1
|
Moradi SV, Hussein WM, Varamini P, Simerska P, Toth I. Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem Sci 2016; 7:2492-2500. [PMID: 28660018 PMCID: PMC5477030 DOI: 10.1039/c5sc04392a] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/26/2016] [Indexed: 01/22/2023] Open
Abstract
Glycosylation of peptides is a promising strategy for modulating the physicochemical properties of peptide drugs and for improving their absorption through biological membranes. This review highlights various methods for the synthesis of glycoconjugates and recent progress in the development of glycosylated peptide therapeutics. Furthermore, the impacts of glycosylation in overcoming the existing barriers that restrict oral and brain delivery of peptides are described herein.
Collapse
|
review-article |
9 |
166 |
2
|
Varamini P, Mansfeld FM, Blanchfield JT, Wyse BD, Smith MT, Toth I. Synthesis and Biological Evaluation of an Orally Active Glycosylated Endomorphin-1. J Med Chem 2012; 55:5859-67. [DOI: 10.1021/jm300418d] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
|
13 |
64 |
3
|
Varamini P, Toth I. Lipid- and sugar-modified endomorphins: novel targets for the treatment of neuropathic pain. Front Pharmacol 2013; 4:155. [PMID: 24379782 PMCID: PMC3862115 DOI: 10.3389/fphar.2013.00155] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/27/2013] [Indexed: 12/29/2022] Open
Abstract
Endomorphins are endogenous opioid peptides that cause potent antinociception in rodent models of acute and neuropathic pain with less undesirable side effects than opioid alkaloids. However, endomorphins are poorly suited to clinical applications because of low membrane permeability and a susceptibility to enzymatic degradation. Glycosylation and lipidation have proven to be two of the most robust approaches for the generation of new therapeutic endomorphin derivatives. Conjugation with lipoamino acids (LAA) confers an amphipathic character to the peptide, which improved interaction between the peptide and the lipid bilayer of the cell membranes, increasing permeability. Glycosylation can also improve peptide stability and blood brain barrier (BBB) transport. It is believed that an endocytotic mechanism (transcytosis) is responsible for the systemic delivery of water-soluble glycopeptides. This review discusses the application of glycosylation and lipidation strategies to improve the drug-like properties of endomorphins. Pharmacologically active endomorphin analogs with less adverse effects are also discussed.
Collapse
|
Review |
12 |
40 |
4
|
Varamini P, Mansfeld FM, Blanchfield JT, Wyse BD, Smith MT, Toth I. Lipo-endomorphin-1 derivatives with systemic activity against neuropathic pain without producing constipation. PLoS One 2012; 7:e41909. [PMID: 22912681 PMCID: PMC3422351 DOI: 10.1371/journal.pone.0041909] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/28/2012] [Indexed: 11/19/2022] Open
Abstract
To enhance the drug-like properties of the endogenous opioid peptide endomorphin-1 (1 = Tyr-Pro-Trp-Phe-NH(2)), the N-terminus of the peptide was modified with 2-aminodecanoic acid, resulting in compound 3. Tyr in compound 1 was replaced with 2,6-dimethyltyrosine yielding compound 2. Derivative 2 was also substituted with 2-aminodecanoic acid producing compound, 4. Lipoamino acid-modified derivatives showed improved metabolic stability and membrane permeability while maintaining high μ-opioid (MOP) receptor binding affinity and acting as a potent agonist. In vivo studies showed dose-dependent antinociceptive activity following intravenous (i.v.) administration of compounds 3 and 4 in a chronic constriction injury (CCI)-rat model of neuropathic pain with ED(50) values of 1.22 (± 0.93) and 0.99 (± 0.89) µmol/kg, respectively. Pre-treatment of animals with naloxone hydrochloride significantly attenuated the anti-neuropathic effects of compound 3, confirming the key role of opioid receptors in mediating antinociception. In contrast to morphine, no significant constipation was produced following i.v. administration of compound 3 at 16 µmol/kg. Furthermore, following chronic administration of equi-potent doses of compound 3 and morphine to rats, there was less antinociceptive tolerance for compound 3 compared with morphine.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
28 |
5
|
Varamini P, Blanchfield JT, Toth I. Endomorphin derivatives with improved pharmacological properties. Curr Med Chem 2014; 20:2741-58. [PMID: 23590712 DOI: 10.2174/0929867311320220002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 04/01/2013] [Indexed: 11/22/2022]
Abstract
Centrally acting opioids, such as morphine, are the most frequently used analgesic agents for the treatment of severe pain. However, their usefulness is limited by the production of a range of adverse effects such as constipation, respiratory depression, tolerance and physical dependence. In addition, opioids generally exhibit poor efficacy against neuropathic pain. Endomorphin-1 and -2, two endogenous opioid peptides, have been shown to produce potent antinociception in rodent models of acute and neuropathic pain with less undesirable side effects than opioid alkaloids. However, native endomorphins are poorly suited to clinical applications without modifications. Like all small peptides, endomorphins suffer from poor metabolic stability and a relative inability to penetrate the gastro-intestinal mucosa and blood-brain-barrier. Since the discovery of endomorphins in 1997, a huge number of endomorphin analogs have been designed and synthesized with the aim of developing compounds with improved barrier penetration and resistance to enzymatic degradation. In this review we describe various strategies that have been adopted so far to conquer the major drawbacks associated with endomorphins. They include chemical modifications to produce locally or globally-restricted peptide analogs in addition to application of peptidase inhibitors, which is of minor importance compared to the former strategy. Diverse approaches that resulted in the design and synthesis of pharmacologically active endomorphin analogs with less adverse effects are also discussed giving an insight into the development of opioid peptides with an improved side effect profile.
Collapse
|
Review |
11 |
16 |
6
|
|
|
9 |
15 |
7
|
Varamini P, Soltani M, Ghaderi A. Cell cycle analysis and cytotoxic potential of Ruta graveolens against human tumor cell lines. Neoplasma 2009; 56:490-3. [PMID: 19728756 DOI: 10.4149/neo_2009_06_490] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There are reports on the presence of various compounds exerting different biological activities in Ruta graveolens, a plant of Rutaceae family. The aim of the present study was to evaluate in vitro cytotoxicity of the total extract of R. graveolens against tumor cell lines of different origin. Aerial parts of the plant was extracted with 70% ethanol by sonication method and cytotoxic activity was examined on RAJI, RAMOS, RPMI8866, U937, Jurkat, MDA-MB-453, MCF-7, LNCap-FGC-10, 5637, HeLa, SK-OV-3, A549, Mehr-80 and also peripheral blood mononuclear cells (PBMC) by the use of WST-1 assay. Results were expressed as IC(50) values. R. graveolens extract showed high cytotoxic activity against RAJI and RAMOS, two Burkitt's lymphoma cell lines, with an IC(50) equal to 24.3 microg/ml and 35.2 microg/ml respectively and LNCap-FGC-10, a prostate adenocarcinoma cell line with an IC(50) equal to 27.6 microg/ml as well as Mehr-80, a newly established Large Cell Lung Carcinoma (IC(50)=46.2 microg/ml). No significant anti-proliferative activity was observed on other cell lines including MCF-7, MDA-MB-453, SK-OV-3, HeLa, 5637, JURKAT and RPMI8866. Adverse cytotoxic effect of R. graveolens was investigated against PBMCs and a significantly lower effect of this extract (IC(50)=104 microg/ml) was seen on normal cells compared with RAJI and RAMOS, two haematopoietic cell lines.
Collapse
|
Journal Article |
16 |
14 |
8
|
Varamini P, Javidnia K, Soltani M, Mehdipour AR, Ghaderi A. Cytotoxic activity and cell cycle analysis of quinoline alkaloids isolated from Haplophyllum canaliculatum Boiss. PLANTA MEDICA 2009; 75:1509-1516. [PMID: 19551611 DOI: 10.1055/s-0029-1185807] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bioassay-guided fractionation of Haplophyllum canaliculatum Boiss. (Rutaceae) extract resulted in isolation of five quinoline alkaloids: 7-isopentenyloxy-gamma-fagarine, atanine, skimmianine, flindersine and perfamine. This is the first isolation of these compounds from this endemic species. The antitumor activity of these five isolates was evaluated against RAJI, Jurkat, KG-1a, HEP-2, MCF-7, HL-60 and HL-60/MX1 tumor cell lines. The highest cytotoxic effect was observed on acute lymphoblastic leukemia cell lines. 7-Isopentenyloxy-gamma-fagarine, atanine, skimmianine and flindersine exhibited very high cytotoxicity against the RAJI cell line with IC(50) values of 1.5, 14.5, 15.6 and 14.9 microg/mL, respectively and 7-isopentenyloxy-gamma-fagarine, atanine and skimmianine exhibited very high cytotoxicity against the Jurkat cell line with IC(50) values of 3.6, 9.3 and 11.5 microg/mL, respectively. 7-Isopentenyloxy-gamma-fagarine was also highly cytotoxic against the MCF-7 cell line (IC(50) = 15.5 microg/mL), while atanine, skimmianine, flindersine and perfamine showed moderate to low activity against these cells. All alkaloids had moderate to low cytotoxicity against KG-1a and HEP-2. Investigation of the toxic potential of the alkaloids on HL-60 and HL-60/MX1 showed a significantly higher effect against HL-60/MX1, a multidrug-resistant cell line, compared with the control etoposide (p < 0.05). In all cytotoxicity experiments, peripheral blood mononuclear cells (PBMC) were used as a control for normal hematopoietic cells. Flow cytometry analysis of the compounds resulted in the arrest of cell cycle progression at the sub-G1 phase of the RAJI and Jurkat cell lines in a dose-dependent manner. According to computational analyses, the similar cytotoxic trend in the cell lines could be indicative of the fact that these compounds may act through parallel mechanisms.
Collapse
|
|
16 |
13 |
9
|
Goodwin D, Simerska P, Chang CH, Mansfeld FM, Varamini P, D’Occhio MJ, Toth I. Active immunisation of mice with GnRH lipopeptide vaccine candidates: Importance of T helper or multi-dimer GnRH epitope. Bioorg Med Chem 2014; 22:4848-54. [DOI: 10.1016/j.bmc.2014.06.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/13/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
|
|
11 |
12 |
10
|
Varamini P, Hussein WM, Mansfeld FM, Toth I. Synthesis, biological activity and structure–activity relationship of endomorphin-1/substance P derivatives. Bioorg Med Chem 2012; 20:6335-43. [DOI: 10.1016/j.bmc.2012.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/24/2012] [Accepted: 09/01/2012] [Indexed: 10/27/2022]
|
|
13 |
10 |
11
|
Moradi SV, Varamini P, Toth I. Evaluation of the Biological Properties and the Enzymatic Stability of Glycosylated Luteinizing Hormone-Releasing Hormone Analogs. AAPS JOURNAL 2015; 17:1135-43. [PMID: 25956382 DOI: 10.1208/s12248-015-9769-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/06/2015] [Indexed: 12/15/2022]
Abstract
The enzymatic stability, antitumor activity, and gonadotropin stimulatory effects of glycosylated luteinizing hormone-releasing hormone (LHRH) analogs were investigated in this study. Conjugation of carbohydrate units, including lactose (Lac), glucose (GS), and galactose (Gal) to LHRH peptide protected the peptide from proteolytic degradation and increased the peptides' half-lives in human plasma, rat kidney membrane enzymes, and liver homogenate markedly. Among all seven modified analogs, compound 1 (Lac-[Q(1)][w(6)]LHRH) and compound 6 (GS(4)-[w(6)]LHRH) were stable in human plasma during 4 h of experiment. The half-lives of compounds 1 and 6 improved significantly in kidney membrane enzymes (from 3 min for LHRH to 68 and 103 min, respectively). The major cleavage sites for most of the glycosylated compounds were found to be at Trp(3)-Ser(4) and Ser(4)-Tyr(5) in compounds 1-5. Compound 6 was hydrolyzed at Ser(4)-Tyr(5) and the sugar conjugation site. The antiproliferative activity of the glycopeptides was evaluated on LHRH receptor-positive prostate cancer cells. The glycosylated LHRH derivatives had a significant growth inhibitory effect on the LNCaP cells after a 48-h treatment. It was demonstrated that compound 1 significantly increased the release of luteinizing hormone (LH) at 5 and 10 nM concentrations and compound 5 (GS-[Q(1)]LHRH) stimulated the release of follicle-stimulating hormone (FSH) at 5 nM concentration in dispersed rat pituitary cells (p < 0.05). In our studies, compound 1-bearing lactose and D-Trp was the most stable and active and is a promising candidate for future preclinical investigations in terms of in vitro biological activity and metabolic stability.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
9 |
12
|
Delavari B, Bigdeli B, Mamashli F, Gholami M, Bazri B, Khoobi M, Ghasemi A, Baharifar H, Dehghani S, Gholibegloo E, Amani A, Riahi-Alam N, Ahmadian S, Goliaei B, Asli NS, Rezayan AH, Saboury AA, Varamini P. Theranostic α-Lactalbumin-Polymer-Based Nanocomposite as a Drug Delivery Carrier for Cancer Therapy. ACS Biomater Sci Eng 2019; 5:5189-5208. [DOI: 10.1021/acsbiomaterials.9b01236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
|
6 |
9 |
13
|
Moradi SV, Varamini P, Toth I. The transport and efflux of glycosylated luteinising hormone-releasing hormone analogues in caco-2 cell model: contributions of glucose transporters and efflux systems. J Pharm Sci 2014; 103:3217-24. [PMID: 25174499 DOI: 10.1002/jps.24120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 12/21/2022]
Abstract
Luteinising hormone-releasing hormone (LHRH) analogues have wide therapeutic applications in the treatment of prostate cancers and endocrine disorders. The structure of LHRH was modified using a glycosylation strategy to increase the permeability of the peptide across biological membranes. Lactose, galactose and glucose units were coupled to LHRH peptide, and the impact of glucose transporters, GLUT2 and SGLT1, was investigated in the transport of the analogues. Results showed the contribution of both transporters in the transport of all LHRH analogues. In the presence of glucose transporter inhibitors, reduction in the apparent permeability (Papp ) was greatest for compound 6, which contains a glucose unit in the middle of the sequence (Papp = 58.54 ± 4.72 cm/s decreased to Papp = 1.6 ± 0.345 cm/s). The basolateral to apical flux of the glycosylated derivatives and the impact of two efflux pumps was also examined in Caco-2 cell monolayers. The efflux ratios (ERs) of all LHRH analogues in Caco-2 cells were in the range of 0.06-0.2 except for compound 4 (galactose modified, ER = 8.03). We demonstrated that the transport of the glycosylated peptides was facilitated through glucose transporters. The proportion of glucose and lactose derivatives pumped out by efflux pumps did not affect the Papp values of the analogues.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
8 |
14
|
Goodwin D, Varamini P, Simerska P, Toth I. Stability, permeability and growth-inhibitory properties of gonadotropin-releasing hormone liposaccharides. Pharm Res 2014; 32:1570-84. [PMID: 25407542 DOI: 10.1007/s11095-014-1558-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/23/2014] [Indexed: 11/27/2022]
Abstract
PURPOSE In this study we aimed to address the poor drug-like properties of Gonadotropin-Releasing Hormone (GnRH) peptide through modification with lipids and carbohydrates. METHODS GnRH peptide was conjugated to 2-amino-D,L-octanoic acid (C8) and 2-amino-D,L-dodecanoic acid (C12) in monomer and dimer, along with (6-9) or without (2-5 and 11) a glucose moiety. Peptides were tested for their biological activity using different tumour cell lines. The toxicity of the constructs was evaluated in peripheral blood mononuclear cells (PBMC). RESULTS All (glyco)lipopeptides showed improved metabolic stability in Caco-2 cell homogenates. Those with single lipid moiety (2, 4 and 8) exhibited prodrug-like properties. Permeability across Caco-2 cell monolayers was enhanced in the dimer C8-modified (glyco)lipopeptide (3) and the lipopeptide with C12 inserted mid-sequence (11). Most of the constructs showed moderate-to-high antiproliferative activity against GnRH-receptor positive DU145 and OVCAR-3 cells (up to 60%). Compound 11 was the most effective with IC50 = 26.4 ± 1.07 μg.ml(-1), which was comparable to triptorelin (25.1 ± 1.14 μg.mL(-1)). The sensitivity of OVCAR-3 cells to the effect of all analogues except for 11 decreased significantly in estrogen-reconstituted media. Only compounds 2, 4, 5 and 8 showed a steroid-dependent effect in DU145 cells. No compounds exhibited significant toxicity on PBMCs. CONCLUSION These results indicated lipidation and glycosylation improves the druggability of GnRH and could lead to an increased direct antitumour activity in some hormone dependent and independent reproductive cancers.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
8 |
15
|
Chang C, Varamini P, Giddam AK, Mansfeld FM, D'Occhio MJ, Toth I. Investigation of Structure-Activity Relationships of Synthetic Anti-Gonadotropin Releasing Hormone Vaccine Candidates. ChemMedChem 2015; 10:901-10. [DOI: 10.1002/cmdc.201500036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 11/05/2022]
|
|
10 |
8 |
16
|
Ghaly HSA, Varamini P. New drug delivery strategies targeting the GnRH receptor in breast and other cancers. Endocr Relat Cancer 2021; 28:R251-R269. [PMID: 34236041 DOI: 10.1530/erc-20-0442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 11/08/2022]
Abstract
Cancer is the uncontrolled division of abnormal cells in a specific organ. Globally, about one in six deaths is due to cancer. Despite the plethora of research being undertaken worldwide to find a cure for cancer, it remains a significant challenge. Cancer targeting via agents designed to interfere with some specifically or highly expressed molecules in cancer cells has been a shift in the treatment of various forms of cancers. The development of drug delivery systems, specifically to cancer cells, is a common approach that succeeded in increasing the efficacy and reducing the side effects of different anticancer agents. Gonadotropin-releasing hormone (GnRH) is a naturally occurring hormone with receptors overexpressed in many types of cancers related or unrelated to the reproductive system. Several drug delivery systems were developed using GnRH derivatives as targeting agents. In this review, we first discuss the role of GnRH and its receptors in cancer. Then, we provide a detailed insight into different delivery systems developed using GnRH derivatives as targeting agents in various types of GnRH receptor overexpressing cancers. Some promising findings from these studies indicate that GnRH receptor targeting is a potential strategy to efficiently guide anticancer therapeutics, diagnostic agents, and nucleic acids directly to cancer cells. Lastly, some limitations of the current research and suggestions for more successful outcomes in clinical trials of these delivery systems are highlighted.
Collapse
|
Review |
4 |
7 |
17
|
Irshad I, Varamini P. Different Targeting Strategies for Treating Breast Cancer Bone Metastases. Curr Pharm Des 2018; 24:3320-3331. [DOI: 10.2174/1381612824666180619165728] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/04/2018] [Accepted: 06/15/2018] [Indexed: 11/22/2022]
Abstract
Background:
Breast cancer is the most frequently diagnosed malignancy in women worldwide. Breast
cancer tends to metastasize to bone. Around 70% of the breast cancer patients eventually develop bone metastasis.
After the bone invasion, metastatic cells disrupt the balance between osteoblastic and osteoclastic activities,
leading to skeletal complications, characterized by pain and pathological fractures and hence worsening the patient's
quality of life. Once tumor invades the bone, it is hard to treat it with, the so-far available treatments options
(e.g. bisphosphonates and denosumab). Bone metastasis should be essentially controlled, in cancer treatment
and there is a strong need to explore new, more efficient therapeutic targets. This review discusses the bone
physiological processes and the recent advances in exploring different pathways involved in bone metastasis.
Furthermore, some novel treatment options, which are under preclinical and clinical investigations, are highlighted.
Conclusion:
A deeper understanding of these metastatic pathways can provide oncology researchers with novel
avenues for treating bone metastasis, one of the main challenges to cure breast cancer. The restoration of healthy
bone environment will not only improve the patient's quality of life but also reduces the tumor burden.
Collapse
|
|
7 |
6 |
18
|
Ali R, Balamurali M, Varamini P. Deep Learning-Based Artificial Intelligence to Investigate Targeted Nanoparticles' Uptake in TNBC Cells. Int J Mol Sci 2022; 23:ijms232416070. [PMID: 36555718 PMCID: PMC9785476 DOI: 10.3390/ijms232416070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer in women. It has the poorest prognosis along with limited therapeutic options. Smart nano-based carriers are emerging as promising approaches in treating TNBC due to their favourable characteristics such as specifically delivering different cargos to cancer cells. However, nanoparticles' tumour cell uptake, and subsequent drug release, are essential factors considered during the drug development process. Contemporary qualitative analyses based on imaging are cumbersome and prone to human biases. Deep learning-based algorithms have been well-established in various healthcare settings with promising scope in drug discovery and development. In this study, the performance of five different convolutional neural network models was evaluated. In this research, we investigated two sequential models from scratch and three pre-trained models, VGG16, ResNet50, and Inception V3. These models were trained using confocal images of nanoparticle-treated cells loaded with a fluorescent anticancer agent. Comparative and cross-validation analyses were further conducted across all models to obtain more meaningful results. Our models showed high accuracy in predicting either high or low drug uptake and release into TNBC cells, indicating great translational potential into practice to aid in determining cellular uptake at the early stages of drug development in any area of research.
Collapse
|
research-article |
3 |
6 |
19
|
Kamble S, Varamini P, Müllner M, Pelras T, Rohanizadeh R. Bisphosphonate-functionalized micelles for targeted delivery of curcumin to metastatic bone cancer. Pharm Dev Technol 2020; 25:1118-1126. [DOI: 10.1080/10837450.2020.1798458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
|
5 |
6 |
20
|
Haghani M, Varamini P. Temporal evolution, most influential studies and sleeping beauties of the coronavirus literature. Scientometrics 2021; 126:7005-7050. [PMID: 34188334 PMCID: PMC8221746 DOI: 10.1007/s11192-021-04036-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Following the outbreak of SARS-CoV-2 disease, within less than 8 months, the 50 years-old scholarly literature of coronaviruses grew to nearly three times larger than its size prior to 2020. Here, temporal evolution of the coronavirus literature over the last 30 years (N = 43,769) is analysed along with its subdomain of SARS-CoV-2 articles (N = 27,460) and the subdomain of reviews and meta-analytic studies (N = 1027). The analyses are conducted through the lenses of co-citation and bibliographic coupling of documents. (1) Of the N = 1204 review and meta-analytical articles of the coronavirus literature, nearly 88% have been published and indexed during the first 8 months of 2020, marking an unprecedented attention to reviews and meta-analyses in this domain, prompted by the SARS-CoV-2 pandemic. (2) The subset of 2020 SARS-CoV-2 articles is bibliographically distant from the rest of this literature published prior to 2020. Individual articles of the SARS-CoV-2 segment with a bridging role between the two bodies of articles (i.e., before and after 2020) are identifiable. (3) Furthermore, the degree of bibliographic coupling within the 2020 SARS-CoV-2 cluster is much poorer compared to the cluster of articles published prior to 2020. This could, in part, be explained by the higher diversity of topics that are studied in relation to SARS-CoV-2 compared to the literature of coronaviruses published prior to the SARS-CoV-2 disease. (4) The analyses on the subset of SARS-CoV-2 literature identified studies published prior to 2020 that have now proven highly instrumental in the development of various clusters of publications linked to SARS-CoV-2. In particular, the so-called "sleeping beauties" of the coronavirus literature with an awakening in 2020 were identified, i.e., previously published studies of this literature that had remained relatively unnoticed for several years but gained sudden traction in 2020 in the wake of the SARS-CoV-2 outbreak. This work documents the historical development of the literature on coronaviruses as an event-driven literature and as a domain that exhibited, arguably, the most exceptional case of publication burst in the history of science. It also demonstrates how scholarly efforts undertaken during peace time or prior to a disease outbreak could suddenly play a critical role in prevention and mitigation of health disasters caused by new diseases. Supplementary Information The online version contains supplementary material available at 10.1007/s11192-021-04036-4.
Collapse
|
research-article |
4 |
6 |
21
|
Stephenson R, Varamini P, Butcher N, Minchin R, Toth I. Effect of lipidated gonadotropin-releasing hormone peptides on receptor mediated binding and uptake into prostate cancer cells in vitro. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1799-808. [PMID: 25014892 DOI: 10.1016/j.nano.2014.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/10/2014] [Accepted: 06/28/2014] [Indexed: 12/21/2022]
Abstract
UNLABELLED Gonadotropin-releasing hormone (GnRH) receptors are overexpressed on many cancer cells but not on primary cell lines. This study was designed to investigate the targeting ability and uptake of dendritic lipidated [Gln(1)]-GnRH peptide analogues on receptor-positive prostate cancer PC-3 cells relative to receptor-negative ovarian carcinoma SKOV-3 cells for potential application in drug delivery. Direct antiproliferative effect of these was investigated on three GnRH-receptor positive cancer cells, PC-3, LNCaP and DU145. A significant dose dependent growth inhibitory effect was produced in DU145 cells by 5 dendrimers giving an IC50 value of 22-35 μM. All compounds were non-toxic to the normal peripheral blood mononuclear cells. FROM THE CLINICAL EDITOR This study demonstrates the use of specific dendritic lapidated GnRH analogues in growth inhibition of GnRH receptor positive prostate cancer cell lines, suggesting potential future clinical use of this or similar strategies to address GnRH receptor positive cancer cells.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
6 |
22
|
Varamini P, Rafiee A, Giddam AK, Mansfeld FM, Steyn F, Toth I. Development of New Gonadotropin-Releasing Hormone-Modified Dendrimer Platforms with Direct Antiproliferative and Gonadotropin Releasing Activity. J Med Chem 2017; 60:8309-8320. [DOI: 10.1021/acs.jmedchem.6b01771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
|
8 |
5 |
23
|
Mollah F, Varamini P. Overcoming Therapy Resistance and Relapse in TNBC: Emerging Technologies to Target Breast Cancer-Associated Fibroblasts. Biomedicines 2021; 9:1921. [PMID: 34944738 PMCID: PMC8698629 DOI: 10.3390/biomedicines9121921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most diagnosed cancer and is the leading cause of cancer mortality in women. Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer. Often, TNBC is not effectively treated due to the lack of specificity of conventional therapies and results in relapse and metastasis. Breast cancer-associated fibroblasts (BCAFs) are the predominant cells that reside in the tumor microenvironment (TME) and regulate tumorigenesis, progression and metastasis, and therapy resistance. BCAFs secrete a wide range of factors, including growth factors, chemokines, and cytokines, some of which have been proved to lead to a poor prognosis and clinical outcomes. This TME component has been emerging as a promising target due to its crucial role in cancer progression and chemotherapy resistance. A number of therapeutic candidates are designed to effectively target BCAFs with a focus on their tumor-promoting properties and tumor immune response. This review explores various agents targeting BCAFs in TNBC, including small molecules, nucleic acid-based agents, antibodies, proteins, and finally, nanoparticles.
Collapse
|
Review |
4 |
5 |
24
|
Eskandari S, Varamini P, Toth I. Formulation, characterization and permeability study of nano particles of lipo-endomorphin-1 for oral delivery. J Liposome Res 2013; 23:311-7. [DOI: 10.3109/08982104.2013.805339] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
|
12 |
5 |
25
|
Goodwin D, Varamini P, Simerska P, D'Occhio MJ, Toth I. Design, synthesis and evaluation of a gonadotropin releasing hormone-based subunit vaccine in rams (Ovis aries). Vaccine 2015; 33:1453-8. [PMID: 25678242 DOI: 10.1016/j.vaccine.2015.01.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/22/2015] [Accepted: 01/25/2015] [Indexed: 11/17/2022]
Abstract
Immunocastration using gonadotropin-releasing hormone (GnRH)-based vaccines has been investigated in rams to reduce aggressive and sexual behaviour and to control meat quality. Despite considerable efforts, a practical GnRH vaccine has yet to be developed for rams. In the present study, a A GnRH-lipopeptide vaccine (GnRH-LP) including two copies of GnRH, 2-amino-d,l-hexadecanoic acid (C16), and a unique T helper epitope, was examined in rams. Rams received a primary and secondary vaccination of GnRH-LP without additional adjuvant (Group 1) or with the adjuvant AdjuVac™ (Group 2). In both Group 1 and 2 anti-GnRH antibody titres increased after secondary vaccination, however, the antibody titres were higher (p<0.01) for rams in Group 2. The latter rams showed a marked decrease in testicular size. The marked and sustained reduction in testicular size in rams treated with GnRH-LP+AdjuVac™ provides the basis for an effective immunocastration vaccine in rams.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
4 |