1
|
Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 2005; 14:1935-40. [PMID: 15530395 DOI: 10.1016/j.cub.2004.10.028] [Citation(s) in RCA: 475] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 09/10/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
The ABC model of flower organ identity is widely recognized as providing a framework for understanding the specification of flower organs in diverse plant species. Recent studies in Arabidopsis thaliana have shown that three closely related MADS-box genes, SEPALLATA1 (SEP1), SEP2 and SEP3, are required to specify petals, stamens, and carpels because these organs are converted into sepals in sep1 sep2 sep3 triple mutants. Additional studies indicate that the SEP proteins form multimeric complexes with the products of the B and C organ identity genes. Here, we characterize the SEP4 gene, which shares extensive sequence similarity to and an overlapping expression pattern with the other SEP genes. Although sep4 single mutants display a phenotype similar to that of wild-type plants, we find that floral organs are converted into leaf-like organs in sep1 sep2 sep3 sep4 quadruple mutants, indicating the involvement of all four SEP genes in the development of sepals. We also find that SEP4 contributes to the development of petals, stamens, and carpels in addition to sepals and that it plays an important role in meristem identity. These and other data demonstrate that the SEP genes play central roles in flower meristem identity and organ identity.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
20 |
475 |
2
|
Nelissen H, Fleury D, Bruno L, Robles P, De Veylder L, Traas J, Micol JL, Van Montagu M, Inzé D, Van Lijsebettens M. The elongata mutants identify a functional Elongator complex in plants with a role in cell proliferation during organ growth. Proc Natl Acad Sci U S A 2005; 102:7754-9. [PMID: 15894610 PMCID: PMC1140448 DOI: 10.1073/pnas.0502600102] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The key enzyme for transcription of protein-encoding genes in eukaryotes is RNA polymerase II (RNAPII). The recruitment of this enzyme during transcription initiation and its passage along the template during transcription elongation is regulated through the association and dissociation of several complexes. Elongator is a histone acetyl transferase complex, consisting of six subunits (ELP1-ELP6), that copurifies with the elongating RNAPII in yeast and humans. We demonstrate that point mutations in three Arabidopsis thaliana genes, encoding homologs of the yeast Elongator subunits ELP1, ELP3 (histone acetyl transferase), and ELP4 are responsible for the phenotypes of the elongata2 (elo2), elo3, and elo1 mutants, respectively. The elo mutants are characterized by narrow leaves and reduced root growth that results from a decreased cell division rate. Morphological and molecular phenotypes show that the ELONGATA (ELO) genes function in the same biological process and the epistatic interactions between the ELO genes can be explained by the model of complex formation in yeast. Furthermore, the plant Elongator complex is genetically positioned in the process of RNAPII-mediated transcription downstream of Mediator. Our data indicate that the Elongator complex is evolutionarily conserved in structure and function but reveal that the mechanism by which it stimulates cell proliferation is different in yeast and plants.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
128 |
3
|
Abstract
As a contribution to a better understanding of the developmental processes that are specific to plants, we have begun a genetic analysis of leaf ontogeny in the model system Arabidopsis thaliana by performing a large-scale screening for mutants with abnormal leaves. After screening 46,159 M2 individuals, arising from 5770 M1 parental seeds exposed to EMS, we isolated 1926 M2 putative leaf mutants, 853 of which yielded viable M3 inbred progeny. Mutant phenotypes were transmitted with complete penetrance and small variations in expressivity in 255 lines. Most of them were inherited as recessive monogenic traits, belonging to 94 complementation groups, which suggests that we did not reach saturation of the genome. We discuss the nature of the processes presumably perturbed in the phenotypic classes defined among our mutants.
Collapse
|
research-article |
26 |
126 |
4
|
Fleury D, Himanen K, Cnops G, Nelissen H, Boccardi TM, Maere S, Beemster GTS, Neyt P, Anami S, Robles P, Micol JL, Inzé D, Van Lijsebettens M. The Arabidopsis thaliana homolog of yeast BRE1 has a function in cell cycle regulation during early leaf and root growth. THE PLANT CELL 2007; 19:417-32. [PMID: 17329565 PMCID: PMC1867331 DOI: 10.1105/tpc.106.041319] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chromatin modification and transcriptional activation are novel roles for E3 ubiquitin ligase proteins that have been mainly associated with ubiquitin-dependent proteolysis. We identified HISTONE MONOUBIQUITINATION1 (HUB1) (and its homolog HUB2) in Arabidopsis thaliana as RING E3 ligase proteins with a function in organ growth. We show that HUB1 is a functional homolog of the human and yeast BRE1 proteins because it monoubiquitinated histone H2B in an in vitro assay. Hub knockdown mutants had pale leaf coloration, modified leaf shape, reduced rosette biomass, and inhibited primary root growth. One of the alleles had been designated previously as ang4-1. Kinematic analysis of leaf and root growth together with flow cytometry revealed defects in cell cycle activities. The hub1-1 (ang4-1) mutation increased cell cycle duration in young leaves and caused an early entry into the endocycles. Transcript profiling of shoot apical tissues of hub1-1 (ang4-1) indicated that key regulators of the G2-to-M transition were misexpressed. Based on the mutant characterization, we postulate that HUB1 mediates gene activation and cell cycle regulation probably through chromatin modifications.
Collapse
|
research-article |
18 |
120 |
5
|
Horiguchi G, Mollá-Morales A, Pérez-Pérez JM, Kojima K, Robles P, Ponce MR, Micol JL, Tsukaya H. Differential contributions of ribosomal protein genes to Arabidopsis thaliana leaf development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:724-36. [PMID: 21251100 DOI: 10.1111/j.1365-313x.2010.04457.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In Arabidopsis thaliana, mutations in genes encoding ribosomal proteins (r-proteins) perturb various developmental processes. Whether these perturbations are caused by overall ribosome insufficiency or partial dysfunction of the ribosome caused by deficiency of a particular ribosomal protein is not known. To distinguish these possibilities, a comparative study using several r-protein mutants was required. Here, we identified mutations in 11 r-protein genes from previously isolated denticulata and pointed-leaves mutants. Most of these mutations were associated with pointed leaves, with reduced growth due to a decrease in the number or size of palisade mesophyll and pavement cells. In addition, leaf abaxialization was usually observed when these r-protein mutations were combined with asymmetric leaves1 (as1) and as2 mutations. These results suggest that the establishment of leaf polarity is highly sensitive to ribosome functionality in general. However, several r-protein mutants showed a preference towards a specific developmental defect. For example, rpl4d mutations did not affect cell proliferation but caused strong abaxialization of leaves in the as1 and as2 backgrounds. On the other hand, rps28b enhanced leaf abaxialization of as2 to a weaker extent than expected on the basis of its negative effect on cell proliferation. In addition, hypomorphic rps6a alleles had the strongest effects on most of the phenotypes examined. These findings suggest that deficiencies in these three r-protein genes lead to production of dysfunctional ribosomes. Depending on their structural abnormalities, dysfunctional ribosomes may affect translation of specific transcripts involved in the regulation of some leaf developmental processes.
Collapse
|
Comparative Study |
14 |
113 |
6
|
Serrano-Cartagena J, Robles P, Ponce MR, Micol JL. Genetic analysis of leaf form mutants from the Arabidopsis Information Service collection. MOLECULAR & GENERAL GENETICS : MGG 1999; 261:725-39. [PMID: 10394910 DOI: 10.1007/s004380050016] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although a vast inventory of morphological mutants of Arabidopsis thaliana is available, only some have been used for genetic studies of leaf development. Such is the case with the Arabidopsis Information Service (AIS) Form Mutants collection, assembled by A. R. Kranz and currently stored at the Nottingham Arabidopsis Stock Centre, which includes a large number of mutant lines, most of which have been little studied. With the aim of contributing to the genetic dissection of leaf ontogeny, we have subjected 57 mutant lines isolated by others to genetic analysis; 47 of which were from the AIS collection. These are characterized by vegetative leaves of abnormal shape or size, and were chosen as candidates for mutations in genes required for leaf morphogenesis. The mutant phenotypes studied were shown to be inherited as single recessive Mendelian traits and were classified into 10 phenotypic classes. These mutant strains were found to fall into 37 complementation groups, 7 of which corresponded to known genes. Results of the phenotypic analysis and data on the genetic interactions of these mutants are presented, and their possible developmental defects discussed.
Collapse
|
|
26 |
85 |
7
|
Ponce MR, Robles P, Micol JL. High-throughput genetic mapping in Arabidopsis thaliana. MOLECULAR & GENERAL GENETICS : MGG 1999; 261:408-15. [PMID: 10102377 DOI: 10.1007/s004380050982] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To facilitate rapid determination of the chromosomal location of novel mutations, we have improved current approaches to gene mapping using microsatellite length polymorphisms. The high-throughput linkage analysis method described here allows a novel gene to be tested for linkage against the whole genome of a multicellular eukaryote, Arabidopsis thaliana, in a single polyacrylamide gel. The procedure is based on the simultaneous co-amplification of 21 microsatellites in a single tube, using a multiplex PCR mix containing 21 primer pairs, each including one oligonucleotide labeled with one of three fluorescent dyes that have different emission wavelengths. The amplification products, which range in number from 21 to 42, depending on the genotype of the individual being tested, are electrophoresed in a single lane on a polyacrylamide gel. The use of an automated fragment analyzer makes it possible to perform linkage analysis on a one gel-one gene basis using DNA samples from 19 F2 individuals obtained from an outcross involving a mutant and a wild-type that is genetically polymorphic with respect to the ecotype in which the mutant was generated. Discrimination of the amplification products is facilitated not only by labeling with different fluorochromes, but also by prior testing of different sequences for the ability to prime the amplification of each microsatellite, in order to ensure that multiplex PCR yields compatible amplification products of non-overlapping size. The method is particularly useful in large-scale mutagenesis projects, as well as for routine mapping of single mutants, since it reveals the map position of a gene less than 24 h after the F2 individuals to be analyzed have become available. The concepts employed here can easily be extended to other biological systems.
Collapse
|
|
26 |
71 |
8
|
Serrano-Cartagena J, Candela H, Robles P, Ponce MR, Pérez-Pérez JM, Piqueras P, Micol JL. Genetic analysis of incurvata mutants reveals three independent genetic operations at work in Arabidopsis leaf morphogenesis. Genetics 2000; 156:1363-77. [PMID: 11063708 PMCID: PMC1461319 DOI: 10.1093/genetics/156.3.1363] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In an attempt to identify genes involved in the control of leaf morphogenesis, we have studied 13 Arabidopsis thaliana mutants with curled, involute leaves, a phenotype herein referred to as Incurvata (Icu), which were isolated by G. Röbbelen and belong to the Arabidopsis Information Service Form Mutants collection. The Icu phenotype was inherited as a single recessive trait in 10 mutants, with semidominance in 2 mutants and with complete dominance in the remaining 1. Complementation analyses indicated that the studied mutations correspond to five genes, representative alleles of which were mapped relative to polymorphic microsatellites. Although most double-mutant combinations displayed additivity of the Icu phenotypes, those of icu1 icu2 and icu3 icu4 double mutants were interpreted as synergistic, which suggests that the five genes studied represent three independent genetic operations that are at work for the leaf to acquire its final form at full expansion. We have shown that icu1 mutations are alleles of the Polycomb group gene CURLY LEAF (CLF) and that the leaf phenotype of the icu2 mutant is suppressed in an agamous background, as is known for clf mutants. In addition, we have tested by means of multiplex RT-PCR the transcription of several floral genes in Icu leaves. Ectopic expression of AGAMOUS and APETALA3 was observed in clf and icu2, but not in icu3, icu4, and icu5 mutants. Taken together, these results suggest that CLF and ICU2 play related roles, the latter being a candidate to belong to the Polycomb group of regulatory genes. We propose that, as flowers evolved, a new major class of genes, including CLF and ICU2, may have been recruited to prevent the expression of floral homeotic genes in the leaves.
Collapse
|
research-article |
25 |
71 |
9
|
Brieño-Enríquez M, Robles P, Camats-Tarruella N, García-Cruz R, Roig I, Cabero L, Martínez F, Caldés MG. Human meiotic progression and recombination are affected by Bisphenol A exposure during in vitro human oocyte development. Hum Reprod 2011; 26:2807-18. [DOI: 10.1093/humrep/der249] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
|
14 |
64 |
10
|
Robles P, Pelaz S. Flower and fruit development in Arabidopsis thaliana. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2005; 49:633-43. [PMID: 16096970 DOI: 10.1387/ijdb.052020pr] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The study of flower development has experienced great advances over the last 15 years. The most important landmark was the proposal of the ABC model in which three different functions of overlapping activities account for the development of the four rings of organs of the eudicot flower. Most interestingly, during recent years this simple and elegant model has been broadly accepted and is applicable to a wide range of plant species. However, recent advances in the characterization of protein interactions and the discovery of the SEPALLATA genes that are required for proper floral organ development have led to a revision of the ABC model. The largely accepted floral quartet model, which includes the new SEPALLATA function, postulates that the development of a specific floral organ is achieved by the formation of a single complex of different MADS-box proteins. The ultimate fate of the flower is to become a fruit, ensuring dispersal of the seeds and therefore survival of the species. The Arabidopsis fruit is a silique or pod. Only in the last five years important advances have been made in establishing the differentiation of the tissues required for the opening of the fruit: the valve margins and dehiscence zone. Classical genetic analyses and molecular biology approaches have pointed to the involvement of the transcription factors SHP, ALC and IND in the formation of these tissues and of FUL and RPL in repressing this identity in the bordering tissues, valves and replum, respectively.
Collapse
|
Review |
20 |
61 |
11
|
Robles P, Micol JL, Quesada V. Arabidopsis MDA1, a nuclear-encoded protein, functions in chloroplast development and abiotic stress responses. PLoS One 2012; 7:e42924. [PMID: 22905186 PMCID: PMC3414458 DOI: 10.1371/journal.pone.0042924] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/13/2012] [Indexed: 11/17/2022] Open
Abstract
Most chloroplast and mitochondrial proteins are encoded by nuclear genes, whose functions remain largely unknown because mutant alleles are lacking. A reverse genetics screen for mutations affecting the mitochondrial transcription termination factor (mTERF) family in Arabidopsis thaliana allowed us to identify 75 lines carrying T-DNA insertions. Two of them were homozygous for insertions in the At4g14605 gene, which we dubbed MDA1 (MTERF DEFECTIVE IN Arabidopsis1). The mda1 mutants exhibited altered chloroplast morphology and plant growth, and reduced pigmentation of cotyledons, leaves, stems and sepals. The mda1 mutations enhanced salt and osmotic stress tolerance and altered sugar responses during seedling establishment, possibly as a result of reduced ABA sensitivity. Loss of MDA1 function caused up-regulation of the RpoTp/SCA3 nuclear gene encoding a plastid RNA polymerase and modified the steady-state levels of chloroplast gene transcripts. Double mutant analyses indicated that MDA1 and the previously described mTERF genes SOLDAT10 and RUG2 act in different pathways. Our findings reveal a new role for mTERF proteins in the response to abiotic stress, probably through perturbed ABA retrograde signalling resulting from a disruption in chloroplast homeostasis.
Collapse
|
research-article |
13 |
54 |
12
|
Robles P, Fleury D, Candela H, Cnops G, Alonso-Peral MM, Anami S, Falcone A, Caldana C, Willmitzer L, Ponce MR, Van Lijsebettens M, Micol JL. The RON1/FRY1/SAL1 gene is required for leaf morphogenesis and venation patterning in Arabidopsis. PLANT PHYSIOLOGY 2010; 152:1357-72. [PMID: 20044451 PMCID: PMC2832283 DOI: 10.1104/pp.109.149369] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 12/26/2009] [Indexed: 05/19/2023]
Abstract
To identify genes involved in vascular patterning in Arabidopsis (Arabidopsis thaliana), we screened for abnormal venation patterns in a large collection of leaf shape mutants isolated in our laboratory. The rotunda1-1 (ron1-1) mutant, initially isolated because of its rounded leaves, exhibited an open venation pattern, which resulted from an increased number of free-ending veins. We positionally cloned the RON1 gene and found it to be identical to FRY1/SAL1, which encodes an enzyme with inositol polyphosphate 1-phosphatase and 3' (2'),5'-bisphosphate nucleotidase activities and has not, to our knowledge, previously been related to venation patterning. The ron1-1 mutant and mutants affected in auxin homeostasis share perturbations in venation patterning, lateral root formation, root hair length, shoot branching, and apical dominance. These similarities prompted us to monitor the auxin response using a DR5-GUS auxin-responsive reporter transgene, the expression levels of which were increased in roots and reduced in leaves in the ron1-1 background. To gain insight into the function of RON1/FRY1/SAL1 during vascular development, we generated double mutants for genes involved in vein patterning and found that ron1 synergistically interacts with auxin resistant1 and hemivenata-1 but not with cotyledon vascular pattern1 (cvp1) and cvp2. These results suggest a role for inositol metabolism in the regulation of auxin responses. Microarray analysis of gene expression revealed that several hundred genes are misexpressed in ron1-1, which may explain the pleiotropic phenotype of this mutant. Metabolomic profiling of the ron1-1 mutant revealed changes in the levels of 38 metabolites, including myoinositol and indole-3-acetonitrile, a precursor of auxin.
Collapse
|
research-article |
15 |
41 |
13
|
Pérez-Pérez JM, Candela H, Robles P, López-Torrejón G, del Pozo JC, Micol JL. A Role for AUXIN RESISTANT3 in the Coordination of Leaf Growth. ACTA ACUST UNITED AC 2010; 51:1661-73. [DOI: 10.1093/pcp/pcq123] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
|
15 |
41 |
14
|
Mollá-Morales A, Sarmiento-Mañús R, Robles P, Quesada V, Pérez-Pérez JM, González-Bayón R, Hannah MA, Willmitzer L, Ponce MR, Micol JL. Analysis of ven3 and ven6 reticulate mutants reveals the importance of arginine biosynthesis in Arabidopsis leaf development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:335-45. [PMID: 21265888 DOI: 10.1111/j.1365-313x.2010.04425.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Arabidopsis thaliana reticulate mutants exhibit differential pigmentation of the veinal and interveinal leaf regions, a visible phenotype that often indicates impaired mesophyll development. We performed a metabolomic analysis of one ven6 (venosa6) and three ven3 reticulate mutants that revealed altered levels of arginine precursors, namely increased ornithine and reduced citrulline levels. In addition, the mutants were more sensitive than the wild-type to exogenous ornithine, and leaf reticulation and mesophyll defects of these mutants were completely rescued by exogenous citrulline. Taken together, these results indicate that ven3 and ven6 mutants experience a blockage of the conversion of ornithine into citrulline in the arginine pathway. Consistent with the participation of VEN3 and VEN6 in the same pathway, the morphological phenotype of ven3 ven6 double mutants was synergistic. Map-based cloning showed that the VEN3 and VEN6 genes encode subunits of Arabidopsis carbamoyl phosphate synthetase (CPS), which is assumed to be required for the conversion of ornithine into citrulline in arginine biosynthesis. Heterologous expression of the Arabidopsis VEN3 and VEN6 genes in a CPS-deficient Escherichia coli strain fully restored bacterial growth in minimal medium, demonstrating the enzymatic activity of the VEN3 and VEN6 proteins, and indicating a conserved role for CPS in these distinct and distant species. Detailed study of the reticulate leaf phenotype in the ven3 and ven6 mutants revealed that mesophyll development is highly sensitive to impaired arginine biosynthesis.
Collapse
|
|
14 |
39 |
15
|
Robles P, Micol JL. Genome-wide linkage analysis of Arabidopsis genes required for leaf development. Mol Genet Genomics 2001; 266:12-9. [PMID: 11589569 DOI: 10.1007/s004380100535] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In most crop species, primary productivity depends mainly on the leaf. However, the genes that contribute to the making of plant leaves remain largely unknown. With a view to identifying the genes involved in leaf development in Arabidopsis thaliana, we previously isolated EMS-induced mutants with abnormally shaped leaves and demonstrated that they fall into 94 complementation groups. We present here the map positions of 76 of these genes, which have been obtained using a high-throughput genetic mapping method, based on the simultaneous coamplification by PCR of 21 polymorphic microsatellites and the semiautomated fluorescent detection of the products. The map positions and F2 mapping populations obtained in this work will be instrumental in the positional cloning of these genes, which are essential for leaf development.
Collapse
|
|
24 |
38 |
16
|
Cnops G, Jover-Gil S, Peters JL, Neyt P, De Block S, Robles P, Ponce MR, Gerats T, Micol JL, Van Lijsebettens M. The rotunda2 mutants identify a role for the LEUNIG gene in vegetative leaf morphogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2004; 55:1529-1539. [PMID: 15208345 DOI: 10.1093/jxb/erh165] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Leaf development in Arabidopsis thaliana is considered to be a two-step process. In the first step, a leaf primordium is formed that involves a switch from indeterminate to leaf developmental fate in the shoot apical meristem cells. The second step, known as leaf morphogenesis, consists of post-initiation developmental events such as patterned cell proliferation, cell expansion, and cell differentiation. The results are presented of the molecular and genetic analyses of the rotunda2 (ron2) mutants of Arabidopsis, which were isolated based on their wide and serrated vegetative leaf lamina. The RON2 gene was positionally cloned and was identical to LEUNIG (LUG); it encodes a transcriptional co-repressor that has been described to affect flower development. Morphological and histological analyses of expanded leaves indicated that RON2 (LUG) acts at later stages of leaf development by restricting cell expansion during leaf growth. Real-time reverse-transcription polymerase chain reaction was used to quantify the expression of KNOX, WUSCHEL, YABBY3, LEAFY, ASYMMETRIC LEAVES, and GIBBERELLIN OXIDASE genes in expanding and fully expanded rosette leaf laminas of the wild type and ron2 and lug mutants. SHOOTMERISTEMLESS was expressed in wild-type leaves and down-regulated in the mutants. The results indicate that RON2 (LUG) has a function in later stages of leaf development.
Collapse
|
|
21 |
37 |
17
|
Jover-Gil S, Candela H, Robles P, Aguilera V, Barrero JM, Micol JL, Ponce MR. The MicroRNA Pathway Genes AGO1, HEN1 and HYL1 Participate in Leaf Proximal–Distal, Venation and Stomatal Patterning in Arabidopsis. ACTA ACUST UNITED AC 2012; 53:1322-33. [DOI: 10.1093/pcp/pcs077] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
|
13 |
29 |
18
|
Garcia-Cruz R, Casanovas A, Brieno-Enriquez M, Robles P, Roig I, Pujol A, Cabero L, Durban M, Garcia Caldes M. Cytogenetic analyses of human oocytes provide new data on non-disjunction mechanisms and the origin of trisomy 16. Hum Reprod 2009; 25:179-91. [DOI: 10.1093/humrep/dep347] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
|
16 |
26 |
19
|
Robles P, Quesada V. Transcriptional and Post-transcriptional Regulation of Organellar Gene Expression (OGE) and Its Roles in Plant Salt Tolerance. Int J Mol Sci 2019; 20:E1056. [PMID: 30823472 PMCID: PMC6429081 DOI: 10.3390/ijms20051056] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/26/2022] Open
Abstract
Given their endosymbiotic origin, chloroplasts and mitochondria genomes harbor only between 100 and 200 genes that encode the proteins involved in organellar gene expression (OGE), photosynthesis, and the electron transport chain. However, as the activity of these organelles also needs a few thousand proteins encoded by the nuclear genome, a close coordination of the gene expression between the nucleus and organelles must exist. In line with this, OGE regulation is crucial for plant growth and development, and is achieved mainly through post-transcriptional mechanisms performed by nuclear genes. In this way, the nucleus controls the activity of organelles and these, in turn, transmit information about their functional state to the nucleus by modulating nuclear expression according to the organelles' physiological requirements. This adjusts organelle function to plant physiological, developmental, or growth demands. Therefore, OGE must appropriately respond to both the endogenous signals and exogenous environmental cues that can jeopardize plant survival. As sessile organisms, plants have to respond to adverse conditions to acclimate and adapt to them. Salinity is a major abiotic stress that negatively affects plant development and growth, disrupts chloroplast and mitochondria function, and leads to reduced yields. Information on the effects that the disturbance of the OGE function has on plant tolerance to salinity is still quite fragmented. Nonetheless, many plant mutants which display altered responses to salinity have been characterized in recent years, and interestingly, several are affected in nuclear genes encoding organelle-localized proteins that regulate the expression of organelle genes. These results strongly support a link between OGE and plant salt tolerance, likely through retrograde signaling. Our review analyzes recent findings on the OGE functions required by plants to respond and tolerate salinity, and highlights the fundamental role that chloroplast and mitochondrion homeostasis plays in plant adaptation to salt stress.
Collapse
|
Review |
6 |
25 |
20
|
Robles P, Quesada V. Emerging Roles of Mitochondrial Ribosomal Proteins in Plant Development. Int J Mol Sci 2017; 18:ijms18122595. [PMID: 29207474 PMCID: PMC5751198 DOI: 10.3390/ijms18122595] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 11/26/2022] Open
Abstract
Mitochondria are the powerhouse of eukaryotic cells because they are responsible for energy production through the aerobic respiration required for growth and development. These organelles harbour their own genomes and translational apparatus: mitochondrial ribosomes or mitoribosomes. Deficient mitochondrial translation would impair the activity of this organelle, and is expected to severely perturb different biological processes of eukaryotic organisms. In plants, mitoribosomes consist of three rRNA molecules, encoded by the mitochondrial genome, and an undefined set of ribosomal proteins (mitoRPs), encoded by nuclear and organelle genomes. A detailed functional and structural characterisation of the mitochondrial translation apparatus in plants is currently lacking. In some plant species, presence of small gene families of mitoRPs whose members have functionally diverged has led to the proposal of the heterogeneity of the mitoribosomes. This hypothesis supports a dynamic composition of the mitoribosomes. Information on the effects of the impaired function of mitoRPs on plant development is extremely scarce. Nonetheless, several works have recently reported the phenotypic and molecular characterisation of plant mutants affected in mitoRPs that exhibit alterations in specific development aspects, such as embryogenesis, leaf morphogenesis or the formation of reproductive tissues. Some of these results would be in line with the ribosomal filter hypothesis, which proposes that ribosomes, besides being the machinery responsible for performing translation, are also able to regulate gene expression. This review describes the phenotypic effects on plant development displayed by the mutants characterised to date that are defective in genes which encode mitoRPs. The elucidation of plant mitoRPs functions will provide a better understanding of the mechanisms that control organelle gene expression and their contribution to plant growth and morphogenesis.
Collapse
|
Review |
8 |
25 |
21
|
Rubio-Díaz S, Pérez-Pérez JM, González-Bayón R, Muñoz-Viana R, Borrega N, Mouille G, Hernández-Romero D, Robles P, Höfte H, Ponce MR, Micol JL. Cell expansion-mediated organ growth is affected by mutations in three EXIGUA genes. PLoS One 2012; 7:e36500. [PMID: 22586475 PMCID: PMC3344895 DOI: 10.1371/journal.pone.0036500] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 04/02/2012] [Indexed: 11/19/2022] Open
Abstract
Organ growth depends on two distinct, yet integrated, processes: cell proliferation and post-mitotic cell expansion. Although the regulatory networks of plant cell proliferation during organ growth have begun to be unveiled, the mechanisms regulating post-mitotic cell growth remain mostly unknown. Here, we report the characterization of three EXIGUA (EXI) genes that encode different subunits of the cellulose synthase complex specifically required for secondary cell wall formation. Despite this highly specific role of EXI genes, all the cells within the leaf, even those that do not have secondary walls, display small sizes in the exi mutants. In addition, we found a positive correlation between cell size and the DNA ploidy levels in exi mutant leaves, suggesting that both processes share some regulatory components. Our results are consistent with the hypothesis that the collapsed xylem vessels of the exi mutants hamper water transport throughout the plant, which, in turn, limits the turgor pressure levels required for normal post-mitotic cell expansion during leaf growth.
Collapse
|
|
13 |
25 |
22
|
Robles P, Micol JL, Quesada V. Mutations in the plant-conserved MTERF9 alter chloroplast gene expression, development and tolerance to abiotic stress in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2015; 154:297-313. [PMID: 25393651 DOI: 10.1111/ppl.12307] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 05/07/2023]
Abstract
The control of organelle gene expression in plants is far from fully understood. The characterization of mutants in Arabidopsis thaliana is assigning an increasingly prominent role to the mitochondrial transcription termination factors (mTERFs) in this process. To gain insight into the function of mTERF genes in plants, we took a reverse genetics approach to identify and characterize A. thaliana mTERF-defective mutants. Here we report the characterization of the mterf9 mutant, affected in an mTERF protein functionally conserved in plants and targeted to chloroplasts. Loss of MTERF9 results in defective chloroplast development, which is likely to cause paleness, stunted growth and reduced mesophyll cell numbers. Expression analysis of different plastid genes revealed reduced levels of plastid-encoded polymerase (PEP)-dependent transcripts and increased levels of transcripts dependent of nucleus-encoded polymerase. mterf9 plants exhibited altered responses to sugars, abscisic acid (ABA), salt and osmotic stresses, and the microarray data analysis showed modifications in MTERF9 expression after salt or mannitol treatments. Our genetic interactions results indicate a functional relationship between MTERF9 and the previously characterized MDA1 gene, and between MDA1 and some plastid ribosomal genes. MDA1 and MTERF9 were upregulated in the mterf9 and mda1 mutants, respectively. Moreover, 21 of 50 genes were commonly co-expressed with MDA1 and MTERF9. The analysis of the MDA1 and MTERF9 promoters showed that both were rich in stress-related cis-regulatory elements. Our results highlight the role of the MTERF9 gene in plant biology and deepens the understanding of the functional relationship of plant mTERF genes.
Collapse
|
|
10 |
23 |
23
|
Quezada GR, Jeldres M, Toro N, Robles P, Toledo PG, Jeldres RI. Understanding the flocculation mechanism of quartz and kaolinite with polyacrylamide in seawater: A molecular dynamics approach. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125576] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
|
4 |
21 |
24
|
González-Bayón R, Kinsman EA, Quesada V, Vera A, Robles P, Ponce MR, Pyke KA, Micol JL. Mutations in the RETICULATA gene dramatically alter internal architecture but have little effect on overall organ shape in Arabidopsis leaves. JOURNAL OF EXPERIMENTAL BOTANY 2006; 57:3019-31. [PMID: 16873448 DOI: 10.1093/jxb/erl063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A number of mutants have been described in Arabidopsis, whose leaf vascular network can be clearly distinguished as a green reticulation on a paler lamina. One of these reticulate mutants was named reticulata (re) by Rédei in 1964 and has been used for years as a classical genetic marker for linkage analysis. Seven recessive alleles of the RE gene were studied, at least four of which seem to be null. Contrary to many other leaf mutants studied in Arabidopsis, very little pleiotropy was observed in the external morphology of the re mutants, whose only aberration obvious at first sight is the reticulation exhibited by cotyledons and leaves. The re alleles caused a marked reduction in the density of mesophyll cells in interveinal regions of the leaf, which does not result from perturbed plastid development in specific cells, but rather from a dramatic change in internal leaf architecture. Loss of function of the RE gene seems to specifically perturb mesophyll cell division in the early stages of leaf organogenesis. The leaves of re mutants were nearly normal in shape in spite of their extremely reduced mesophyll cell density, suggesting that the epidermis plays a major role in regulating leaf shape in Arabidopsis. The RE gene was positionally cloned and found to be expressed in all the major organs studied. RE encodes a protein of unknown function and is identical to the LCD1 gene, which was identified based on the increased sensitivity to ozone caused by its mutant allele lcd1-1. Double mutant analyses suggest that RE acts in a developmental pathway that involves CUE1 but does not include DOV1.
Collapse
|
|
19 |
21 |
25
|
Garcia-Cruz R, Roig I, Robles P, Scherthan H, Garcia Caldés M. ATR, BRCA1 and gammaH2AX localize to unsynapsed chromosomes at the pachytene stage in human oocytes. Reprod Biomed Online 2009; 18:37-44. [PMID: 19146767 DOI: 10.1016/s1472-6483(10)60422-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Asynapsis of homologous chromosomes at the pachytene stage has been associated with gametogenic failure and infertility, but the cellular mechanisms involved are currently unknown in human meiocytes. In mice, the protein encoded by the breast-cancer susceptibility gene Brca1 has been described to direct kinase ATR (ataxia telangiectasia and Rad3 related) to any unpaired DNA at the pachytene stage, where ATR triggers H2AX phosphorylation, resulting in the silencing of those chromosomes. In this study, the distribution of ATR, BRCA1 and the phosphorylated histone gammaH2AX is assessed by immunofluorescence in human oocytes and it is found that they localize at unpaired chromosomes at the pachytene stage. Evidence is shown to propose that BRCA1, ATR and gammaH2AX in the human may be part of a system such as the one previously described in mouse, which signals unsynapsed chromosomes at pachytene and may lead to their silencing.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
19 |