1
|
Serles P, Hamidinejad M, Demingos PG, Ma L, Barri N, Taylor H, Singh CV, Park CB, Filleter T. Friction of Ti 3C 2T x MXenes. NANO LETTERS 2022; 22:3356-3363. [PMID: 35385668 DOI: 10.1021/acs.nanolett.2c00614] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
2D materials are well-known for their low-friction behavior by modifying the interfacial forces at atomic surfaces. Of the wide range of 2D materials, MXenes represent an emerging material class but their lubricating behavior has been scarcely investigated. Herein, the friction mechanisms of 2D Ti3C2Tx MXenes are demonstrated which are attributed to their surface terminations. We find that Ti3C2Tx MXenes do not exhibit the well-known frictional layer dependence of other 2D materials. Instead, the nanoscale lubricity of 2D MXenes is governed by the termination species resulting from synthesis. Annealing the MXenes demonstrate a 7% reduction in OH termination which translates to a 16-57% reduction of friction in agreement with DFT calculations. Finally, the stability of MXene flakes is demonstrated upon isolation from their aqueous environment. This work indicates that MXenes can provide sustainable lubricity at any thickness which makes them uniquely positioned among 2D material lubricants.
Collapse
|
|
3 |
14 |
2
|
Gayle J, Roy S, Gupta S, Hassan S, Rao A, Demingos PG, Miller K, Guo G, Wang X, Garg A, Singh CV, Vajtai R, Robinson JT, Ajayan PM. Imine-Linked 2D Conjugated Porous Organic Polymer Films for Tunable Acid Vapor Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2726-2739. [PMID: 38170672 DOI: 10.1021/acsami.3c14825] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Two-dimensional (2D) films of conjugated porous organic polymers (C-POPs) can translate the rich in-plane functionalities of conjugated frameworks into diverse optical and electronic applications while addressing the processability issues of their crystalline analogs for adaptable device architectures. However, the lack of facile single-step synthetic routes to obtain large-area high-quality films of 2D-C-POPs has limited their application possibilities so far. Here, we report the synthesis of four mechanically robust imine-linked 2D-C-POP free-standing films using a single-step fast condensation route that is scalable and tunable. The rigid covalently bonded 2D structures of the C-POP films offer high stability for volatile gas sensing in harsh environments while simultaneously enhancing site accessibility for gas molecules due to mesoporosity by structural design. Structurally, all films were composed of exfoliable layers of 2D polymeric nanosheets (NSs) that displayed anisotropy from disordered stacking, evinced by out-of-plane birefringent properties. The tunable in-plane conjugation, different nitrogen centers, and porous structures allow the films to act as ultraresponsive colorimetric sensors for acid sensing via reversible imine bond protonation. All the films could detect hydrogen chloride (HCl) gas down to 0.05 ppm, far exceeding the Occupational Safety and Health Administration's permissible exposure limit of 5 ppm with fast response time and good recyclability. Computational insights elucidated the effect of conjugation and tertiary nitrogen in the structures on the sensitivity and response time of the films. Furthermore, we exploited the exfoliated large 2D NSs and anisotropic optoelectronic properties of the films to adapt them into micro-optical and triboelectric devices to demonstrate their real-time sensing capabilities.
Collapse
|
|
1 |
5 |
3
|
Miller KA, Alemany LB, Roy S, Yan Q, Demingos PG, Singh CV, Alahakoon S, Egap E, Thomas EL, Ajayan PM. High-Strength, Microporous, Two-Dimensional Polymer Thin Films with Rigid Benzoxazole Linkage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1861-1873. [PMID: 34978172 DOI: 10.1021/acsami.1c17501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) rigid polymers provide an opportunity to translate the high-strength, high-modulus mechanical performance of classic rigid-rod 1D polymers across a plane by extending covalent bonding into two dimensions while simultaneously reducing density due to microporosity by structural design. Thus far, this potential has remained elusive because of the challenge of producing high-quality 2D polymer thin films, particularly those with irreversible, rigid benzazole linkages. Here, we present a facile two-step process that allows the deposition of a uniform intermediate film network via reversible, non-covalent interactions, followed by a subsequent solid-state annealing step that facilitates the irreversible conversion to a 2D covalently bonded polymer product with benzoxazole linkages. We demonstrate the versatility of this synthesis method by producing films with four different aromatic core units. The resulting films show microporosity and anisotropy with a 2D layered structure that can be exfoliated into few-layer nanosheets using a freeze-thaw method. These films have promising mechanical properties with an in-plane ultimate tensile strength of nearly 40 MPa and axial tensile and transverse compressive elastic moduli on the scale of several GPa, rivaling the performance of solution-cast films of 1D polybenzoxazole, as well as several other 1D high-strength polymer films.
Collapse
|
|
3 |
3 |
4
|
Guerra Demingos P, Chen Z, Ni X, Singh CV. Computational Engineering of Non-van der Waals 2D Magnetene for Enhanced Oxygen Evolution and Reduction Reactions. CHEMSUSCHEM 2025; 18:e202401157. [PMID: 39213478 PMCID: PMC11789998 DOI: 10.1002/cssc.202401157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Non-van der Waals two-dimensional materials containing exposed transition metal atoms are promising catalysts for green energy storage and conversion. For instance, hematene and ilmenene have been successfully applied as catalysts. Building on these reports, this work is the first investigation of recently synthesized magnetene towards the Oxygen Evolution Reaction (OER) and Oxygen Reduction Reaction (ORR). Using Density Functional Theory (DFT) calculations, we unveil the mechanism, performance and ideal conditions for OER and ORR on magnetene. With overpotentials of ηOER=0.50 V and ηORR=0.41 V, the material is not only a bifunctional catalyst, but also superior to state-of-the-art systems such as Pt and IrO2. Additionally, its catalytic properties can be further enhanced through engineering strategies such as point defects and in-plane compression. It reaches ηORR=0.28 V at a compressive strain of only 2 %, while the presence of Ni boosts it to ηOER=0.39 V and ηORR=0.31 V, comparable to many reported single-atom catalysts. Overall, this work demonstrates that magnetene is a promising bifunctional catalyst for applications such as regenerative fuel cells and metal-air batteries.
Collapse
|
research-article |
1 |
|
5
|
Barri N, Rastogi A, Islam MA, Kumral B, Demingos PG, Onodera M, Machida T, Singh CV, Filleter T. Cyclic Wear Reliability of 2D Monolayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27979-27987. [PMID: 38752682 DOI: 10.1021/acsami.4c04495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Understanding wear, a critical factor impacting the reliability of mechanical systems, is vital for nano-, meso-, and macroscale applications. Due to the complex nature of nanoscale wear, the behavior of nanomaterials such as two-dimensional materials under cyclic wear and their surface damage mechanism is yet unexplored. In this study, we used atomic force microscopy coupled with molecular dynamic simulations to statistically examine the cyclic wear behavior of monolayer graphene, MoS2, and WSe2. We show that graphene displays exceptional durability and lasts over 3000 cycles at 85% of the applied critical normal load before failure, while MoS2 and WSe2 last only 500 cycles on average. Moreover, graphene undergoes catastrophic failure as a result of stress concentration induced by local out-of-plane deformation. In contrast, MoS2 and WSe2 exhibit intermittent failure, characterized by damage initiation at the edge of the wear track and subsequent propagation throughout the entire contact area. In addition to direct implications for MEMS and NEMS industries, this work can also enable the optimization of the use of 2D materials as lubricant additives on a macroscopic level.
Collapse
|
|
1 |
|
6
|
Serles P, Yeo J, Haché M, Demingos PG, Kong J, Kiefer P, Dhulipala S, Kumral B, Jia K, Yang S, Feng T, Jia C, Ajayan PM, Portela CM, Wegener M, Howe J, Singh CV, Zou Y, Ryu S, Filleter T. Ultrahigh Specific Strength by Bayesian Optimization of Carbon Nanolattices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410651. [PMID: 39846271 PMCID: PMC11983246 DOI: 10.1002/adma.202410651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/10/2025] [Indexed: 01/24/2025]
Abstract
Nanoarchitected materials are at the frontier of metamaterial design and have set the benchmark for mechanical performance in several contemporary applications. However, traditional nanoarchitected designs with conventional topologies exhibit poor stress distributions and induce premature nodal failure. Here, using multi-objective Bayesian optimization and two-photon polymerization, optimized carbon nanolattices with an exceptional specific strength of 2.03 MPa m3 kg-1 at low densities <215 kg m-3 are created. Generative design optimization provides experimental improvements in strength and Young's modulus by as much as 118% and 68%, respectively, at equivalent densities with entirely different lattice failure responses. Additionally, the reduction of nanolattice strut diameters to 300 nm produces a unique high-strength carbon with a pyrolysis-induced atomic gradient of 94% sp2 aromatic carbon and low oxygen impurities. Using multi-focus multi-photon polymerization, a millimeter-scalable metamaterial consisting of 18.75 million lattice cells with nanometer dimensions is demonstrated. Combining Bayesian optimized designs and nanoarchitected pyrolyzed carbon, the optimal nanostructures exhibit the strength of carbon steel at the density of Styrofoam offering unparalleled capabilities in light-weighting, fuel reduction, and contemporary design applications.
Collapse
|
research-article |
1 |
|
7
|
Nabil SK, Roy S, Algozeeb WA, Al-Attas T, Bari MAA, Zeraati AS, Kannimuthu K, Demingos PG, Rao A, Tran TN, Wu X, Bollini P, Lin H, Singh CV, Tour JM, Ajayan PM, Kibria MG. Bifunctional Gas Diffusion Electrode Enables In Situ Separation and Conversion of CO 2 to Ethylene from Dilute Stream. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300389. [PMID: 36943940 DOI: 10.1002/adma.202300389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/06/2023] [Indexed: 06/16/2023]
Abstract
The requirement of concentrated carbon dioxide (CO2 ) feedstock significantly limits the economic feasibility of electrochemical CO2 reduction (eCO2 R) which often involves multiple intermediate processes, including CO2 capture, energy-intensive regeneration, compression, and transportation. Herein, a bifunctional gas diffusion electrode (BGDE) for separation and eCO2 R from a low-concentration CO2 stream is reported. The BGDE is demonstrated for the selective production of ethylene (C2 H4 ) by combining high-density-polyethylene-derived porous carbon (HPC) as a physisorbent with polycrystalline copper as a conversion catalyst. The BGDE shows substantial tolerance to 10 vol% CO2 exhibiting a Faradaic efficiency of ≈45% toward C2 H4 at a current density of 80 mA cm-2 , outperforming previous reports that utilized such partial pressure (PCO2 = 0.1 atm and above) and unaltered polycrystalline copper. Molecular dynamics simulation and mixed gas permeability assessment reveal that such selective performance is ensured by high CO2 uptake of the microporous HPC as well as continuous desorption owing to the molecular diffusion and concentration gradient created by the binary flow of CO2 and nitrogen (CO2 |N2 ) within the sorbent boundary. Based on detailed techno-economic analysis, it is concluded that this in situ process can be economically compelling by precluding the C2 H4 production cost associated with the energy-intensive intermediate steps of the conventional decoupled process.
Collapse
|
|
2 |
|
8
|
Kumral B, Demingos PG, Cui T, Serles P, Barri N, Singh CV, Filleter T. Defect Engineering of Graphene for Dynamic Reliability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302145. [PMID: 37291948 DOI: 10.1002/smll.202302145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/12/2023] [Indexed: 06/10/2023]
Abstract
The interface between two-dimensional (2D) materials and soft, stretchable polymeric substrates is a governing criterion in proposed 2D materials-based flexible devices. This interface is dominated by weak van der Waals forces and there is a large mismatch in elastic constants between the contact materials. Under dynamic loading, slippage, and decoupling of the 2D material is observed, which then leads to extensive damage propagation in the 2D lattice. Herein, graphene is functionalized through mild and controlled defect engineering for a fivefold increase in adhesion at the graphene-polymer interface. Adhesion is characterized experimentally using buckling-based metrology, while molecular dynamics simulations reveal the role of individual defects in the context of adhesion. Under in situ cyclic loading, the increased adhesion inhibits damage initiation and interfacial fatigue propagation within graphene. This work offers insight into achieving dynamically reliable and robust 2D material-polymer contacts, which can facilitate the development of 2D materials-based flexible devices.
Collapse
|
|
2 |
|