1
|
Picton TW, Alain C, Woods DL, John MS, Scherg M, Valdes-Sosa P, Bosch-Bayard J, Trujillo NJ. Intracerebral sources of human auditory-evoked potentials. Audiol Neurootol 1999; 4:64-79. [PMID: 9892757 DOI: 10.1159/000013823] [Citation(s) in RCA: 239] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Evoked potentials to brief 1,000-Hz tones presented to either the left or the right ear were recorded from 30 electrodes arrayed over the head. These recordings were submitted to two different forms of source analysis: brain electric source analysis (BESA) and variable-resolution electromagnetic tomography (VARETA). Both analyses showed that the dominant intracerebral sources for the late auditory-evoked potentials (50-300 ms) were in the supratemporal plane and lateral temporal lobe contralateral to the ear of stimulation. The analyses also suggested the possibility of additional sources in the frontal lobes.
Collapse
|
|
26 |
239 |
2
|
Müller MM, Picton TW, Valdes-Sosa P, Riera J, Teder-Sälejärvi WA, Hillyard SA. Effects of spatial selective attention on the steady-state visual evoked potential in the 20-28 Hz range. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 1998; 6:249-61. [PMID: 9593922 DOI: 10.1016/s0926-6410(97)00036-0] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Steady-state visual evoked potentials (SSVEPs) were recorded from the scalp of subjects who attended to a flickering LED display in one visual field while ignoring a similar display (flickering at a different frequency) in the opposite visual field. The flicker frequencies were 20.8 Hz in the left-field display and 27.8 Hz in the right-field display. The SSVEP to the flicker in either field was enhanced in amplitude when attention was directed to its location. The scalp distribution of this SSVEP enhancement was narrowly focused over the posterior scalp contralateral to the visual field of stimulation. A source analysis using Variable Resolution Electromagnetic Tomography (VARETA) indicated that the source current densities for the SSVEP attention effect had a focal origin in the contralateral parieto-occipital cortex.
Collapse
|
Clinical Trial |
27 |
184 |
3
|
Babiloni C, Arakaki X, Azami H, Bennys K, Blinowska K, Bonanni L, Bujan A, Carrillo MC, Cichocki A, de Frutos-Lucas J, Del Percio C, Dubois B, Edelmayer R, Egan G, Epelbaum S, Escudero J, Evans A, Farina F, Fargo K, Fernández A, Ferri R, Frisoni G, Hampel H, Harrington MG, Jelic V, Jeong J, Jiang Y, Kaminski M, Kavcic V, Kilborn K, Kumar S, Lam A, Lim L, Lizio R, Lopez D, Lopez S, Lucey B, Maestú F, McGeown WJ, McKeith I, Moretti DV, Nobili F, Noce G, Olichney J, Onofrj M, Osorio R, Parra-Rodriguez M, Rajji T, Ritter P, Soricelli A, Stocchi F, Tarnanas I, Taylor JP, Teipel S, Tucci F, Valdes-Sosa M, Valdes-Sosa P, Weiergräber M, Yener G, Guntekin B. Measures of resting state EEG rhythms for clinical trials in Alzheimer's disease: Recommendations of an expert panel. Alzheimers Dement 2021; 17:1528-1553. [PMID: 33860614 DOI: 10.1002/alz.12311] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 12/25/2022]
Abstract
The Electrophysiology Professional Interest Area (EPIA) and Global Brain Consortium endorsed recommendations on candidate electroencephalography (EEG) measures for Alzheimer's disease (AD) clinical trials. The Panel reviewed the field literature. As most consistent findings, AD patients with mild cognitive impairment and dementia showed abnormalities in peak frequency, power, and "interrelatedness" at posterior alpha (8-12 Hz) and widespread delta (< 4 Hz) and theta (4-8 Hz) rhythms in relation to disease progression and interventions. The following consensus statements were subscribed: (1) Standardization of instructions to patients, resting state EEG (rsEEG) recording methods, and selection of artifact-free rsEEG periods are needed; (2) power density and "interrelatedness" rsEEG measures (e.g., directed transfer function, phase lag index, linear lagged connectivity, etc.) at delta, theta, and alpha frequency bands may be use for stratification of AD patients and monitoring of disease progression and intervention; and (3) international multisectoral initiatives are mandatory for regulatory purposes.
Collapse
|
Review |
4 |
73 |
4
|
Yamashita O, Galka A, Ozaki T, Biscay R, Valdes-Sosa P. Recursive penalized least squares solution for dynamical inverse problems of EEG generation. Hum Brain Mapp 2004; 21:221-35. [PMID: 15038004 PMCID: PMC6872016 DOI: 10.1002/hbm.20000] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In the dynamical inverse problem of electroencephalogram (EEG) generation where a specific dynamics for the electrical current distribution is assumed, we can impose general spatiotemporal constraints onto the solution by casting the problem into a state space representation and assuming a specific class of parametric models for the dynamics. The Akaike Bayesian Information Criterion (ABIC), which is based on the Type II likelihood, was used to estimate the parameters and evaluate the model. In addition, dynamic low-resolution brain electromagnetic tomography (LORETA), a new approach for estimating the current distribution is introduced. A recursive penalized least squares (RPLS) step forms the main element of our implementation. To obtain improved inverse solutions, dynamic LORETA exploits both spatial and temporal information, whereas LORETA uses only spatial information. A considerable improvement in performance compared to LORETA was found when dynamic LORETA was applied to simulated EEG data, and the new method was applied also to clinical EEG data.
Collapse
|
Research Support, Non-U.S. Gov't |
21 |
59 |
5
|
Amunts K, Hawrylycz MJ, Van Essen DC, Van Horn JD, Harel N, Poline JB, De Martino F, Bjaalie JG, Dehaene-Lambertz G, Dehaene S, Valdes-Sosa P, Thirion B, Zilles K, Hill SL, Abrams MB, Tass PA, Vanduffel W, Evans AC, Eickhoff SB. Interoperable atlases of the human brain. Neuroimage 2014; 99:525-32. [PMID: 24936682 DOI: 10.1016/j.neuroimage.2014.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/05/2014] [Accepted: 06/02/2014] [Indexed: 12/11/2022] Open
Abstract
The last two decades have seen an unprecedented development of human brain mapping approaches at various spatial and temporal scales. Together, these have provided a large fundus of information on many different aspects of the human brain including micro- and macrostructural segregation, regional specialization of function, connectivity, and temporal dynamics. Atlases are central in order to integrate such diverse information in a topographically meaningful way. It is noteworthy, that the brain mapping field has been developed along several major lines such as structure vs. function, postmortem vs. in vivo, individual features of the brain vs. population-based aspects, or slow vs. fast dynamics. In order to understand human brain organization, however, it seems inevitable that these different lines are integrated and combined into a multimodal human brain model. To this aim, we held a workshop to determine the constraints of a multi-modal human brain model that are needed to enable (i) an integration of different spatial and temporal scales and data modalities into a common reference system, and (ii) efficient data exchange and analysis. As detailed in this report, to arrive at fully interoperable atlases of the human brain will still require much work at the frontiers of data acquisition, analysis, and representation. Among them, the latter may provide the most challenging task, in particular when it comes to representing features of vastly different scales of space, time and abstraction. The potential benefits of such endeavor, however, clearly outweigh the problems, as only such kind of multi-modal human brain atlas may provide a starting point from which the complex relationships between structure, function, and connectivity may be explored.
Collapse
|
Review |
11 |
44 |
6
|
Koenig T, Marti-Lopez F, Valdes-Sosa P. Topographic time-frequency decomposition of the EEG. Neuroimage 2001; 14:383-90. [PMID: 11467912 DOI: 10.1006/nimg.2001.0825] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Frequency-transformed EEG resting data has been widely used to describe normal and abnormal brain functional states as function of the spectral power in different frequency bands. This has yielded a series of clinically relevant findings. However, by transforming the EEG into the frequency domain, the initially excellent time resolution of time-domain EEG is lost. The topographic time-frequency decomposition is a novel computerized EEG analysis method that combines previously available techniques from time-domain spatial EEG analysis and time-frequency decomposition of single-channel time series. It yields a new, physiologically and statistically plausible topographic time-frequency representation of human multichannel EEG. The original EEG is accounted by the coefficients of a large set of user defined EEG like time-series, which are optimized for maximal spatial smoothness and minimal norm. These coefficients are then reduced to a small number of model scalp field configurations, which vary in intensity as a function of time and frequency. The result is thus a small number of EEG field configurations, each with a corresponding time-frequency (Wigner) plot. The method has several advantages: It does not assume that the data is composed of orthogonal elements, it does not assume stationarity, it produces topographical maps and it allows to include user-defined, specific EEG elements, such as spike and wave patterns. After a formal introduction of the method, several examples are given, which include artificial data and multichannel EEG during different physiological and pathological conditions.
Collapse
|
|
24 |
39 |
7
|
Zugman A, Alliende L, Medel V, Bethlehem RA, Seidlitz J, Ringlein G, Arango C, Arnatkevičiūtė A, Asmal L, Bellgrove M, Benegal V, Bernardo M, Billeke P, Bosch-Bayard J, Bressan R, Busatto G, Castro M, Chaim-Avancini T, Compte A, Costanzi M, Czepielewski L, Dazzan P, de la Fuente-Sandoval C, Di Forti M, Díaz-Caneja C, María Díaz-Zuluaga A, Du Plessis S, Duran F, Fittipaldi S, Fornito A, Freimer N, Gadelha A, Gama C, Garani R, Garcia-Rizo C, Gonzalez Campo C, Gonzalez-Valderrama A, Guinjoan S, Holla B, Ibañez A, Ivanovic D, Jackowski A, Leon-Ortiz P, Lochner C, López-Jaramillo C, Luckhoff H, Massuda R, McGuire P, Miyata J, Mizrahi R, Murray R, Ozerdem A, Pan P, Parellada M, Phahladira L, Ramirez-Mahaluf J, Reckziegel R, Reis Marques T, Reyes-Madrigal F, Roos A, Rosa P, Salum G, Scheffler F, Schumann G, Serpa M, Stein D, Tepper A, Tiego J, Ueno T, Undurraga J, Undurraga E, Valdes-Sosa P, Valli I, Villarreal M, Winton-Brown T, Yalin N, Zamorano F, Zanetti M, Winkler A, Pine D, Evans-Lacko S, Crossley N. Country-level gender inequality is associated with structural differences in the brains of women and men. Proc Natl Acad Sci U S A 2023; 120:e2218782120. [PMID: 37155867 PMCID: PMC10193926 DOI: 10.1073/pnas.2218782120] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/15/2023] [Indexed: 05/10/2023] Open
Abstract
Gender inequality across the world has been associated with a higher risk to mental health problems and lower academic achievement in women compared to men. We also know that the brain is shaped by nurturing and adverse socio-environmental experiences. Therefore, unequal exposure to harsher conditions for women compared to men in gender-unequal countries might be reflected in differences in their brain structure, and this could be the neural mechanism partly explaining women's worse outcomes in gender-unequal countries. We examined this through a random-effects meta-analysis on cortical thickness and surface area differences between adult healthy men and women, including a meta-regression in which country-level gender inequality acted as an explanatory variable for the observed differences. A total of 139 samples from 29 different countries, totaling 7,876 MRI scans, were included. Thickness of the right hemisphere, and particularly the right caudal anterior cingulate, right medial orbitofrontal, and left lateral occipital cortex, presented no differences or even thicker regional cortices in women compared to men in gender-equal countries, reversing to thinner cortices in countries with greater gender inequality. These results point to the potentially hazardous effect of gender inequality on women's brains and provide initial evidence for neuroscience-informed policies for gender equality.
Collapse
|
Meta-Analysis |
2 |
27 |
8
|
Sánchez-Catasús CA, Cabrera-Gomez J, Almaguer Melián W, Giroud Benítez JL, Rodríguez Rojas R, Bayard JB, Galán L, Sánchez RG, Fuentes NP, Valdes-Sosa P. Brain Tissue Volumes and Perfusion Change with the Number of Optic Neuritis Attacks in Relapsing Neuromyelitis Optica: A Voxel-Based Correlation Study. PLoS One 2013; 8:e66271. [PMID: 23824339 PMCID: PMC3688888 DOI: 10.1371/journal.pone.0066271] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/03/2013] [Indexed: 12/16/2022] Open
Abstract
Recent neuroimaging studies show that brain abnormalities in neuromyelitis optica (NMO) are more frequent than earlier described. Yet, more research considering multiple aspects of NMO is necessary to better understand these abnormalities. A clinical feature of relapsing NMO (RNMO) is that the incremental disability is attack-related. Therefore, association between the attack-related process and neuroimaging might be expected. On the other hand, the immunopathological analysis of NMO lesions has suggested that CNS microvasculature could be an early disease target, which could alter brain perfusion. Brain tissue volume changes accompanying perfusion alteration could also be expected throughout the attack-related process. The aim of this study was to investigate in RNMO patients, by voxel-based correlation analysis, the assumed associations between regional brain white (WMV) and grey matter volumes (GMV) and/or perfusion on one side, and the number of optic neuritis (ON) attacks, myelitis attacks and/or total attacks on the other side. For this purpose, high resolution T1-weighted MRI and perfusion SPECT imaging were obtained in 15 RNMO patients. The results showed negative regional correlations of WMV, GMV and perfusion with the number of ON attacks, involving important components of the visual system, which could be relevant for the comprehension of incremental visual disability in RNMO. We also found positive regional correlation of perfusion with the number of ON attacks, mostly overlapping the brain area where the WMV showed negative correlation. This provides evidence that brain microvasculature is an early disease target and suggests that perfusion alteration could be important in the development of brain structural abnormalities in RNMO.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
19 |
9
|
Bobes MA, García YF, Lopera F, Quiroz YT, Galán L, Vega M, Trujillo N, Valdes-Sosa M, Valdes-Sosa P. ERP generator anomalies in presymptomatic carriers of the Alzheimer's disease E280A PS-1 mutation. Hum Brain Mapp 2010; 31:247-65. [PMID: 19650138 DOI: 10.1002/hbm.20861] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although subtle anatomical anomalies long precede the onset of clinical symptoms in Alzheimer's disease, their impact on the reorganization of brain networks underlying cognitive functions has not been fully explored. A unique window into this reorganization is provided by presymptomatic cases of familial Alzheimer's disease (FAD). Here we studied neural circuitry related to semantic processing in presymptomatic FAD cases by estimating the intracranial sources of the N400 event-related potential (ERP). ERPs were obtained during a semantic-matching task from 24 presymptomatic carriers and 25 symptomatic carriers of the E280A presenilin-1 (PS-1) mutation, as well as 27 noncarriers (from the same families). As expected, the symptomatic-carrier group performed worse in the matching task and had lower N400 amplitudes than both asymptomatic groups, which did not differ from each other on these variables. However, N400 topography differed in mutation carrier groups with respect to the noncarriers. Intracranial source analysis evinced that the presymptomatic-carriers presented a decrease of N400 generator strength in right inferior-temporal and medial cingulate areas and increased generator strength in the left hippocampus and parahippocampus compared to the controls. This represents alterations in neural function without translation into behavioral impairments. Compared to controls, the symptomatic-carriers presented a similar anatomical shift in the distribution of N400 generators to that found in presymptomatic-carriers, albeit with a larger reduction in generator strength. The redistribution of N400 generators in presymptomatic-carriers indicates that early focal degeneration associated with the mutation induces neural reorganization, possibly contributing to a functional compensation that enables normal performance in the semantic task.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
15 |
10
|
|
|
28 |
12 |
11
|
Chiarenza GA, Villa S, Galan L, Valdes-Sosa P, Bosch-Bayard J. Junior temperament character inventory together with quantitative EEG discriminate children with attention deficit hyperactivity disorder combined subtype from children with attention deficit hyperactivity disorder combined subtype plus oppositional defiant disorder. Int J Psychophysiol 2018; 130:9-20. [DOI: 10.1016/j.ijpsycho.2018.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/28/2018] [Accepted: 05/18/2018] [Indexed: 11/26/2022]
|
|
7 |
9 |
12
|
Baez SDLC, García del Barco D, Hardy-Sosa A, Guillen Nieto G, Bringas-Vega ML, Llibre-Guerra JJ, Valdes-Sosa P. Scalable Bio Marker Combinations for Early Stroke Diagnosis: A Systematic Review. Front Neurol 2021; 12:638693. [PMID: 34122297 PMCID: PMC8193128 DOI: 10.3389/fneur.2021.638693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Acute stroke treatment is a time-critical process in which every minute counts. Laboratory biomarkers are needed to aid clinical decisions in the diagnosis. Although imaging is critical for this process, these biomarkers may provide additional information to distinguish actual stroke from its mimics and monitor patient condition and the effect of potential neuroprotective strategies. For such biomarkers to be effectively scalable to public health in any economic setting, these must be cost-effective and non-invasive. We hypothesized that blood-based combinations (panels) of proteins might be the key to this approach and explored this possibility through a systematic review. Methods: We followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines for systematic review. Initially, the broader search for biomarkers for early stroke diagnosis yielded 704 hits, and five were added manually. We then narrowed the search to combinations (panels) of the protein markers obtained from the blood. Results: Twelve articles dealing with blood-based panels of protein biomarkers for stroke were included in the systematic review. We observed that NR2 peptide (antibody against the NR2 fragment) and glial fibrillary acidic protein (GFAP) are brain-specific markers related to stroke. Von Willebrand factor (vWF), matrix metalloproteinase 9 (MMP-9), and S100β have been widely used as biomarkers, whereas others such as the ischemia-modified albumin (IMA) index, antithrombin III (AT-III), and fibrinogen have not been evaluated in combination. We herein propose the following new combination of biomarkers for future validation: panel 1 (NR2 + GFAP + MMP-9 + vWF + S100β), panel 2 (NR2 + GFAP + MMP-9 + vWF + IMA index), and panel 3 (NR2 + GFAP + AT-III + fibrinogen). Conclusions: More research is needed to validate, identify, and introduce these panels of biomarkers into medical practice for stroke recurrence and diagnosis in a scalable manner. The evidence indicates that the most promising approach is to combine different blood-based proteins to provide diagnostic precision for health interventions. Through our systematic review, we suggest three novel biomarker panels based on the results in the literature and an interpretation based on stroke pathophysiology.
Collapse
|
Systematic Review |
4 |
7 |
13
|
Abstract
A statistical approach is presented which provides efficient procedures to detect both Event Related Potential (ERP) and its spectral structure. Situations where undesirable signal or "artifact" is present, are considered. In these cases, a "noise" sample can be used which complements the insufficient knowledge given for the sample where we expect to detect the ERP. In this approach, Hotelling's T2 statistic for one and two samples arises as a natural detector of ERPs. Under the assumption of stationarity these statistics are calculated by approximate expressions in the frequency domain. For Brainstem Auditory Evoked Potentials, ROC curves confirm that the T2 statistic has higher detection rates than various indices proposed in the literature. A frequency decomposition of the T2 statistic yields a succession of complex versions of Student's t statistic that characterize the spectral structure of the ERP. Different assumptions about the recordings of ERP are discussed and several generalizations are suggested.
Collapse
|
|
36 |
6 |
14
|
Zhang M, Desrosiers C, Guo Y, Khundrakpam B, Al-Sharif N, Kiar G, Valdes-Sosa P, Poline JB, Evans A. Brain status modeling with non-negative projective dictionary learning. Neuroimage 2020; 206:116226. [PMID: 31593792 DOI: 10.1016/j.neuroimage.2019.116226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/01/2019] [Accepted: 09/24/2019] [Indexed: 02/02/2023] Open
Abstract
Accurate prediction of individuals' brain age is critical to establish a baseline for normal brain development. This study proposes to model brain development with a novel non-negative projective dictionary learning (NPDL) approach, which learns a discriminative representation of multi-modal neuroimaging data for predicting brain age. Our approach encodes the variability of subjects in different age groups using separate dictionaries, projecting features into a low-dimensional manifold such that information is preserved only for the corresponding age group. The proposed framework improves upon previous discriminative dictionary learning methods by incorporating orthogonality and non-negativity constraints, which remove representation redundancy and perform implicit feature selection. We study brain development on multi-modal brain imaging data from the PING dataset (N = 841, age = 3-21 years). The proposed analysis uses our NDPL framework to predict the age of subjects based on cortical measures from T1-weighted MRI and connectome from diffusion weighted imaging (DWI). We also investigate the association between age prediction and cognition, and study the influence of gender on prediction accuracy. Experimental results demonstrate the usefulness of NDPL for modeling brain development.
Collapse
|
|
5 |
5 |
15
|
Bosch-Bayard J, Girini K, Biscay RJ, Valdes-Sosa P, Evans AC, Chiarenza GA. Resting EEG effective connectivity at the sources in developmental dysphonetic dyslexia. Differences with non-specific reading delay. Int J Psychophysiol 2020; 153:135-147. [DOI: 10.1016/j.ijpsycho.2020.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
|
|
5 |
3 |
16
|
Babiloni C, Arakaki X, Bonanni L, Bujan A, Carrillo MC, Del Percio C, Edelmayer RM, Egan G, Elahh FM, Evans A, Ferri R, Frisoni GB, Güntekin B, Hainsworth A, Hampel H, Jelic V, Jeong J, Kim DK, Kramberger M, Kumar S, Lizio R, Nobili F, Noce G, Puce A, Ritter P, Smit DJA, Soricelli A, Teipel S, Tucci F, Sachdev P, Valdes-Sosa M, Valdes-Sosa P, Vergallo A, Yener G. EEG measures for clinical research in major vascular cognitive impairment: recommendations by an expert panel. Neurobiol Aging 2021; 103:78-97. [PMID: 33845399 DOI: 10.1016/j.neurobiolaging.2021.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 02/17/2021] [Accepted: 03/05/2021] [Indexed: 11/22/2022]
Abstract
Vascular contribution to cognitive impairment (VCI) and dementia is related to etiologies that may affect the neurophysiological mechanisms regulating brain arousal and generating electroencephalographic (EEG) activity. A multidisciplinary expert panel reviewed the clinical literature and reached consensus about the EEG measures consistently found as abnormal in VCI patients with dementia. As compared to cognitively unimpaired individuals, those VCI patients showed (1) smaller amplitude of resting state alpha (8-12 Hz) rhythms dominant in posterior regions; (2) widespread increases in amplitude of delta (< 4 Hz) and theta (4-8 Hz) rhythms; and (3) delayed N200/P300 peak latencies in averaged event-related potentials, especially during the detection of auditory rare target stimuli requiring participants' responses in "oddball" paradigms. The expert panel formulated the following recommendations: (1) the above EEG measures are not specific for VCI and should not be used for its diagnosis; (2) they may be considered as "neural synchronization" biomarkers to enlighten the relationships between features of the VCI-related cerebrovascular lesions and abnormalities in neurophysiological brain mechanisms; and (3) they may be tested in future clinical trials as prognostic biomarkers and endpoints of interventions aimed at normalizing background brain excitability and vigilance in wakefulness.
Collapse
|
Review |
4 |
2 |
17
|
Sánchez-Catasús CA, Cabrera-Gomez J, Almaguer Melián W, Bosch Bayard J, Rodríguez Rojas R, Valdes-Sosa P. The number of optic neuritis attacks is a potential confounder when comparing patients with NMO vs. controls by voxel-based neuroimaging analysis. Acta Radiol 2016; 57:985-91. [PMID: 26503959 DOI: 10.1177/0284185115610935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/02/2015] [Indexed: 01/03/2023]
Abstract
BACKGROUND Voxel-based morphometric (VBM) studies in neuromyelitis optica (NMO) have shown limited reproducibility. A previous study suggests that the number of optic neuritis (ON) attacks may be a confounding factor when comparing NMO patients with controls if it is not taken into account during VBM analysis. PURPOSE To investigate the potential confounding effect of the number of ON attacks, for both tissue volumes and perfusion by voxel-based statistical analysis. MATERIAL AND METHODS Volumetric magnetic resonance imaging (MRI) and perfusion SPECT were obtained from 15 controls and two patient subgroups: subgroup I was composed of nine patients with one or two ON attacks; and subgroup II of six patients with three or four ON attacks. We performed non-parametric voxel-based comparison of tissue volumes and perfusion between controls versus the two patient subgroups and for the whole patient group. RESULTS Subgroup I presented no volume reductions, contrary to subgroup II that showed unequivocal reduction. We also found hypoperfusion in different brain regions in different subgroups. The results were quite different for the whole patient group. CONCLUSION These findings highlight the confounding effect of the number of ON attacks, providing a new methodological insight that could explain the limited reproducibility of previous VBM studies in NMO.
Collapse
|
Comparative Study |
9 |
2 |
18
|
Abdul Rahman MR, Abd Hamid AI, Noh NA, Omar H, Chai WJ, Idris Z, Ahmad AH, Fitzrol DN, Ab. Ghani ARIG, Wan Mohamad WNA, Mohamed Mustafar MF, Hanafi MH, Reza MF, Umar H, Mohd Zulkifly MF, Ang SY, Zakaria Z, Musa KI, Othman A, Embong Z, Sapiai NA, Kandasamy R, Ibrahim H, Abdullah MZ, Amaruchkul K, Valdes-Sosa P, Luisa-Bringas M, Biswal B, Songsiri J, Yaacob HS, Sumari P, Jamir Singh PS, Azman A, Abdullah JM. Alteration in the Functional Organization of the Default Mode Network Following Closed Non-severe Traumatic Brain Injury. Front Neurosci 2022; 16:833320. [PMID: 35418832 PMCID: PMC8995774 DOI: 10.3389/fnins.2022.833320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
The debilitating effect of traumatic brain injury (TBI) extends years after the initial injury and hampers the recovery process and quality of life. In this study, we explore the functional reorganization of the default mode network (DMN) of those affected with non-severe TBI. Traumatic brain injury (TBI) is a wide-spectrum disease that has heterogeneous effects on its victims and impacts everyday functioning. The functional disruption of the default mode network (DMN) after TBI has been established, but its link to causal effective connectivity remains to be explored. This study investigated the differences in the DMN between healthy participants and mild and moderate TBI, in terms of functional and effective connectivity using resting-state functional magnetic resonance imaging (fMRI). Nineteen non-severe TBI (mean age 30.84 ± 14.56) and twenty-two healthy (HC; mean age 27.23 ± 6.32) participants were recruited for this study. Resting-state fMRI data were obtained at the subacute phase (mean days 40.63 ± 10.14) and analyzed for functional activation and connectivity, independent component analysis, and effective connectivity within and between the DMN. Neuropsychological tests were also performed to assess the cognitive and memory domains. Compared to the HC, the TBI group exhibited lower activation in the thalamus, as well as significant functional hypoconnectivity between DMN and LN. Within the DMN nodes, decreased activations were detected in the left inferior parietal lobule, precuneus, and right superior frontal gyrus. Altered effective connectivities were also observed in the TBI group and were linked to the diminished activation in the left parietal region and precuneus. With regard to intra-DMN connectivity within the TBI group, positive correlations were found in verbal and visual memory with the language network, while a negative correlation was found in the cognitive domain with the visual network. Our results suggested that aberrant activities and functional connectivities within the DMN and with other RSNs were accompanied by the altered effective connectivities in the TBI group. These alterations were associated with impaired cognitive and memory domains in the TBI group, in particular within the language domain. These findings may provide insight for future TBI observational and interventional research.
Collapse
|
|
3 |
2 |
19
|
Bosch-Bayard J, Riera-Diaz J, Biscay-Lirio R, Wong KFK, Galka A, Yamashita O, Sadato N, Kawashima R, Aubert-Vazquez E, Rodriguez-Rojas R, Valdes-Sosa P, Miwakeichi F, Ozaki T. Spatio-temporal correlations from fMRI time series based on the NN-ARx model. J Integr Neurosci 2011; 9:381-406. [PMID: 21213411 DOI: 10.1142/s0219635210002500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 09/17/2010] [Indexed: 11/18/2022] Open
Abstract
For the purpose of statistical characterization of the spatio-temporal correlation structure of brain functioning from high-dimensional fMRI time series, we introduce an innovation approach. This is based on whitening the data by the Nearest-Neighbors AutoRegressive model with external inputs (NN-ARx). Correlations between the resulting innovations are an extension of the usual correlations, in which mean-correction is carried out by the dynamic NN-ARx model instead of the static, standard linear model for fMRI time series. Measures of dependencies between regions are defined by summarizing correlations among innovations at several time lags over pairs of voxels. Such summarization does not involve averaging the data over each region, which prevents loss of information in case of non-homogeneous regions. Statistical tests based on these measures are elaborated, which allow for assessing the correlation structure in search of connectivity. Results of application of the NN-ARx approach to fMRI data recorded in visual stimuli experiments are shown. Finally, a number of issues related with its potential and limitations are commented.
Collapse
|
|
14 |
1 |
20
|
Chiarenza GA, Bosch-Bayard J, Villa S, Chiarenza MP, Galán-García L, Aubert E, Valdes-Sosa P. Biomarkers identification of Sources QEEG, Temperament and Character in children with ADHD-C and ADHD-C+ODD. Int J Psychophysiol 2016. [DOI: 10.1016/j.ijpsycho.2016.07.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
9 |
|
21
|
Babiloni C, Arakaki X, Baez S, Barry RJ, Benussi A, Blinowska K, Bonanni L, Borroni B, Bayard JB, Bruno G, Cacciotti A, Carducci F, Carino J, Carpi M, Conte A, Cruzat J, D'Antonio F, Della Penna S, Del Percio C, De Sanctis P, Escudero J, Fabbrini G, Farina FR, Fraga FJ, Fuhr P, Gschwandtner U, Güntekin B, Guo Y, Hajos M, Hallett M, Hampel H, Hanoğlu L, Haraldsen I, Hassan M, Hatlestad-Hall C, Horváth AA, Ibanez A, Infarinato F, Jaramillo-Jimenez A, Jeong J, Jiang Y, Kamiński M, Koch G, Kumar S, Leodori G, Li G, Lizio R, Lopez S, Ferri R, Maestú F, Marra C, Marzetti L, McGeown W, Miraglia F, Moguilner S, Moretti DV, Mushtaq F, Noce G, Nucci L, Ochoa J, Onorati P, Padovani A, Pappalettera C, Parra MA, Pardini M, Pascual-Marqui R, Paulus W, Pizzella V, Prado P, Rauchs G, Ritter P, Salvatore M, Santamaria-García H, Schirner M, Soricelli A, Taylor JP, Tankisi H, Tecchio F, Teipel S, Kodamullil AT, Triggiani AI, Valdes-Sosa M, Valdes-Sosa P, Vecchio F, Vossel K, Yao D, Yener G, Ziemann U, Kamondi A. Alpha rhythm and Alzheimer's disease: Has Hans Berger's dream come true? Clin Neurophysiol 2025; 172:33-50. [PMID: 39978053 DOI: 10.1016/j.clinph.2025.02.256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/14/2025] [Accepted: 02/09/2025] [Indexed: 02/22/2025]
Abstract
In this "centenary" paper, an expert panel revisited Hans Berger's groundbreaking discovery of human restingstate electroencephalographic (rsEEG) alpha rhythms (8-12 Hz) in 1924, his foresight of substantial clinical applications in patients with "senile dementia," and new developments in the field, focusing on Alzheimer's disease (AD), the most prevalent cause of dementia in pathological aging. Clinical guidelines issued in 2024 by the US National Institute on Aging-Alzheimer's Association (NIA-AA) and the European Neuroscience Societies did not endorse routine use of rsEEG biomarkers in the clinical workup of older adults with cognitive impairment. Nevertheless, the expert panel highlighted decades of research from independent workgroups and different techniques showing consistent evidence that abnormalities in rsEEG delta, theta, and alpha rhythms (< 30 Hz) observed in AD patients correlate with wellestablished AD biomarkers of neuropathology, neurodegeneration, and cognitive decline. We posit that these abnormalities may reflect alterations in oscillatory synchronization within subcortical and cortical circuits, inducing cortical inhibitory-excitatory imbalance (in some cases leading to epileptiform activity) and vigilance dysfunctions (e.g., mental fatigue and drowsiness), which may impact AD patients' quality of life. Berger's vision of using EEG to understand and manage dementia in pathological aging is still actual.
Collapse
|
Review |
1 |
|
22
|
Michel CM, Baillet S, Benar C, Bertrand O, Gotman J, He B, Huiskamp GJ, Lemieux L, Makeig S, Pascual-Leone A, Salmelin R, Seri S, Valdes-Sosa P, Wendling F. In Memoriam: Fernando Lopes da Silva (1935–2019). Brain Topogr 2019. [DOI: 10.1007/s10548-019-00720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
|
6 |
|
23
|
Chabot R, di Michele F, John E, Valdes-Sosa P. QEEG Profiles and LORETA Imaging in Attention Deficit Disorder. Neuroimage 1998. [DOI: 10.1016/s1053-8119(18)30935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
|
27 |
|
24
|
Valdes-Sosa P, Bringa-Vega M, Bosch-Bayard J, Sanchez-Bornot J, Koenig T, Harmony T. Resting state EEG connectivity by frequency domain tomographic ICA. Int J Psychophysiol 2012. [DOI: 10.1016/j.ijpsycho.2012.06.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
|
13 |
|
25
|
Rodriguez-Rojas R, Vega-Hernandez M, Lage A, Sanchez J, Carballo M, Bosh J, Valdes-Sosa P. Exploring sparse connectivity in the motor system using multivariate autoregression analysis. BMC Neurosci 2007. [PMCID: PMC4435757 DOI: 10.1186/1471-2202-8-s2-p138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
|
18 |
|