzymatic glycation), and the response of chondrocytes to physiological and pathological loads. In addition, the biomechanical properties and matrix biosynthesis of cartilage from various joint surfaces of the knee and ankle are compared to elucidate reasons why the ankle is less affected by progressive osteoarthritis than the knee.
Collapse
|
Review |
23 |
68 |
5
|
Patwari P, Gao G, Lee JH, Grodzinsky AJ, Sandy JD. Analysis of ADAMTS4 and MT4-MMP indicates that both are involved in aggrecanolysis in interleukin-1-treated bovine cartilage. Osteoarthritis Cartilage 2005; 13:269-77. [PMID: 15780640 PMCID: PMC2771540 DOI: 10.1016/j.joca.2004.10.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Accepted: 10/25/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the mechanism of aggrecanolysis in interleukin-1 (IL-1)-treated cartilage tissue by examining the time course of aggrecan cleavages and the tissue and medium content of membrane type 4-matrix metalloproteinases (MT4-MMP) and a disintegrin and metalloproteinase with thrombospondin type I motifs (ADAMTS)4. METHODS Articular cartilage explants were harvested from newborn bovine femoropatellar groove. The effects of IL-1 treatment with or without aggrecanase blockade were investigated by Western analysis of aggrecan fragment generation, ADAMTS4 species (p68 and p53), and MT4-MMP, as well as by realtime PCR (polymerase chain reaction) for ADAMTS4 and 5. Aggrecanase was blocked with mannosamine (ManN), an inhibitor of glycosylphosphatidylinositol anchor synthesis, and esculetin (EST), an inhibitor of MMP-1, MMP-3, and MMP-13 gene expression. RESULTS IL-1 treatment caused a major increase in MT4-MMP abundance in the tissue and medium. ADAMTS4 (p68) was abundant in fresh cartilage and this was retained in the tissue in untreated cartilage. IL-1 treatment for 6 days caused a marked loss of p68 from the cartilage and the appearance of p53 in the medium. Addition of either 1.35 mM ManN or 31-500 microM EST blocked IL-1-mediated aggrecanolysis and this was accompanied by nearly complete inhibition of the MT4-MMP increase, the p68 loss and the formation of p53. IL-1 treatment increased mRNA abundance for ADAMTS4 ( approximately 3-fold) and ADAMTS5 ( approximately 10-fold) but this was not accompanied by a marked change in enzyme protein abundance. CONCLUSION These studies support a central role for MT4-MMP in IL-1-induced cartilage aggrecanolysis and are consistent with the identification of p68 as the aggrecanase that cleaves within the CS2 domain, and of p53 as the aggrecanase that generates G1-NITEGE. Since the induction by IL-1 was not accompanied by marked changes in total ADAMTS4 protein, but rather in partial conversion of p68 to p53 and release of both from the tissue, we conclude that aggrecanolysis in this model system results from MT4-MMP-mediated processing of a resident pool of ADAMTS4 and release of the p68 and p53 from their normal association with the cell surface.
Collapse
|
Research Support, N.I.H., Extramural |
20 |
63 |
6
|
Patwari P, Kurz B, Sandy JD, Grodzinsky AJ. Mannosamine inhibits aggrecanase-mediated changes in the physical properties and biochemical composition of articular cartilage. Arch Biochem Biophys 2000; 374:79-85. [PMID: 10640399 DOI: 10.1006/abbi.1999.1538] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enzymatic processes underlying the degradation of aggrecan in cartilage and the corresponding changes in the biomechanical properties of the tissue are an important part of the pathophysiology of osteoarthritis. Recent studies have demonstrated that the hexosamines glucosamine (GlcN) and mannosamine (ManN) can inhibit aggrecanase-mediated cleavage of aggrecan in IL-1-treated cartilage cultures. The term aggrecanase describes two or more members of the ADAMTS family of metalloproteinases whose glutamyl endopeptidase activity is known to be responsible for much of the aggrecan degradation seen in human arthritides. In this study we examined the effect of ManN and GlcN on aggrecanase-mediated degradation of aggrecan induced by IL-1alpha and the corresponding tissue mechanical properties in newborn bovine articular cartilage. After 6 days of culture in 10 ng/ml IL-1 plus ManN, mechanical testing of explants in confined compression demonstrated that ManN inhibited the IL-1alpha-induced degradation in tissue equilibrium modulus, dynamic stiffness, streaming potential, and hydraulic permeability, in a dose-dependent fashion, with peak inhibition ( approximately 75-100% inhibition) reached by a concentration of 1.35 mM. Aggrecan from explants cultured in IL-1 was found by Western analysis to be almost entirely processed down to the G1-NITEGE(373) end product. Addition of ManN or GlcN was found to produce 75-90% inhibition of this cleavage, but the proportion of aggrecan remaining in the tissue which was cleaved at aggrecanase sites in the chondroitin sulfate (CS)-rich region (Glu(1501) and Glu(1687)) was higher than with IL-1 alone. This result suggests that the preservation of mechanical properties by hexosamines in explants is primarily due to inhibition of cleavage at the Glu(373) site in the interglobular domain. While the precise mechanism by which hexosamines function in this system is unclear, the present analysis suggests that the mechanical properties examined may be predominantly a function of electrostatic repulsion due to the charged CS chains in the tightly packed repetitive sequences of the CS-1 region.
Collapse
|
|
25 |
47 |
7
|
Patwari P, Gaschen V, James IE, Berger E, Blake SM, Lark MW, Grodzinsky AJ, Hunziker EB. Ultrastructural quantification of cell death after injurious compression of bovine calf articular cartilage. Osteoarthritis Cartilage 2004; 12:245-52. [PMID: 14972342 PMCID: PMC2703677 DOI: 10.1016/j.joca.2003.11.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2003] [Accepted: 11/02/2003] [Indexed: 02/02/2023]
Abstract
OBJECTIVE It has been suggested that chondrocyte death by apoptosis may play a role in the pathogenesis of cartilage destruction in osteoarthritis, but the results of in-vivo and in-vitro investigations have been conflicting. To investigate further the cell death in our in-vitro model for traumatic joint injury, we performed a quantitative analysis by electron microscopy (EM) of cell morphology after injurious compression. For comparison, the TUNEL assay was also performed. DESIGN Articular cartilage explant disks were harvested from newborn calf femoropatellar groove. The disks were subjected to injurious compression (50% strain at a strain rate of 100%/s), incubated for 3 days, and then fixed for quantitative morphological analysis. RESULTS By TUNEL, the cell apoptosis rate increased from 7 +/- 2% in unloaded controls to 33 +/- 6% after injury (P=0.01; N=8 animals). By EM, the apoptosis rate increased from 5 +/- 1% in unloaded controls to 62 +/- 10% in injured cartilage (P=0.02, N=5 animals). Analysis by EM also identified that of the dead cells in injured disks, 97% were apoptotic by morphology. CONCLUSIONS These results confirm a significant increase in cell death after injurious compression and suggest that most cell death observed here was by an apoptotic process.
Collapse
|
research-article |
21 |
44 |
8
|
Patwari P, Fay J, Cook MN, Badger AM, Kerin AJ, Lark MW, Grodzinsky AJ. In vitro models for investigation of the effects of acute mechanical injury on cartilage. Clin Orthop Relat Res 2001:S61-71. [PMID: 11603726 DOI: 10.1097/00003086-200110001-00007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Traumatic injury to a joint is known to increase the risk for the development of secondary osteoarthritis, but it is unclear how this process occurs. The existence of such a discrete event that can lead to an increased risk of osteoarthritis has spurred interest in developing in vitro models of traumatic joint injury. The current authors review some of the recent insights gained from these model systems into the pathogenesis of osteoarthritis, including the evidence for an initial, irreversible insult to chondrocytes during mechanical injury, the occurrence of apoptotic chondrocyte death, and attempts to identify the effects of trauma on chondrocyte metabolic response. Results also are presented from the authors' ongoing studies of the degradative pathways initiated by traumatic mechanical loads, the mechanism by which chondrocytes are affected during compression, and possible contributions of the joint capsule to posttraumatic cartilage degradation.
Collapse
|
Review |
24 |
35 |
9
|
Patwari P, Lin SN, Kurz B, Cole AA, Kumar S, Grodzinsky AJ. Potent inhibition of cartilage biosynthesis by coincubation with joint capsule through an IL-1-independent pathway. Scand J Med Sci Sports 2009; 19:528-35. [PMID: 19371309 DOI: 10.1111/j.1600-0838.2009.00911.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The reason for the increased risk for development of osteoarthritis (OA) after acute joint trauma is not well understood, but the mechanically injured cartilage may be more susceptible to degradative mediators secreted by other tissues in the joint. To establish a model for such interactions, we coincubated bovine cartilage tissue explants together with normal joint capsule and found a profound ( approximately 70%) reduction in cartilage proteoglycan biosynthesis. This reduction is due to release by the joint capsule of a heat-labile and non-toxic factor. Surprisingly, while cultured synovium is a canonical source of interleukin-1 (IL-1), blockade either by soluble IL-1 type II receptor (sIL-1r) or IL-1 receptor antagonist (IL-1RA) had no effect. Combined blockade of IL-1 and tumor necrosis factor alpha (TNF-alpha) also had no effect. To support the clinical relevance of the findings, we harvested joint capsule from post-mortem human knees. Human joint capsule from a normal adult knee also released a substance that caused an approximately 40% decrease in cartilage proteoglycan biosynthesis. Furthermore, this inhibition was not affected by IL-1 blockade with either sIL-1r or IL-1RA. These results suggest that joint capsule tissue from a normal knee joint can release an uncharacterized cytokine that potently inhibits cartilage biosynthetic activity by an IL-1- and TNF-independent pathway.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
20 |
10
|
Patwari P, Pruckner F, Fabris M. Biosensors in microalgae: A roadmap for new opportunities in synthetic biology and biotechnology. Biotechnol Adv 2023; 68:108221. [PMID: 37495181 DOI: 10.1016/j.biotechadv.2023.108221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/22/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Biosensors are powerful tools to investigate, phenotype, improve and prototype microbial strains, both in fundamental research and in industrial contexts. Genetic and biotechnological developments now allow the implementation of synthetic biology approaches to novel different classes of microbial hosts, for example photosynthetic microalgae, which offer unique opportunities. To date, biosensors have not yet been implemented in phototrophic eukaryotic microorganisms, leaving great potential for novel biological and technological advancements untapped. Here, starting from selected biosensor technologies that have successfully been implemented in heterotrophic organisms, we project and define a roadmap on how these could be applied to microalgae research. We highlight novel opportunities for the development of new biosensors, identify critical challenges, and finally provide a perspective on the impact of their eventual implementation to tackle research questions and bioengineering strategies. From studying metabolism at the single-cell level to genome-wide screen approaches, and assisted laboratory evolution experiments, biosensors will greatly impact the pace of progress in understanding and engineering microalgal metabolism. We envision how this could further advance the possibilities for unraveling their ecological role, evolutionary history and accelerate their domestication, to further drive them as resource-efficient production hosts.
Collapse
|
Review |
2 |
5 |
11
|
Müller Y, Patwari P, Stöcker T, Zeisler-Diehl V, Steiner U, Campoli C, Grewe L, Kuczkowska M, Dierig MM, Jose S, Hetherington AM, Acosta IF, Schoof H, Schreiber L, Dörmann P. Isolation and characterization of the gene HvFAR1 encoding acyl-CoA reductase from the cer-za.227 mutant of barley (Hordeum vulgare) and analysis of the cuticular barrier functions. THE NEW PHYTOLOGIST 2023. [PMID: 37349864 DOI: 10.1111/nph.19063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
The cuticle is a protective layer covering aerial plant organs. We studied the function of waxes for the establishment of the cuticular barrier in barley (Hordeum vulgare). The barley eceriferum mutants cer-za.227 and cer-ye.267 display reduced wax loads, but the genes affected, and the consequences of the wax changes for the barrier function remained unknown. Cuticular waxes and permeabilities were measured in cer-za.227 and cer-ye.267. The mutant loci were isolated by bulked segregant RNA sequencing. New cer-za alleles were generated by genome editing. The CER-ZA protein was characterized after expression in yeast and Arabidopsis cer4-3. Cer-za.227 carries a mutation in HORVU5Hr1G089230 encoding acyl-CoA reductase (FAR1). The cer-ye.267 mutation is located to HORVU4Hr1G063420 encoding β-ketoacyl-CoA synthase (KAS1) and is allelic to cer-zh.54. The amounts of intracuticular waxes were strongly decreased in cer-ye.267. The cuticular water loss and permeability of cer-za.227 were similar to wild-type (WT), but were increased in cer-ye.267. Removal of epicuticular waxes revealed that intracuticular, but not epicuticular waxes are required to regulate cuticular transpiration. The differential decrease in intracuticular waxes between cer-za.227 and cer-ye.267, and the removal of epicuticular waxes indicate that the cuticular barrier function mostly depends on the presence of intracuticular waxes.
Collapse
|
|
2 |
2 |
12
|
Dileep Kumar GD, Abdul Fiyaz R, Chaithanya K, Darmagaru S, Viswanatha KP, Patwari P, Bupalli S, Chimote VP, Raghuwanshi KS, Kousik MBVN, Rapaka Percy VS, Bharath M, Laha GS, Aravind Kumar J, Basavaraj K, Subba Rao LV, Sundaram RM. Introgression of genes associated with yield enhancement and resistance against bacterial leaf blight and blast diseases into an elite rice variety, Jaya. THE PLANT GENOME 2025; 18:e20555. [PMID: 40176253 PMCID: PMC11965552 DOI: 10.1002/tpg2.20555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 04/04/2025]
Abstract
Developing rice (Oryza sativa L.) cultivars with resistance to bacterial leaf blight (BLB) and blast is crucial for ensuring food security, as these diseases can cause significant yield losses. Additionally, enhancing yield potential in these resistant cultivars can maximize productivity and meet the growing demand for rice; therefore, introgression of bacterial leaf blight and blast resistance genes along with yield improvement genes is the most felicitous strategy for a panoramic genetic enhancement. Jaya is a most popular, stable mega rice variety, notified and cultivated in 19 states across India, and is susceptible to bacterial leaf blight and blast diseases and has an average yielding ability (4.5 t/ha). In the current investigation, efforts have been made to transfer Xa21 for BLB resistance, Pi54 for blast resistance, and Gn1a for yield improvement. A total of 20 BC2F2 introgression lines with targeted BLB, blast, and yield genes were identified. Based on preliminary yield trials in BC2F3 generation, two best lines (BC2F2-2-27-2 and BC2F2-2-27-4) and which showed higher phenotypic disease resistance along with superior yield performance were selected for multi-location testing along with recurrent parent. Both the lines performed superior with respect to disease resistance and grain yield, along with acceptable grain quality which can be comparable to the recurrent parent Jaya.
Collapse
|
research-article |
1 |
|
13
|
Pruckner F, Morelli L, Patwari P, Fabris M. Remodeling of the terpenoid metabolism during prolonged phosphate depletion in the marine diatom Phaeodactylum tricornutum. JOURNAL OF PHYCOLOGY 2025. [PMID: 40234016 DOI: 10.1111/jpy.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/03/2025] [Accepted: 03/14/2025] [Indexed: 04/17/2025]
Abstract
Terpenoids are a diverse class of naturally occurring organic compounds, which derive from five-carbon isoprene units and play crucial roles in physiology, ecological interactions such as defense mechanisms, or adaptation to environmental stresses. In Phaeodactylum tricornutum, some of the most important isoprenoids are sterols and pigments, derived from precursors of the cytosolic mevalonate and the plastidial methyl-erythritol 4-phosphate pathway, respectively. However, the regulation of isoprenoid metabolism in P. tricornutum has not yet been characterized, presenting a major gap in our understanding of its ecological functions and adaptations. By leveraging metabolic, photosynthetic, and transcriptomic analyses, we characterized the dynamic remodeling of the isoprenoid pathways during prolonged nutrient stress in wild-type diatoms. We observed the down-regulation of the methylerythritol 4-phosphate and pigment biosynthesis pathways and the upregulation of key genes in the mevalonate and sterol biosynthesis pathways. At the metabolite level, we observed an overall decrease in pigment and no changes in sterol levels. Using a genetically engineered diatom strain to produce a heterologous monoterpenoid to monitor the availability of one of the main terpenoid precursors, geranyl diphosphate (GPP), we suggest that cytosolic GPP pools increase during prolonged phosphate depletion. Our results have demonstrated how the biosynthesis of isoprenoid metabolites and the pools of prenyl phosphate are vastly remodeled during phosphate depletion. We anticipate that the knowledge generated in this study can serve as a foundation for understanding ecological responses and adaptations of diatoms to nutrient stress, contributing to our broader comprehension of marine ecosystem dynamics and design strategies for producing high-value compounds in diatoms.
Collapse
|
|
1 |
|