1
|
Fei P, Zhang W, Shang Y, Hu P, Gu Y, Luo Y, Wu H. Carbon-negative bio-production of short-chain carboxylic acids (SCCAs) from syngas via the sequential two-stage bioprocess by Moorella thermoacetica and metabolically engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2025; 416:131714. [PMID: 39490540 DOI: 10.1016/j.biortech.2024.131714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Syngas can be efficiently converted to acetate by Moorella thermoacetica under anaerobic conditions, which is environmentally friendly. Coupled with acetate production from syngas, using acetate to synthesize value-added compounds such as short-chain carboxylic acids (SCCAs) becomes a negative-carbon process. Escherichia coli is engineered to utilize acetate as the sole carbon source to produce SCCAs. By knocking out some acetyltransferase genes, introducing exogenous pathway and additional cofactor engineering, the strains can synthesize 3.79 g/L of 3-hydroxypropionic acid (3-HP), 1.83 g/L of (R)-3-hydroxybutyric acid (R-3HB), and 2.31 g/L of butyrate. We used M. thermoacetica to produce acetate from syngas. Subsequently, all engineered E. coli strains were able to produce SCCAs from syngas-derived acetate. The titers of 3-HP, R-3HB, and butyrate are 3.75, 1.68, and 2.04 g/L, with carbon sequestration rates of 51.1, 26.3, and 38.1 %. This coupled bioprocess has great potential for producing a range of other value-added chemicals from syngas.
Collapse
|
2
|
Fei P, Yu Y, Liang C, Fang R, Jiang Y, Guo L. Echinacea purpurea (L.) Moench crude extract combined with citric acid inactivates Cronobacter sakazakii isolated from powdered infant formula. J Dairy Sci 2024:S0022-0302(24)01357-2. [PMID: 39662802 DOI: 10.3168/jds.2024-25485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/25/2024] [Indexed: 12/13/2024]
Abstract
The objective of this study was to reveal the synergistic antibacterial activity and mechanism of Echinacea purpurea (L.) Moench crude extract (EE) and citric acid (CA) against Cronobacter sakazakii isolated from powdered infant formula (PIF). The minimum inhibitory concentration (MIC) of EE against C. sakazakii was determined, and then growth curve and time-kill analysis were used to screen the optimal antibacterial combination of 1 MIC of EE and CA. Changes in cell membrane potential, cell integrity, cell permeability, bacterial protein, DNA and intracellular reactive oxygen species (ROS) levels, and cell morphology of C. sakazakii were used to reveal the synergistic inhibitory mechanism of EE and CA. The inactivation effect of EE in combination with CA against C. sakazakii on common contact surfaces was used to evaluate its efficacy as a natural disinfectant. The results showed that the MIC value of EE against C. sakazakii was 60 mg/mL, and the growth curve of C. sakazakii treated by 1 MIC of EE combined with CA (pH 3.0) was significantly inhibited compared with the control groups. The results of time-kill analysis showed that after combined treatment with 1 MIC of EE and CA (pH 3.0) for 30 min, approximately 8 Log cfu/mL of C. sakazakii were inactivated. The cell membrane hyperpolarization, damaged cell membrane integrity, improved cell membrane permeability, decreased bacterial protein and DNA levels, increased and then decreased intracellular ROS contents, deformed and ruptured cell morphology were found in C. sakazakii treated by EE combined with CA, and these phenomena were more pronounced than those treated by EE and CA alone. When inoculated stainless steel, glass, ceramic, polystyrene, bamboo, and wood were sprayed with 1 MIC of EE combined with CA (pH 3.0) and after 15 min of treatment, approximately 5 Log cfu/mL of C. sakazakii were inactivated. These findings suggest that EE combined with CA can effectively inactivate C. sakazakii isolated from PIF, and can be used as a natural disinfectant to reduce the contamination of C. sakazakii in PIF production environments or households.
Collapse
|
3
|
Liu L, Chen M, Zhao T, Yuan L, Mi Z, Bai Y, Fei P, Liu Z, Li C, Wang L, Feng F. Ratiometric fluorescence and smartphone-assisted sensing platform based on dual-emission carbon dots for brilliant blue detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124782. [PMID: 38991616 DOI: 10.1016/j.saa.2024.124782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
In this study, an innovative ratiometric fluorescence and smartphone-assisted visual sensing platform based on blue-yellow dual-emission carbon dots (BY-CDs) was constructed for the first time to determine brilliant blue. The BY-CDs was synthesized via a facile one-step hydrothermal process involving propyl gallate and o-phenylenediamine. The synthesized BY-CDs exhibit favorable water solubility and exceptional fluorescence stability. Under excitation at 370 nm, BY-CDs show two distinguishable fluorescence emission bands (458 and 558 nm). Upon addition of brilliant blue, the fluorescence intensity at 558 nm exhibited a significant quenching effect attributed to fluorescence resonance energy transfer (FRET), while the fluorescence intensity at 458 nm was basically unchanged. The prepared BY-CDs can effectively serve as a ratiometric nanosensor for determining brilliant blue with the ratio of fluorescence intensities at 458 and 558 nm (F458/F558) as response signal. In addition, the developed ratiometric fluorescence sensor exhibits a noticeable alteration in color from yellow to green under UV light with a wavelength of 365 nm upon addition of varying concentrations of brilliant blue, which provides the possibility of visual detection of brilliant blue by a smartphone application. Finally, the BY-CDs based dual-mode sensing platform successfully detected brilliant blue in actual food samples and achieved a desirable recovery rate. This study highlights the merits of fast, convenient, economical, real-time, visual, high accuracy, excellent precision, good selectivity and high sensitivity for brilliant blue detection, and paves new paths for the monitoring of brilliant blue in real samples.
Collapse
|
4
|
Fei P, Yangjun L, Yuee Z, Ping L, Chengzhi L, Linlin C, Hong J, Yunyang L, Wenzhou Z, Youxia H. The complete genome sequence of Streptomyces sp. FIM 95-F1, a marine actinomycete that produces the antifungal antibiotic scopafungin. Mar Genomics 2024; 78:101146. [PMID: 39515969 DOI: 10.1016/j.margen.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 11/16/2024]
Abstract
Streptomyces FIM95-F1, an actinomycete originating from mangroves of Quanzhou bay, exhibits the capability to produce the antifungal antibiotic scopafungin. Here, the complete genome of Streptomyces sp. FIM95-F1 is presented with a GC content of 71.04 %, comprising a 9,718,239-bp linear chromosome, 8236 protein-coding genes, 18 rRNA genes, 64 tRNA genes, 2 prophages, and 58 CRISPR regions. In silico analysis revealed the presence of 42 biosynthetic gene clusters (BGCs), the majority of which demonstrated similarity to both known and novel BGCs responsible for the biosynthesis of previously known and novel bioactive agents of microbial origin. A comprehensive comparison between the scopafungin BGC and niphimycin BGC has indicated a potential shared pathway for the biosynthesis of scopafungin. One of the intriguing findings of this study was the discovery of at least two novel BGCs (namely Cluster 26 and Cluster 32) present within biosynthetic gene clusters. Our findings suggest that Streptomyces sp. FIM95-F1 possesses significant potential in producing a diverse array of both known and novel bioactive compounds, which could be valuable in the field of drug discovery.
Collapse
|
5
|
Liang Y, Luo K, Wang B, Huang B, Fei P, Zhang G. Inhibition of polyphenol oxidase for preventing browning in edible mushrooms: A review. J Food Sci 2024; 89:6796-6817. [PMID: 39363229 DOI: 10.1111/1750-3841.17322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 10/05/2024]
Abstract
Edible mushrooms are rich in nutrients and bioactive compounds, but their browning affects their quality and commercial value. This article reviews various methods to inhibit polyphenol oxidase (PPO)-induced browning in mushrooms. Physical methods such as heat treatment, low temperatures, irradiation, and ultrasound effectively reduce PPO activity but may affect mushroom texture and flavor. Chemical inhibitors, including synthetic chemicals and natural plant extracts, provide effective PPO inhibition but require careful monitoring of their content. Biological methods, including gene editing and microbial fermentation, show promise in targeting PPO genes and enhancing antioxidant production. Combining these methods offers a comprehensive strategy for preserving mushroom quality, extending shelf life, and maintaining nutritional value. PRACTICAL APPLICATION: These approaches can be applied in the food industry to improve post-harvest mushroom preservation, enhance product quality, and reduce waste, benefiting both producers and consumers. Further research and innovation are needed to optimize the practical application of these methods in large-scale processing and storage conditions.
Collapse
|
6
|
Zhang L, Bai X, Liang Y, Zhang G, Zou J, Lai W, Fei P. Preparation of chitosan derivatives/oxidized carboxymethyl cellulose hydrogels by freeze-thaw method: Synthesis, characterization, and utilization in dye absorption. Int J Biol Macromol 2024; 282:136924. [PMID: 39471932 DOI: 10.1016/j.ijbiomac.2024.136924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
This study successfully synthesized hydrogels by modifying chitosan with water-soluble and carboxyethyl groups, followed by crosslinking with oxidized carboxymethyl cellulose (OCMC). Structural analyses substantiated the establishment of robust imine linkages between the amino and aldehyde groups, affirming the hydrogel's architecture. Using scanning electron microscopy and texture analysis, it was observed that incorporating water-soluble chitosan significantly increased the hydrogel's porosity and hardness. Simultaneously, the addition of carboxyethyl groups enhanced the network structure, rendering it more compact and thereby improving the hydrogel's mechanical strength. The adsorption performance of the carboxyethyl chitosan (CEC)/OCMC hydrogel towards methylene blue was meticulously evaluated, demonstrating a substantial enhancement in adsorption capacity from 7.74 mg/g to 39.57 mg/g following the carboxyethyl modification of chitosan. Adsorption kinetics and isotherm analysis indicated that the adsorption behavior of the hydrogel followed the pseudo-second-order kinetic model and the Langmuir isotherm model. Furthermore, the maximum adsorption capacity of the hydrogel for methylene blue was predicted to be 111.60 mg/g using the Langmuir isotherm model.
Collapse
|
7
|
Huang Z, Sun Y, Liu S, Chen X, Ping J, Fei P, Gong Z, Zheng N. A machine learning based method for tracking of simultaneously imaged neural activity and body posture of freely moving maggot. Biochem Biophys Res Commun 2024; 727:150290. [PMID: 38941792 DOI: 10.1016/j.bbrc.2024.150290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 06/30/2024]
Abstract
To understand neural basis of animal behavior, it is necessary to monitor neural activity and behavior in freely moving animal before building relationship between them. Here we use light sheet fluorescence microscope (LSFM) combined with microfluidic chip to simultaneously capture neural activity and body movement in small freely behaving Drosophila larva. We develop a transfer learning based method to simultaneously track the continuously changing body posture and activity of neurons that move together using a sub-region tracking network with a precise landmark estimation network for the inference of target landmark trajectory. Based on the tracking of each labelled neuron, the activity of the neuron indicated by fluorescent intensity is calculated. For each video, annotation of only 20 frames in a video is sufficient to yield human-level accuracy for all other frames. The validity of this method is further confirmed by reproducing the activity pattern of PMSIs (period-positive median segmental interneurons) and larval movement as previously reported. Using this method, we disclosed the correlation between larval movement and left-right asymmetry in activity of a group of unidentified neurons labelled by R52H01-Gal4 and further confirmed the roles of these neurons in bilateral balance of body contraction during larval crawling by genetic inhibition of these neurons. Our method provides a new tool for accurate extraction of neural activities and movement of freely behaving small-size transparent animals.
Collapse
|
8
|
Zhang L, Li Q, Liang Y, Zhang G, Zou J, Fei P, Lai W. Hydrogels comprising oxidized carboxymethyl cellulose and water-soluble chitosan at varied oxidation levels: Synthesis, characterization, and adsorptive toward methylene blue. Int J Biol Macromol 2024; 277:134351. [PMID: 39089547 DOI: 10.1016/j.ijbiomac.2024.134351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/30/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Chitosan, as a biomaterial, has increasingly garnered attention. However, its limited solubility in water-only dissolving in certain dilute acidic solutions-substantially restricts its broader application. In this investigation, chitosan underwent a solubilization modification to acquire water solubility, facilitating its dissolution in neutral aqueous mediums. Subsequently, this water-soluble chitosan (WSC) was interlinked with oxidized carboxymethyl cellulose (OCMC), characterized by varied oxidation extents, to synthesize hydrogels. Structural characterization verified the formation of imine bonds resulting from crosslinking interactions between the amino groups of water-soluble chitosan and the aldehyde groups of oxidized carboxymethyl cellulose. Employing performance characterization analysis, it was discerned that an increase in the oxidation level of the oxidized carboxymethyl cellulose corresponded to a denser hydrogel network architecture and the hardness increased from 3.01 N to 6.16 N. Moreover, the capacity of these hydrogels to adsorb methylene blue was meticulously examined. Notably, the hydrogel denoted as WSC/66%OCMC manifested an adsorption capability of 28.08 mg/g for methylene blue. Analytical findings from adsorption kinetics and isotherm studies indicate that the adsorption mechanism of the WSC/66%OCMC hydrogel follows the pseudo-second-order kinetic model and corresponds to the Freundlich isotherm model.
Collapse
|
9
|
Zhong Y, Ji Z, Li X, Fei P, Hou D, Wang Z, Tian J. Covert Information Mapped Generalized Spatial and Direction Modulation toward Secure Wireless Transmission. SENSORS (BASEL, SWITZERLAND) 2024; 24:6333. [PMID: 39409374 PMCID: PMC11479037 DOI: 10.3390/s24196333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 10/20/2024]
Abstract
In this paper, for the sake of enhancing the security of wireless transmission, we proposed a novel system based on spatial and direction modulation (SDM) combined with generalized spatial modulation (GSM) which is aided by covert information mapping (CIM), termed as the CIM-GSDM system. In such a system, the legitimated user is equipped with distributed receivers so as to demodulate the conveyed signal by exploiting its indices while disturbing eavesdroppers for information security. More specifically, part of the information is modulated into the indices of the legitimated distributed receiver subsets with the aid of the mapped covert information and the interference matrix, while another part of the message is arranged by conventional amplitude-phase modulation. The proposed system can reap the benefits from both GSM and CIM to make eavesdropper suffer great mixture. Furthermore, the detection scheme and theoretical analysis of error performance are discussed as well. The simulation results exhibit that the bit error rate (BER) performance of legitimate user is much better than that of the eavesdropper while the proposed scheme improves the security compared to the original CIM-SDM system at the same spectral efficiency.
Collapse
|
10
|
Zhu J, Liu X, Liu Z, Deng Y, Xu J, Liu K, Zhang R, Meng X, Fei P, Yu T, Zhu D. SOLID: minimizing tissue distortion for brain-wide profiling of diverse architectures. Nat Commun 2024; 15:8303. [PMID: 39333107 PMCID: PMC11436996 DOI: 10.1038/s41467-024-52560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Brain-wide profiling of diverse biological components is fundamental for understanding complex brain pathology. Despite the availability in whole-brain imaging, it is still challenging to conduct multiplexed, brain-wide analysis with current tissue clearing techniques. Here, we propose SOLID, a hydrophobic tissue clearing method that can minimize tissue distortion while offering impressive clearing performance. SOLID achieves high-quality imaging of multi-color labeled mouse brain, and the acquired datasets can be effectively registered to the Allen Brain Atlas via commonly-used algorithms. SOLID enables generation of neural and vascular maps within one mouse brain, as well as tracing of specific neural projections labeled with viruses. SOLID also allows cross-channel investigations of β-amyloid plaques and neurovascular lesions in the reconstructed all-in-one panorama, providing quantitative insights into structural interactions at different stages of Alzheimer's disease. Altogether, SOLID provides a robust pipeline for whole-brain mapping, which may widen the utility of tissue clearing techniques in diverse neuroscience research.
Collapse
|
11
|
Zhou Y, Mao S, Fei P. Light sheet fluorescence microscopy: Advancing biological discovery with more dimensions, higher speed, and lower phototoxicity. Innovation (N Y) 2024; 5:100692. [PMID: 39285905 PMCID: PMC11402810 DOI: 10.1016/j.xinn.2024.100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
|
12
|
Ma Y, Yi C, Zhou Y, Wang Z, Zhao Y, Zhu L, Wang J, Gao S, Liu J, Yuan X, Wang Z, Liu B, Fei P. Semantic redundancy-aware implicit neural compression for multidimensional biomedical image data. Commun Biol 2024; 7:1081. [PMID: 39227646 PMCID: PMC11371832 DOI: 10.1038/s42003-024-06788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
The surge in advanced imaging techniques has generated vast biomedical image data with diverse dimensions in space, time and spectrum, posing big challenges to conventional compression techniques in image storage, transmission, and sharing. Here, we propose an intelligent image compression approach with the first-proved semantic redundancy of biomedical data in the implicit neural function domain. This Semantic redundancy based Implicit Neural Compression guided with Saliency map (SINCS) can notably improve the compression efficiency for arbitrary-dimensional image data in terms of compression ratio and fidelity. Moreover, with weight transfer and residual entropy coding strategies, it shows improved compression speed while maintaining high quality. SINCS yields high quality compression with over 2000-fold compression ratio on 2D, 2D-T, 3D, 4D biomedical images of diverse targets ranging from single virus to entire human organs, and ensures reliable downstream tasks, such as object segmentation and quantitative analyses, to be conducted at high efficiency.
Collapse
|
13
|
Wang Z, Wang J, Zhao Y, Jin J, Si W, Chen L, Zhang M, Zhou Y, Mao S, Zheng C, Zhang Y, Chen L, Fei P. 3D live imaging and phenotyping of CAR-T cell mediated-cytotoxicity using high-throughput Bessel oblique plane microscopy. Nat Commun 2024; 15:6677. [PMID: 39107283 PMCID: PMC11303822 DOI: 10.1038/s41467-024-51039-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Clarification of the cytotoxic function of T cells is crucial for understanding human immune responses and immunotherapy procedures. Here, we report a high-throughput Bessel oblique plane microscopy (HBOPM) platform capable of 3D live imaging and phenotyping of chimeric antigen receptor (CAR)-modified T-cell cytotoxicity against cancer cells. The HBOPM platform has the following characteristics: an isotropic subcellular resolution of 320 nm, large-scale scouting over 400 interacting cell pairs, long-term observation across 5 hours, and quantitative analysis of the Terabyte-scale 3D, multichannel, time-lapse image datasets. Using this advanced microscopy platform, several key subcellular events in CAR-T cells are captured and comprehensively analyzed; these events include the instantaneous formation of immune synapses and the sustained changes in the microtubing morphology. Furthermore, we identify the actin retrograde flow speed, the actin depletion coefficient, the microtubule polarization and the contact area of the CAR-T/target cell conjugates as essential parameters strongly correlated with CAR-T-cell cytotoxic function. Our approach will be useful for establishing criteria for quantifying T-cell function in individual patients for all T-cell-based immunotherapies.
Collapse
|
14
|
Feng W, Zhao F, Zhong F, Zhao Y, Fei P. Flexible solid immersion meniscus lens (SIMlens) approach for enhancing biological imaging of cleared samples. OPTICS LETTERS 2024; 49:4126-4129. [PMID: 39090876 DOI: 10.1364/ol.528263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/22/2024] [Indexed: 08/04/2024]
Abstract
Tissue-clearing techniques have revolutionized the field of biological imaging by rendering biological specimens transparent and enabling inside optical detection. Light-sheet fluorescence microscopy (LSFM) is a powerful tool for three-dimensional imaging of large biological samples. Combining tissue-clearing techniques with LSFM has advanced the efficient 3D visualization of these samples. A crucial challenge with LSFM is the requirement for the objective to operate within the clearing reagent, which can cause aberrations. To address this issue, we introduce a novel, to our knowledge, approach for the flexible design of the solid immersion refractive meniscus lens (SIMlens), facilitating the use of air objectives with cleared samples. Compared to the previous SIMlens, this method not only eliminates aberrations but also offers customized options for enhancing the numerical aperture and working distance of the objective lens, achieving at least a 10% improvement. We have demonstrated the feasibility of this new method using mouse brain samples.
Collapse
|
15
|
Liu Y, Liu J, Deng C, Wang B, Xia B, Liang X, Yang Y, Li S, Wang X, Li L, Lan X, Fei P, Zhang J, Gao L, Tang J. Planar Cation Passivation on Colloidal Quantum Dots Enables High-Performance 0.35-1.8 µm Broadband TFT Imager. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313811. [PMID: 38358302 DOI: 10.1002/adma.202313811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Solution-processed colloidal quantum dots (CQDs) are promising candidates for broadband photodetectors from visible light to shortwave infrared (SWIR). However, large-size PbS CQDs sensitive to longer SWIR are mainly exposed with nonpolar (100) facets on the surface, which lack robust passivation strategies. Herein, an innovative passivation strategy that employs planar cation, is introduced to enable face-to-face coupling on (100) facets and strengthen halide passivation on (111) facets. The defect density of CQDs film (Eg ≈ 0.74 eV) is reduced from 2.74 × 1015 to 1.04 × 1015 cm-3, coupled with 0.1 eV reduction in the activation energy of defects. The resultant CQDs photodiodes exhibit a low dark current density of 14 nA cm-2 with a high external quantum efficiency (EQE) of 62%, achieving a linear dynamic range of 98 dB, a -3dB bandwidth of 103 kHz and a detectivity of 4.7 × 1011 Jones. The comprehensive performance of the CQDs photodiodes outperforms previously reported CQDs photodiodes operating at >1.6 µm. By monolithically integrated with thin-film transistor (TFT) readout circuit, the broadband CQDs imager covering 0.35-1.8 µm realizes the functions including silicon wafer perspectivity and material discrimination, showing its potential for wide range of applications.
Collapse
|
16
|
Jiang J, Luo Y, Fei P, Zhu Z, Peng J, Lu J, Zhu D, Wu H. Effect of adaptive laboratory evolution of engineered Escherichia coli in acetate on the biosynthesis of succinic acid from glucose in two-stage cultivation. BIORESOUR BIOPROCESS 2024; 11:34. [PMID: 38647614 PMCID: PMC10997558 DOI: 10.1186/s40643-024-00749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
Escherichia coli MLB (MG1655 ΔpflB ΔldhA), which can hardly grow on glucose with little succinate accumulation under anaerobic conditions. Two-stage fermentation is a fermentation in which the first stage is used for cell growth and the second stage is used for product production. The ability of glucose consumption and succinate production of MLB under anaerobic conditions can be improved significantly by using acetate as the solo carbon source under aerobic condition during the two-stage fermentation. Then, the adaptive laboratory evolution (ALE) of growing on acetate was applied here. We assumed that the activities of succinate production related enzymes might be further improved in this study. E. coli MLB46-05 evolved from MLB and it had an improved growth phenotype on acetate. Interestingly, in MLB46-05, the yield and tolerance of succinic acid in the anaerobic condition of two-stage fermentation were improved significantly. According to transcriptome analysis, upregulation of the glyoxylate cycle and the activity of stress regulatory factors are the possible reasons for the elevated yield. And the increased tolerance to acetate made it more tolerant to high concentrations of glucose and succinate. Finally, strain MLB46-05 produced 111 g/L of succinic acid with a product yield of 0.74 g/g glucose. SYNOPSIS.
Collapse
|
17
|
Huang B, Hu Q, Zhang G, Zou J, Fei P, Wang Z. Exploring the emulsification potential of chitosan modified with phenolic acids: Emulsifying properties, functional activities, and application in curcumin encapsulation. Int J Biol Macromol 2024; 263:130450. [PMID: 38412937 DOI: 10.1016/j.ijbiomac.2024.130450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/03/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
This study successfully grafted caffeic acid and 3,4-dihydroxybenzoic acid into chitosan through a coupling reaction, yielding grafting ratio of 8.93 % for caffeic acid grafted chitosan (CA-GC) and 9.15 % for 3,4-dihydroxybenzoic acid grafted chitosan (DHB-GC) at an optimal concentration of 4 mmol phenolic acids. The characterization of modified chitosans through ultraviolet visible spectrometer (UV-vis), Fourier transform infrared spectrometer (FTIR), proton nuclear magnetic resonance (1H NMR), and x-ray photoelectron spectrometer (XPS) confirmed the successful grafting of phenolic acids. In the subsequent step of emulsion preparation, confocal laser scanning microscope images confirmed the formation of O/W (oil-in-water) emulsions. The phenolic acid-grafted chitosans exhibited better emulsification properties compared to native chitosan, such as reduced droplet size, more uniform emulsion droplet distribution, increased ζ-potential, and enhanced emulsifying activity and stability. Moreover, the modified chitosans demonstrated increased antioxidant activities (evidenced by DPPH and β-carotene assays) and displayed greater antimicrobial effects against E. coli and S. aureus. Its efficacy in curcumin encapsulation was also notable, with improved encapsulation efficiency, sustained release rates, and enhanced storage and photostability. These findings hint at the potential of modified chitosans as an effective emulsifier.
Collapse
|
18
|
Zhang L, Li Q, Bai X, Li X, Zhang G, Zou J, Fei P, Lai W. Double network self-healing hydrogels based on carboxyethyl chitosan/oxidized sodium alginate/Ca 2+: Preparation, characterization and application in dye absorption. Int J Biol Macromol 2024; 264:130564. [PMID: 38431021 DOI: 10.1016/j.ijbiomac.2024.130564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
This paper presents the formation of a self-healing hydrogel prepared by carboxyethyl modification of chitosan and crosslinking with oxidized sodium alginate. Concurrently, the incorporation of Ca2+ facilitated the formation of "calcium bridges" through intricate coordination with carboxyl moieties, bolstering the attributes of the hydrogel. Various characterization methods, including scanning electron microscopy, texture analysis, and rheological measurements, demonstrated that the introduction of carboxyethyl groups resulted in a more compact hydrogel network structure and improved the hardness and elasticity. The addition of Ca2+ helped to further enhance the mechanical performance of the hydrogel and increase its thermal stability. Then, the adsorption capacity was also investigated, showing adsorption capacities of 46.17 mg/g methylene blue and 46.44 mg/g congo red for carboxyethyl chitosan/oxidized sodium alginate hydrogel, a four-fold increase for congo red versus chitosan/oxidized sodium alginate hydrogel. In addition, the adsorption behavior of CEC/OSA/2%Ca2+ hydrogel can be well described by pseudo-second-order kinetic model and Langmuir adsorption isothermal model. Compared to traditional hydrogels, CEC/OSA/2%Ca2+ hydrogel shows superior mechanical strength, enhanced thermal stability, and improved adsorption capacity, which can effectively adsorb not only methylene blue but also congo red. These advancements demonstrate our hydrogel's innovative properties.
Collapse
|
19
|
Fei P, Xu J, Xie J, Huang J, Feng H, Chen X, Jiang P, Guo M, Chang Y. Rosa roxburghii Tratt Pomace Crude Extract Inactivates Cronobacter sakazakii Isolated from Powdered Infant Formula. Foodborne Pathog Dis 2024; 21:268-274. [PMID: 38265446 DOI: 10.1089/fpd.2023.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Cronobacter sakazakii is an important foodborne pathogen in powder infant formula (PIF). The objective of this study was to evaluate the inactivation effect of Rosa roxburghii Tratt pomace crude extract (RRPCE) on C. sakazakii isolated from PIF and to reveal the mechanism of action. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were used to evaluate the inhibitory activity of RRPCE against C. sakazakii. The inhibitory mechanism was revealed from the perspective of effects of RRPCE on intracellular adenosine 5'-triphosphate (ATP), reactive oxygen species (ROS), membrane potential, protein and nucleic acid leakage, and cell morphology of C. sakazakii. The inactivation effects of RRPCE on C. sakazakii in biofilms on stainless steel, tinplate, glass, silica gel, polyethylene terephthalate, and polystyrene to evaluate its potential as a natural disinfectant. The results showed that the MIC and MBC of RRPCE against C. sakazakii were 7.5 and 15 mg/mL, respectively. After treatments with RRPCE, intracellular ATP content decreased significantly while intracellular ROS level increased significantly (p < 0.05). The cell membrane depolarization, large leakage of proteins and nucleic acids, and severely damaged cell morphology also occurred in C. sakazakii treated with RRPCE. In addition, a 20-minute treatment with 2 MIC (15 mg/mL) of RRPCE could inactivate all C. sakazakii (from 6.10 to 6.40 CFU/mL) in biofilms on all six contact surfaces. Our findings suggest that RRPCE is ideal for the inactivation of C. sakazakii and has the potential to be used as a natural disinfectant for the inactivation of PIF packaging materials and containers.
Collapse
|
20
|
Fei P, Sun Z, Liu X, Jiang P, Feng H, Chen X, Ma Y, Dong G, Fan C, Bai M, Li Y, Chang Y. Antibacterial Activity and Mechanism of Polygonatum sibiricum Extract Against Bacillus cereus and Its Application in Pasteurized Milk. Foodborne Pathog Dis 2024; 21:160-167. [PMID: 38079263 DOI: 10.1089/fpd.2023.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
The purpose of this study was to reveal the antibacterial activity and mechanism of Polygonatum sibiricum extract (PSE) against Bacillus cereus and further analyze the application of PSE in pasteurized milk (PM). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values and growth curve analysis were used to evaluate the antibacterial activity of PSE against B. cereus. The changes in contents of intracellular adenosine 5'-triphosphate (ATP) and reactive oxygen species (ROS), activities of β-galactosidase, adenosine triphosphatase (ATPase) and alkaline phosphatase (AKP), cell membrane potential, protein and nucleic acid leakage, and cell morphology were used to reveal the antibacterial mechanism. The effects of PSE on viable count and sensory evaluation of PM during storage were analyzed. The results showed that the MIC and MBC values of PSE against B. cereus were 2 and 4 mg/mL, respectively. Growth curve analysis showed that PSE with a concentration of 2 MIC could completely inhibit the growth of B. cereus. After treatments with PSE, the levels of intracellular ATP and ROS, and activities of β-galactosidase, ATPase and AKP of B. cereus were significantly reduced (p < 0.05). Cell membrane was depolarized, amounts of protein and nucleic acid leakage were significantly increased (p < 0.05), and cell morphology was destroyed. Furthermore, PSE significantly reduced the viable count of B. cereus in PM and improved the sensory quality of PM during storage (p < 0.05). Together, our findings suggested that PSE had the desired effect as a natural preservative applied in PM.
Collapse
|
21
|
Guo L, Han J, Wang Y, Chang Y, Qu W, Man C, Fei P, Jiang Y. Antibacterial action of slightly acidic electrolytic water against Cronobacter sakazakii and its application as a disinfectant on high-risk contact surfaces. Front Microbiol 2024; 15:1314362. [PMID: 38351917 PMCID: PMC10864107 DOI: 10.3389/fmicb.2024.1314362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Powdered infant formula (PIF) is prone to Cronobacter sakazakii (C. sakazakii) contamination, which can result in infections that endanger the lives of newborns and infants. Slightly acidic electrolytic water (SAEW) has shown antibacterial effects on a variety of foodborne pathogens and has a wide applicability in the food industry. Here, the antibacterial activity of SAEW against C. sakazakii and its use as a disinfectant on contact surfaces with high infection transmission risk were investigated. The inactivation of SAEW on C. sakazakii was positively correlated to the SAEW concentration and treatment time. The antibacterial effect of SAEW was achieved by decreasing the intracellular adenosine triphosphate (ATP), K+, protein, and DNA contents of C. sakazakii, reducing the intracellular pH (pHin) and destroying the cell morphology, which led to inactivation of C. sakazakii ultimately. To test the applicability of this study, the results showed that approximately 103 CFU/cm2 of C. sakazakii were successfully inactivated on stainless steel and rubber surfaces after a 30 mg/L SAEW treatment for 20 s. These results indicate the antibacterial mechanism and potential application of SAEW against C. sakazakii, as well as a new strategy for the prevention and control of C. sakazakii on stainless steel and rubber surfaces.
Collapse
|
22
|
Fang Y, Sheng D, Lin Z, Fei P. Study of Low-Velocity Impact Behavior of Hybrid Fiber-Reinforced Metal Laminates. Polymers (Basel) 2024; 16:173. [PMID: 38256972 PMCID: PMC10819878 DOI: 10.3390/polym16020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
In this paper, the low-velocity impact behavior and damage modes of carbon/glass-hybrid fiber-reinforced magnesium alloy laminates (FMLs-H) and pure carbon-fiber-reinforced magnesium alloy laminates (FMLs-C) are investigated using experimental, theoretical modeling, and numerical simulation methods. Low-velocity impact tests were conducted at incident energies of 20 J, 40 J, and 60 J using a drop-weight impact tester, and the load-displacement curves and energy-time curves of the FMLs were recorded and plotted. The results showed that compared with FMLs-C, the stiffness of FMLs-H was slightly reduced, but the peak load and energy absorption were both greatly improved. Finally, a finite element model based on the Abaqus-VUMAT subroutine was developed to simulate the experimental results, and the damage modes of the metal layer, fiber layer, and interlayer were observed and analyzed. The experimental results are in good agreement with the finite element analysis results. The damage mechanisms of two kinds of FMLs under low-velocity impacts are discussed, providing a reference for the design and application of laminates.
Collapse
|
23
|
Huang Y, Lin J, Shen B, Zheng C, Huang B, Zou J, Zhang G, Fei P. Chlorogenic acid-chitosan copolymers: Synthesis, characterization and application in O/W emulsions for enhanced β-carotene stability. Int J Biol Macromol 2024; 254:127839. [PMID: 37931860 DOI: 10.1016/j.ijbiomac.2023.127839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
In this study, chlorogenic acid-chitosan (CA-CS) copolymers were prepared with varying Chitosan (CS): chlorogenic acid (CA)ratios and characterized for their water solubility, antioxidant capacity, and emulsions stability. Results showed that CA-CS samples exhibited up to 90.5 % increase in DPPH scavenging efficiency and 20 % increase in hydroxyl radical scavenging efficiency compared to CS alone. CA-CS copolymers used to stabilize oil in water (O/W) emulsions, which were evaluated for their potential in encapsulating and protecting β-carotene. Microscopic observations revealed homogeneous spherical droplets in stable emulsions, suggesting effective interfacial structures. The selected CA-CS-stabilized O/W emulsions demonstrated encapsulation efficiencies of 74.8 % and 75.26 % for β-carotene. The CA-CS stabilized O/W emulsions provided the most effective protection against β-carotene degradation under UV exposure, retaining over 80 % of β-carotene content after 12 h of testing. These findings indicate that CA-CS-based O/W emulsions show promise as carriers and protectors for bioactive compounds, due to their improved antioxidant capacity, emulsions stability, and protection against degradation.
Collapse
|
24
|
Cheng B, Lin J, Zou J, Zhuang Y, Zheng L, Zhang G, Huang B, Fei P. Preparation of curcumin-loaded pectin-nisin copolymer emulsion and evaluation of its stability. Int J Biol Macromol 2024; 254:127812. [PMID: 37923038 DOI: 10.1016/j.ijbiomac.2023.127812] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
In the paper, Nisin was grafted onto native pectin by the 1-ethyl-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC·HCl) method. Structure characterisation showed that the carboxyl group of pectin interacted with the amino group of Nisin and formed an amide bond. The highest grafting ratio of the modified pectin was up to 24.89 %. The emulsifying property of modified pectin, significantly improved, and emulsification performance improved with increasing grafting ratio. Emulsifying activity, emulsion stability, Zeta potential, and droplet morphology data demonstrate a notable enhancement in pectin's emulsifying properties due to Nisin's introduction, with the degree of grafting showing a direct correlation with the improvement observed. Pectin-based emulsion is utilized to load curcumin, enhancing its stability and bioavailability. Research findings highlight that the incorporation of Nisin-modified pectin significantly elevates curcumin encapsulation efficiency, while decelerating its release rate. Moreover, the stability of curcumin loaded in the modified pectin under light exposure, alkaline conditions, and long-term storage is also significantly improved. Ultimately, the bioavailability of curcumin escalates from 0.368 to 0.785.
Collapse
|
25
|
Chen L, Meng J, Zhou Y, Zhao F, Ma Y, Feng W, Chen X, jin J, Gao S, Liu J, Zhang M, Liu A, Hong Z, Tang J, Kuang D, Huang L, Zhang Y, Fei P. Efficient 3D imaging and pathological analysis of the human lymphoma tumor microenvironment using light-sheet immunofluorescence microscopy. Theranostics 2024; 14:406-419. [PMID: 38164148 PMCID: PMC10750216 DOI: 10.7150/thno.86221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/26/2023] [Indexed: 01/03/2024] Open
Abstract
Rationale: The composition and spatial structure of the lymphoma tumor microenvironment (TME) provide key pathological insights for tumor survival and growth, invasion and metastasis, and resistance to immunotherapy. However, the 3D lymphoma TME has not been well studied owing to the limitations of current imaging techniques. In this work, we take full advantage of a series of new techniques to enable the first 3D TME study in intact lymphoma tissue. Methods: Diverse cell subtypes in lymphoma tissues were tagged using a multiplex immunofluorescence labeling technique. To optically clarify the entire tissue, immunolabeling-enabled three-dimensional imaging of solvent-cleared organs (iDISCO+), clear, unobstructed brain imaging cocktails and computational analysis (CUBIC) and stabilization to harsh conditions via intramolecular epoxide linkages to prevent degradation (SHIELD) were comprehensively compared with the ultimate dimensional imaging of solvent-cleared organs (uDISCO) approach selected for clearing lymphoma tissues. A Bessel-beam light-sheet fluorescence microscope (B-LSFM) was developed to three-dimensionally image the clarified tissues at high speed and high resolution. A customized MATLAB program was used to quantify the number and colocalization of the cell subtypes based on the acquired multichannel 3D images. By combining these cutting-edge methods, we successfully carried out high-efficiency 3D visualization and high-content cellular analyses of the lymphoma TME. Results: Several antibodies, including CD3, CD8, CD20, CD68, CD163, CD14, CD15, FOXP3 and Ki67, were screened for labeling the TME in lymphoma tumors. The 3D imaging results of the TME from three types of lymphoma, reactive lymphocytic hyperplasia (RLN), diffuse large B-cell lymphoma (DLBCL), and angioimmunoblastic T-cell lymphoma (AITL), were quantitatively analyzed, and their cell number, localization, and spatial correlation were comprehensively revealed. Conclusion: We present an advanced imaging-based method for efficient 3D visualization and high-content cellular analysis of the lymphoma TME, rendering it a valuable tool for tumor pathological diagnosis and other clinical research.
Collapse
|