1
|
Hansen AE, Petersen AL, Henriksen JR, Boerresen B, Rasmussen P, Elema DR, af Rosenschöld PM, Kristensen AT, Kjær A, Andresen TL. Positron Emission Tomography Based Elucidation of the Enhanced Permeability and Retention Effect in Dogs with Cancer Using Copper-64 Liposomes. ACS NANO 2015; 9:6985-6995. [PMID: 26022907 DOI: 10.1021/acsnano.5b01324] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Since the first report of the enhanced permeability and retention (EPR) effect, the research in nanocarrier based antitumor drugs has been intense. The field has been devoted to treatment of cancer by exploiting EPR-based accumulation of nanocarriers in solid tumors, which for many years was considered to be a ubiquitous phenomenon. However, the understanding of differences in the EPR-effect between tumor types, heterogeneities within each patient group, and dependency on tumor development stage in humans is sparse. It is therefore important to enhance our understanding of the EPR-effect in large animals and humans with spontaneously developed cancer. In the present paper, we describe a novel loading method of copper-64 into PEGylated liposomes and use these liposomes to evaluate the EPR-effect in 11 canine cancer patients with spontaneous solid tumors by PET/CT imaging. We thereby provide the first high-resolution analysis of EPR-based tumor accumulation in large animals. We find that the EPR-effect is strong in some tumor types but cannot be considered a general feature of solid malignant tumors since we observed a high degree of accumulation heterogeneity between tumors. Six of seven included carcinomas displayed high uptake levels of liposomes, whereas one of four sarcomas displayed signs of liposome retention. We conclude that nanocarrier-radiotracers could be important in identifying cancer patients that will benefit from nanocarrier-based therapeutics in clinical practice.
Collapse
|
|
10 |
205 |
2
|
Ghadjar P, Zelefsky MJ, Spratt DE, Munck af Rosenschöld P, Oh JH, Hunt M, Kollmeier M, Happersett L, Yorke E, Deasy JO, Jackson A. Impact of dose to the bladder trigone on long-term urinary function after high-dose intensity modulated radiation therapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 2014; 88:339-44. [PMID: 24411606 DOI: 10.1016/j.ijrobp.2013.10.042] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/24/2013] [Accepted: 10/29/2013] [Indexed: 10/25/2022]
Abstract
PURPOSE To determine the potential association between genitourinary (GU) toxicity and planning dose-volume parameters for GU pelvic structures after high-dose intensity modulated radiation therapy in localized prostate cancer patients. METHODS AND MATERIALS A total of 268 patients who underwent intensity modulated radiation therapy to a prescribed dose of 86.4 Gy in 48 fractions during June 2004-December 2008 were evaluated with the International Prostate Symptom Score (IPSS) questionnaire. Dose-volume histograms of the whole bladder, bladder wall, urethra, and bladder trigone were analyzed. The primary endpoint for GU toxicity was an IPSS sum increase ≥10 points over baseline. Univariate and multivariate analyses were done by the Kaplan-Meier method and Cox proportional hazard models, respectively. RESULTS Median follow-up was 5 years (range, 3-7.7 years). Thirty-nine patients experienced an IPSS sum increase ≥10 during follow-up; 84% remained event free at 5 years. After univariate analysis, lower baseline IPSS sum (P=.006), the V90 of the trigone (P=.006), and the maximal dose to the trigone (P=.003) were significantly associated with an IPSS sum increase ≥10. After multivariate analysis, lower baseline IPSS sum (P=.009) and increased maximal dose to the trigone (P=.005) remained significantly associated. Seventy-two patients had both a lower baseline IPSS sum and a higher maximal dose to the trigone and were defined as high risk, and 68 patients had both a higher baseline IPSS sum and a lower maximal dose to the trigone and were defined as low risk for development of an IPSS sum increase ≥10. Twenty-one of 72 high-risk patients (29%) and 5 of 68 low-risk patients (7%) experienced an IPSS sum increase ≥10 (P=.001; odds ratio 5.19). CONCLUSIONS The application of hot spots to the bladder trigone was significantly associated with relevant changes in IPSS during follow-up. Reduction of radiation dose to the lower bladder and specifically the bladder trigone seems to be associated with a reduction in late GU toxicity.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
119 |
3
|
Sveistrup J, af Rosenschöld PM, Deasy JO, Oh JH, Pommer T, Petersen PM, Engelholm SA. Improvement in toxicity in high risk prostate cancer patients treated with image-guided intensity-modulated radiotherapy compared to 3D conformal radiotherapy without daily image guidance. Radiat Oncol 2014; 9:44. [PMID: 24495815 PMCID: PMC3922544 DOI: 10.1186/1748-717x-9-44] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Image-guided radiotherapy (IGRT) facilitates the delivery of a very precise radiation dose. In this study we compare the toxicity and biochemical progression-free survival between patients treated with daily image-guided intensity-modulated radiotherapy (IG-IMRT) and 3D conformal radiotherapy (3DCRT) without daily image guidance for high risk prostate cancer (PCa). METHODS A total of 503 high risk PCa patients treated with radiotherapy (RT) and endocrine treatment between 2000 and 2010 were retrospectively reviewed. 115 patients were treated with 3DCRT, and 388 patients were treated with IG-IMRT. 3DCRT patients were treated to 76 Gy and without daily image guidance and with 1-2 cm PTV margins. IG-IMRT patients were treated to 78 Gy based on daily image guidance of fiducial markers, and the PTV margins were 5-7 mm. Furthermore, the dose-volume constraints to both the rectum and bladder were changed with the introduction of IG-IMRT. RESULTS The 2-year actuarial likelihood of developing grade > = 2 GI toxicity following RT was 57.3% in 3DCRT patients and 5.8% in IG-IMRT patients (p < 0.001). For GU toxicity the numbers were 41.8% and 29.7%, respectively (p = 0.011). On multivariate analysis, 3DCRT was associated with a significantly increased risk of developing grade > = 2 GI toxicity compared to IG-IMRT (p < 0.001, HR = 11.59 [CI: 6.67-20.14]). 3DCRT was also associated with an increased risk of developing GU toxicity compared to IG-IMRT.The 3-year actuarial biochemical progression-free survival probability was 86.0% for 3DCRT and 90.3% for IG-IMRT (p = 0.386). On multivariate analysis there was no difference in biochemical progression-free survival between 3DCRT and IG-IMRT. CONCLUSION The difference in toxicity can be attributed to the combination of the IMRT technique with reduced dose to organs-at-risk, daily image guidance and margin reduction.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
90 |
4
|
Fredh A, Scherman JB, Fog LS, Munck af Rosenschöld P. Patient QA systems for rotational radiation therapy: a comparative experimental study with intentional errors. Med Phys 2013; 40:031716. [PMID: 23464311 DOI: 10.1118/1.4788645] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The purpose of the present study was to investigate the ability of commercial patient quality assurance (QA) systems to detect linear accelerator-related errors. METHODS Four measuring systems (Delta(4®), OCTAVIUS(®), COMPASS, and Epiqa™) designed for patient specific quality assurance for rotational radiation therapy were compared by measuring four clinical rotational intensity modulated radiation therapy plans as well as plans with introduced intentional errors. The intentional errors included increasing the number of monitor units, widening of the MLC banks, and rotation of the collimator. The measurements were analyzed using the inherent gamma evaluation with 2% and 2 mm criteria and 3% and 3 mm criteria. When applicable, the plans with intentional errors were compared with the original plans both by 3D gamma evaluation and by inspecting the dose volume histograms produced by the systems. RESULTS There was considerable variation in the type of errors that the various systems detected; the failure rate for the plans with errors varied between 0% and 72%. When using 2% and 2 mm criteria and 95% as a pass rate the Delta(4®) detected 15 of 20 errors, OCTAVIUS(®) detected 8 of 20 errors, COMPASS detected 8 of 20 errors, and Epiqa™ detected 20 of 20 errors. It was also found that the calibration and measuring procedure could benefit from improvements for some of the patient QA systems. CONCLUSIONS The various systems can detect various errors and the sensitivity to the introduced errors depends on the plan. There was poor correlation between the gamma evaluation pass rates of the QA procedures and the deviations observed in the dose volume histograms.
Collapse
|
Journal Article |
12 |
90 |
5
|
Capala J, Stenstam BH, Sköld K, Munck af Rosenschöld P, Giusti V, Persson C, Wallin E, Brun A, Franzen L, Carlsson J, Salford L, Ceberg C, Persson B, Pellettieri L, Henriksson R. Boron neutron capture therapy for glioblastoma multiforme: clinical studies in Sweden. J Neurooncol 2003; 62:135-44. [PMID: 12749709 DOI: 10.1007/bf02699940] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A boron neutron capture therapy (BNCT) facility has been constructed at Studsvik, Sweden. It includes two filter/moderator configurations. One of the resulting neutron beams has been optimized for clinical irradiations with a filter/moderator system that allows easy variation of the neutron spectrum from the thermal to the epithermal energy range. The other beam has been designed to produce a large uniform field of thermal neutrons for radiobiological research. Scientific operations of the Studsvik BNCT project are overseen by the Scientific Advisory Board comprised of representatives of major universities in Sweden. Furthermore, special task groups for clinical and preclinical studies have been formed to facilitate collaboration with academia. The clinical Phase II trials for glioblastoma are sponsored by the Swedish National Neuro-Oncology Group and, presently, involve a protocol for BNCT treatment of glioblastoma patients who have not received any therapy other than surgery. In this protocol, p-boronophenylalanine (BPA), administered as a 6-h intravenous infusion, is used as the boron delivery agent. As of January 2002, 17 patients were treated. The 6-h infusion of 900 mg BPA/kg body weight was shown to be safe and resulted in the average blood-boron concentration of 24 microg/g (range: 15-32 microg/g) at the time of irradiation (approximately 2-3 h post-infusion). Peak and average weighted radiation doses to the brain were in the ranges of 8.0-15.5 Gy(W) and 3.3-6.1 Gy(W), respectively. So far, no severe BNCT-related acute toxicities have been observed. Due to the short follow-up time, it is too early to evaluate the efficacy of these studies.
Collapse
|
Clinical Trial |
22 |
87 |
6
|
Persson GF, Nygaard DE, Brink C, Jahn JW, Munck af Rosenschöld P, Specht L, Korreman SS. Deviations in delineated GTV caused by artefacts in 4DCT. Radiother Oncol 2010; 96:61-6. [DOI: 10.1016/j.radonc.2010.04.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 04/12/2010] [Accepted: 04/13/2010] [Indexed: 12/27/2022]
|
|
15 |
71 |
7
|
Bjerre T, Crijns S, Rosenschöld PMA, Aznar M, Specht L, Larsen R, Keall P. Three-dimensional MRI-linac intra-fraction guidance using multiple orthogonal cine-MRI planes. Phys Med Biol 2013; 58:4943-50. [DOI: 10.1088/0031-9155/58/14/4943] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
|
12 |
70 |
8
|
Brodin NP, Vogelius IR, Maraldo MV, Munck af Rosenschöld P, Aznar MC, Kiil-Berthelsen A, Nilsson P, Björk-Eriksson T, Specht L, Bentzen SM. Life years lost--comparing potentially fatal late complications after radiotherapy for pediatric medulloblastoma on a common scale. Cancer 2012; 118:5432-40. [PMID: 22517408 DOI: 10.1002/cncr.27536] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 11/07/2022]
Abstract
BACKGROUND The authors developed a framework for estimating and comparing the risks of various long-term complications on a common scale and applied it to 3 different techniques for craniospinal irradiation in patients with pediatric medulloblastoma. METHODS Radiation dose-response parameters related to excess hazard ratios for secondary breast, lung, stomach, and thyroid cancer; heart failure, and myocardial infarction were derived from large published clinical series. Combined with age-specific and sex-specific hazards in the US general population, the dose-response analysis yielded excess hazards of complications for a cancer survivor as a function of attained age. After adjusting for competing risks of death, life years lost (LYL) were estimated based on excess hazard and prognosis of a complication for 3-dimensional conformal radiotherapy (3D CRT), volumetric modulated arc therapy (VMAT), and intensity-modulated proton therapy (IMPT). RESULTS Lung cancer contributed most to the estimated LYL, followed by myocardial infarction, and stomach cancer. The estimates of breast or thyroid cancer incidence were higher than those for lung and stomach cancer incidence, but LYL were lower because of the relatively good prognosis. Estimated LYL ranged between 1.90 years for 3D CRT to 0.28 years for IMPT. In a paired comparison, IMPT was associated with significantly fewer LYL than both photon techniques. CONCLUSIONS Estimating the risk of late complications is associated with considerable uncertainty, but including prognosis and attained age at an event to obtain the more informative LYL estimate added relatively little to this uncertainty.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
54 |
9
|
Brodin NP, Munck af Rosenschöld P, Blomstrand M, Kiil-Berthlesen A, Hollensen C, Vogelius IR, Lannering B, Bentzen SM, Björk-Eriksson T. Hippocampal sparing radiotherapy for pediatric medulloblastoma: impact of treatment margins and treatment technique. Neuro Oncol 2013; 16:594-602. [PMID: 24327585 DOI: 10.1093/neuonc/not225] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND We investigated how varying the treatment margin and applying hippocampal sparing and proton therapy impact the risk of neurocognitive impairment in pediatric medulloblastoma patients compared with current standard 3D conformal radiotherapy. METHODS We included 17 pediatric medulloblastoma patients to represent the variability in tumor location relative to the hippocampal region. Treatment plans were generated using 3D conformal radiotherapy, hippocampal sparing intensity-modulated radiotherapy, and spot-scanned proton therapy, using 3 different treatment margins for the conformal tumor boost. Neurocognitive impairment risk was estimated based on dose-response models from pediatric CNS malignancy survivors and compared among different margins and treatment techniques. RESULTS Mean hippocampal dose and corresponding risk of cognitive impairment were decreased with decreasing treatment margins (P < .05). The largest risk reduction, however, was seen when applying hippocampal sparing proton therapy-the estimated risk of impaired task efficiency (95% confidence interval) was 92% (66%-98%), 81% (51%-95%), and 50% (30%-70%) for 3D conformal radiotherapy, intensity-modulated radiotherapy, and proton therapy, respectively, for the smallest boost margin and 98% (78%-100%), 90% (60%-98%), and 70% (39%-90%) if boosting the whole posterior fossa. Also, the distance between the closest point of the planning target volume and the center of the hippocampus can be used to predict mean hippocampal dose for a given treatment technique. CONCLUSIONS We estimate a considerable clinical benefit of hippocampal sparing radiotherapy. In choosing treatment margins, the tradeoff between margin size and risk of neurocognitive impairment quantified here should be considered.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
35 |
10
|
Ghadjar P, Jackson A, Spratt DE, Oh JH, Munck af Rosenschöld P, Kollmeier M, Yorke E, Hunt M, Deasy JO, Zelefsky MJ. Patterns and predictors of amelioration of genitourinary toxicity after high-dose intensity-modulated radiation therapy for localized prostate cancer: implications for defining postradiotherapy urinary toxicity. Eur Urol 2013; 64:931-8. [PMID: 23522772 DOI: 10.1016/j.eururo.2013.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/01/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND Treatment-related toxicity and quality of life (QoL) considerations are important when counseling patients with localized prostate cancer (PCa). OBJECTIVE To determine the incidence and longitudinal pattern of late genitourinary (GU) toxicity and QoL after high-dose, intensity-modulated radiotherapy (IMRT). DESIGN, SETTING, AND PARTICIPANTS A total of 268 patients with localized PCa were treated between June 2004 and December 2008 at a tertiary referral center. Median follow-up was 5 yr (range: 3-7.7 yr). INTERVENTION Patients underwent IMRT to a total dose of 86.4Gy; 50% of patients underwent neoadjuvant and concurrent androgen-deprivation therapy. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Patients were evaluated with the prospectively obtained International Prostate Symptom Score (IPSS) questionnaire. GU toxicity was also scored using the Common Terminology Criteria for Adverse Events (CTCAE) v.4.0; toxicity events were defined as increase over baseline. Differences in increases in IPSS sums and QoL index between baseline IPSS sum and QoL index groups were analyzed using the Kruskal-Wallis and Mann-Whitney tests. Univariate and multivariate Cox regression models were applied. RESULTS AND LIMITATIONS The overall median IPSS sum increase during follow-up was 3 and was less pronounced among patients with severe baseline symptoms compared with those with mild baseline symptoms (median increase: 0 vs 4; p<0.0001). Overall QoL index was unchanged after IMRT but appeared to improve in patients with dissatisfied baseline QoL compared with satisfied baseline QoL (p<0.0001). Fifty-five (20%) and 2 (1%) patients developed grade 2 and 3 late GU toxicities, respectively; however, in 28 of 57 patients (49%), toxicity resolved during follow-up. Even though the IPSS data were prospectively obtained, most patients were not treated within a prospective protocol. CONCLUSIONS Late GU toxicity after high-dose IMRT was mild; severe, late GU toxicity was rare. Changes in IPSS sum and QoL index were dependent on the baseline GU function, which might be useful for future patient counseling.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
33 |
11
|
Dueck J, Knopf AC, Lomax A, Albertini F, Persson GF, Josipovic M, Aznar M, Weber DC, Munck af Rosenschöld P. Robustness of the Voluntary Breath-Hold Approach for the Treatment of Peripheral Lung Tumors Using Hypofractionated Pencil Beam Scanning Proton Therapy. Int J Radiat Oncol Biol Phys 2016; 95:534-541. [DOI: 10.1016/j.ijrobp.2015.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022]
|
|
9 |
30 |
12
|
Enger SA, Munck af Rosenschöld P, Rezaei A, Lundqvist H. Monte Carlo calculations of thermal neutron capture in gadolinium: A comparison of GEANT4
and MCNP
with measurements. Med Phys 2006; 33:337-41. [PMID: 16532938 DOI: 10.1118/1.2150787] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
GEANT4 is a Monte Carlo code originally implemented for high-energy physics applications and is well known for particle transport at high energies. The capacity of GEANT4 to simulate neutron transport in the thermal energy region is not equally well known. The aim of this article is to compare MCNP, a code commonly used in low energy neutron transport calculations and GEANT4 with experimental results and select the suitable code for gadolinium neutron capture applications. To account for the thermal neutron scattering from chemically bound atoms [S(alpha,beta)] in biological materials a comparison of thermal neutron fluence in tissue-like poly(methylmethacrylate) phantom is made with MCNP4B, GEANT4 6.0 patch1, and measurements from the neutron capture therapy (NCT) facility at the Studsvik, Sweden. The fluence measurements agreed with MCNP calculated results considering S(alpha,beta). The location of the thermal neutron peak calculated with MCNP without S(alpha,beta) and GEANT4 is shifted by about 0.5 cm towards a shallower depth and is 25%-30% lower in amplitude. Dose distribution from the gadolinium neutron capture reaction is then simulated by MCNP and compared with measured data. The simulations made by MCNP agree well with experimental results. As long as thermal neutron scattering from chemically bound atoms are not included in GEANT4 it is not suitable for NCT applications.
Collapse
|
|
19 |
29 |
13
|
Jølck RI, Rydhög JS, Christensen AN, Hansen AE, Bruun LM, Schaarup-Jensen H, von Wenck AS, Børresen B, Kristensen AT, Clausen MH, Kjaer A, Conradsen K, Larsen R, af Rosenschöld PM, Andresen TL. Injectable Colloidal Gold for Use in Intrafractional 2D Image-Guided Radiation Therapy. Adv Healthc Mater 2015; 4:856-63. [PMID: 25607532 DOI: 10.1002/adhm.201400651] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/03/2014] [Indexed: 11/11/2022]
Abstract
In the western world, approximately 50% of all cancer patients receive radiotherapy alone or in combination with surgery or chemotherapy. Image-guided radiotherapy (IGRT) has in recent years been introduced to enhance precision of the delivery of radiation dose to tumor tissue. Fiducial markers are often inserted inside the tumor to improve IGRT precision and to enable monitoring of the tumor position during radiation therapy. In the present article, a liquid fiducial tissue marker is presented, which can be injected into tumor tissue using thin and flexible needles. The liquid fiducial has high radio-opacity, which allows for marker-based image guidance in 2D and 3D X-ray imaging during radiation therapy. This is achieved by surface-engineering gold nanoparticles to be highly compatible with a carbohydrate-based gelation matrix. The new fiducial marker is investigated in mice where they are highly biocompatible and stable after implantation. To investigate the clinical potential, a study is conducted in a canine cancer patient with spontaneous developed solid tumor in which the marker is successfully injected and used to align and image-guide radiation treatment of the canine patient. It is concluded that the new fiducial marker has highly interesting properties that warrant investigations in cancer patients.
Collapse
|
|
10 |
27 |
14
|
Maraldo MV, Brodin P, Aznar MC, Vogelius IR, Munck af Rosenschöld P, Petersen PM, Specht L. Doses to carotid arteries after modern radiation therapy for Hodgkin lymphoma: is stroke still a late effect of treatment? Int J Radiat Oncol Biol Phys 2013; 87:297-303. [PMID: 23910709 DOI: 10.1016/j.ijrobp.2013.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/31/2013] [Accepted: 06/04/2013] [Indexed: 12/01/2022]
Abstract
PURPOSE Hodgkin lymphoma (HL) survivors are at an increased risk of stroke because of carotid artery irradiation. However, for early-stage HL involved node radiation therapy (INRT) reduces the volume of normal tissue exposed to high doses. Here, we evaluate 3-dimensional conformal radiation therapy (3D-CRT), volumetric-modulated arc therapy (VMAT), and proton therapy (PT) delivered as INRT along with the extensive mantle field (MF) by comparing doses to the carotid arteries and corresponding risk estimates. METHODS AND MATERIALS We included a cohort of 46 supradiaphragmatic stage I-II classical HL patients. All patients were initially treated with chemotherapy and INRT delivered as 3D-CRT (30 Gy). For each patient, we simulated MF (36 Gy) and INRT plans using VMAT and PT (30 Gy). Linear dose-response curves for the 20-, 25-, and 30-year risk of stroke were derived from published HL data. Risks of stroke with each technique were calculated for all patients. Statistical analyses were performed with repeated measures analysis of variance. RESULTS The mean doses to the right and left common carotid artery were significantly lower with modern treatment compared with MF, with substantial patient variability. The estimated excess risk of stroke after 20, 25, and 30 years was 0.6%, 0.86%, and 1.3% for 3D-CRT; 0.67%, 0.96%, and 1.47% for VMAT; 0.61%, 0.96%, and 1.33% for PT; and 1.3%, 1.72%, and 2.61% for MF. CONCLUSIONS INRT reduces the dose delivered to the carotid arteries and corresponding estimated risk of stroke for HL survivors. Even for the subset of patients with lymphoma close to the carotid arteries, the estimated risk is low.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
23 |
15
|
Agn M, Puonti O, Rosenschöld PMA, Law I, Van Leemput K. Brain Tumor Segmentation Using a Generative Model with an RBM Prior on Tumor Shape. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES 2016. [DOI: 10.1007/978-3-319-30858-6_15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
|
9 |
23 |
16
|
Scherman Rydhög J, Irming Jølck R, Andresen TL, Munck af Rosenschöld P. Quantification and comparison of visibility and image artifacts of a new liquid fiducial marker in a lung phantom for image-guided radiation therapy. Med Phys 2015; 42:2818-26. [DOI: 10.1118/1.4919616] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
|
10 |
23 |
17
|
Munck af Rosenschöld P, Nilsson P, Knöös T. Kilovoltage x-ray dosimetry--an experimental comparison between different dosimetry protocols. Phys Med Biol 2008; 53:4431-42. [PMID: 18670053 DOI: 10.1088/0031-9155/53/16/014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Kilovoltage dosimetry protocols by the IAEA (TRS-277 and TRS-398), DIN (6809), IPEMB (with addendum), AAPM (TG-61) and NCS (report 10) were compared experimentally in four clinical beams. The beams had acceleration potentials of 30, 80, 120 and 200 kV, with half-value layers ranging from 0.6 mm Al to 1 mm Cu. Dosimetric measurements were performed and data were collected under reference conditions as stipulated within each separate protocol under investigation. The Monte Carlo method was used to derive backscatter factors for the actual x-ray machine. In general, the agreement of the dosimetric data at the surface of a full-scatter water phantom obtained using the guidelines of the various protocols was fairly good, i.e. within 1-2%. However, the in-air calibration method using the IPEMB and AAPM TG-61 protocols yielded an absorbed dose about 7% lower than the IAEA TRS-398 protocol in the 120 kV beam. By replacing the backscatter factors given in the protocols with Monte Carlo calculated backscatter factors, the convergence between the protocols improved (within 4%). The internal consistency obtained for protocols supporting more than one geometry for dosimetry under reference conditions was better than 0.2% for the DIN protocol (120 kV beam), 2-3% for the AAPM TG-61 (120 and 200 kV beams) and about 2% for the IPEMB protocol (200 kV beam). The present study shows that the current-supported dosimetry protocols in the kilovoltage range were in fairly good agreement, and there were only a few exceptions of clinical significance.
Collapse
|
Journal Article |
17 |
20 |
18
|
Persson GF, Josipovic M, von der Recke P, Aznar MC, Juhler-Nøttrup T, Munck af Rosenschöld P, Korreman S, Specht L. Stability of percutaneously implanted markers for lung stereotactic radiotherapy. J Appl Clin Med Phys 2013; 14:187-95. [PMID: 24036871 PMCID: PMC5714566 DOI: 10.1120/jacmp.v14i5.4337] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 04/26/2013] [Accepted: 04/25/2013] [Indexed: 12/25/2022] Open
Abstract
The purpose of this study was to evaluate the stability of complex markers implanted into lung tumors throughout a course of stereotactic body radiotherapy (SBRT). Fifteen patients referred for lung SBRT were prospectively included. Radio‐opaque markers were implanted percutaneously, guided by computed tomography (CT). Deep inspiration breath‐hold CT scans (BHCT) were acquired at planning and on three treatment days. The treatment days' BHCTs were registered to the planning BHCT. Intraobserver uncertainty in both tumor and marker registration was determined. Deviations in the difference between tumor and marker‐based image registrations of the BHCT scans during treatment quantified the marker stability. Marker position deviation relative to tumor position of less than 2 mm in all three dimensions was considered acceptable for treatment delivery precision. Intra‐observer uncertainties for image registration in the left‐right (LR), anterior‐posterior (AP), craniocaudal (CC) directions and three‐dimensional vector (3D) were 0.9 mm, 0.9 mm, 1.0 mm, and 1.1 mm (SD) for tumor registration and 0.3 mm, 0. 5 mm, 0.7 mm, and 0.7 mm (SD) for marker registration. Mean 3D differences for tumor registrations on all days were significantly larger than for 3D marker registrations (p = 0.007). Overall median differences between tumor and marker position were 0.0 mm (range ‐2.9 to 2.6 mm) in LR, 0.0 mm (‐1.8 to 1.5 mm) in AP, and ‐0.2 mm (‐2.6 to 2.8 mm) in CC directions. Four patients had deviations exceeding 2 mm in one or more registrations throughout the SBRT course. This is the first study to evaluate stability of complex markers implanted percutaneously into lung tumors for image guidance in SBRT. We conclude that the observed stability of marker position within the tumor indicates that complex markers can be used as surrogates for tumor position during a short course of SBRT as long as the uncertainties related to their position within the tumor are incorporated into the planning target volume. PACS number: 87.57.nj, 87.55.ne
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
18 |
19
|
Astradsson A, Munck af Rosenschöld P, Feldt-Rasmussen U, Poulsgaard L, Wiencke AK, Ohlhues L, Engelholm SA, Broholm H, Hansen Møller E, Klose M, Roed H, Juhler M. Visual outcome, endocrine function and tumor control after fractionated stereotactic radiation therapy of craniopharyngiomas in adults: findings in a prospective cohort. Acta Oncol 2017; 56:415-421. [PMID: 28084862 DOI: 10.1080/0284186x.2016.1270466] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND The purpose of this study was to examine visual outcome, endocrine function and tumor control in a prospective cohort of craniopharyngioma patients, treated with fractionated stereotactic radiation therapy (FSRT). MATERIAL AND METHODS Sixteen adult patients with craniopharyngiomas were eligible for analysis. They were treated with linear accelerator-based FSRT during 1999-2015. In all cases, diagnosis was confirmed by histological analysis. The prescription dose to the tumor was 54 Gy (median, range 48-54) in 1.8 or 2.0 Gy per fraction, and the maximum radiation dose to the optic nerves and chiasm was 54.2 Gy (median, range 48.6-60.0) for the cohort. Serial ophthalmological and endocrine evaluations and magnetic resonance imaging (MRI) scans were performed at regular intervals. Median follow-up was 3.3 years (range 1.1-14.1), 3.7 years (range 0.8-15.2), and 3.6 years (range 0.7-13.1) for visual outcome, endocrine function, and tumor control, respectively. RESULTS Visual acuity impairment was present in 10 patients (62.5%) and visual field defects were present in 12 patients (75%) before FSRT. One patient developed radiation-induced optic neuropathy at seven years after FSRT. Thirteen of 16 patients (81.3%) had pituitary deficiency before FSRT, and did not develop further pituitary deficiency after FSRT. Mean tumor volume pre-FSRT was 2.72 cm3 (range 0.20-9.90) and post-FSRT 1.2 cm3 (range 0.00-13.10). Tumor control rate was 81.3% at two, five, and 10 years after FSRT. CONCLUSIONS FSRT was relatively safe in this prospective cohort of craniopharyngiomas, with only one case of radiation-induced optic neuropathy and no case of new endocrinopathy. Tumor control rate was acceptable.
Collapse
|
|
8 |
18 |
20
|
Falk M, Pommer T, Keall P, Korreman S, Persson G, Poulsen P, Munck af Rosenschöld P. Motion management during IMAT treatment of mobile lung tumors--a comparison of MLC tracking and gated delivery. Med Phys 2015; 41:101707. [PMID: 25281946 DOI: 10.1118/1.4896024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To compare real-time dynamic multileaf collimator (MLC) tracking, respiratory amplitude and phase gating, and no compensation for intrafraction motion management during intensity modulated arc therapy (IMAT). METHODS Motion management with MLC tracking and gating was evaluated for four lung cancer patients. The IMAT plans were delivered to a dosimetric phantom mounted onto a 3D motion phantom performing patient-specific lung tumor motion. The MLC tracking system was guided by an optical system that used stereoscopic infrared (IR) cameras and five spherical reflecting markers attached to the dosimetric phantom. The gated delivery used a duty cycle of 35% and collected position data using an IR camera and two reflecting markers attached to a marker block. RESULTS The average gamma index failure rate (2% and 2 mm criteria) was <0.01% with amplitude gating for all patients, and <0.1% with phase gating and <3.7% with MLC tracking for three of the four patients. One of the patients had an average failure rate of 15.1% with phase gating and 18.3% with MLC tracking. With no motion compensation, the average gamma index failure rate ranged from 7.1% to 46.9% for the different patients. Evaluation of the dosimetric error contributions showed that the gated delivery mainly had errors in target localization, while MLC tracking also had contributions from MLC leaf fitting and leaf adjustment. The average treatment time was about three times longer with gating compared to delivery with MLC tracking (that did not prolong the treatment time) or no motion compensation. For two of the patients, the different motion compensation techniques allowed for approximately the same margin reduction but for two of the patients, gating enabled a larger reduction of the margins than MLC tracking. CONCLUSIONS Both gating and MLC tracking reduced the effects of the target movements, although the gated delivery showed a better dosimetric accuracy and enabled a larger reduction of the margins in some cases. MLC tracking did not prolong the treatment time compared to delivery with no motion compensation while gating had a considerably longer delivery time. In a clinical setting, the optical monitoring of the patients breathing would have to be correlated to the internal movements of the tumor.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
18 |
21
|
Brodin NP, Vogelius IR, Björk-Eriksson T, Munck af Rosenschöld P, Maraldo MV, Aznar MC, Specht L, Bentzen SM. Optimizing the radiation therapy dose prescription for pediatric medulloblastoma: minimizing the life years lost attributable to failure to control the disease and late complication risk. Acta Oncol 2014; 53:462-70. [PMID: 24274390 DOI: 10.3109/0284186x.2013.858824] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND A mathematical framework is presented for simultaneously quantifying and evaluating the trade-off between tumor control and late complications for risk-based radiation therapy (RT) decision-support. To demonstrate this, we estimate life years lost (LYL) attributable to tumor recurrence, late cardiac toxicity and secondary cancers for standard-risk pediatric medulloblastoma (MB) patients and compare the effect of dose re-distribution on a common scale. METHODS Total LYL were derived, based on the LYL attributable to radiation-induced late complications and the LYL from not controlling the primary disease. We compared the estimated LYL for three different treatments in 10 patients: 1) standard 3D conformal RT; 2) proton therapy; 3) risk-adaptive photon treatment lowering the dose to part of the craniospinal (CS) target volume situated close to critical risk organs. RESULTS Late toxicity is important, with 0.75 LYL (95% CI 0.60-7.2 years) for standard uniform 24 Gy CS irradiation. However, recurrence risk dominates the total LYL with 14.2 years (95% CI 13.4-16.6 years). Compared to standard treatment, a risk-adapted strategy prescribing 12 Gy to the spinal volume encompassing the 1st-10th thoracic vertebrae (Th1-Th10), and 36 Gy to the remaining CS volume, estimated a LYL reduction of 0.90 years (95% CI -0.18-2.41 years). Proton therapy with 36 Gy to the whole CS volume was associated with significantly fewer LYL compared to the risk-adapted photon strategies, with a mean LYL difference of 0.50 years (95% CI 0.25-2.60 years). CONCLUSIONS Optimization of RT prescription strategies considering both late complications and the risk of recurrence, an all-cause mortality dose painting approach, was demonstrated. The risk-adapted techniques compared favorably to the standard, and although in this context, the gain is small compared to estimated uncertainty, this study demonstrates a framework for all-cause mortality risk estimation, rather than evaluates direct clinical applicability of risk-adapted strategies.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
17 |
22
|
Lempart M, Benedek H, Jamtheim Gustafsson C, Nilsson M, Eliasson N, Bäck S, Munck af Rosenschöld P, Olsson LE. Volumetric modulated arc therapy dose prediction and deliverable treatment plan generation for prostate cancer patients using a densely connected deep learning model. Phys Imaging Radiat Oncol 2021; 19:112-119. [PMID: 34401537 PMCID: PMC8353474 DOI: 10.1016/j.phro.2021.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Radiation therapy treatment planning is a manual, time-consuming task that might be accelerated using machine learning algorithms. In this study, we aimed to evaluate if a triplet-based deep learning model can predict volumetric modulated arc therapy (VMAT) dose distributions for prostate cancer patients. MATERIALS AND METHODS A modified U-Net was trained on triplets, a combination of three consecutive image slices and corresponding segmentations, from 160 patients, and compared to a baseline U-Net. Dose predictions from 17 test patients were transformed into deliverable treatment plans using a novel planning workflow. RESULTS The model achieved a mean absolute dose error of 1.3%, 1.9%, 1.0% and ≤ 2.6% for clinical target volume (CTV) CTV_D100%, planning target volume (PTV) PTV_D98%, PTV_D95% and organs at risk (OAR) respectively, when compared to the clinical ground truth (GT) dose distributions. All predicted distributions were successfully transformed into deliverable treatment plans and tested on a phantom, resulting in a passing rate of 100% (global gamma, 3%, 2 mm, 15% cutoff). The dose difference between deliverable treatment plans and GT dose distributions was within 4.4%. The difference between the baseline model and our improved model was statistically significant (p < 0.05) for CVT_D100%, PTV_D98% and PTV_D95%. CONCLUSION Triplet-based training improved VMAT dose distribution predictions when compared to 2D. Dose predictions were successfully transformed into deliverable treatment plans using our proposed treatment planning procedure. Our method may automate parts of the workflow for external beam prostate radiation therapy and improve the overall treatment speed and plan quality.
Collapse
|
research-article |
4 |
17 |
23
|
Børresen B, Arendt ML, Konradsson E, Bastholm Jensen K, Bäck SÅJ, Munck af Rosenschöld P, Ceberg C, Petersson K. Evaluation of single-fraction high dose FLASH radiotherapy in a cohort of canine oral cancer patients. Front Oncol 2023; 13:1256760. [PMID: 37766866 PMCID: PMC10520273 DOI: 10.3389/fonc.2023.1256760] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Background FLASH radiotherapy (RT) is a novel method for delivering ionizing radiation, which has been shown in preclinical studies to have a normal tissue sparing effect and to maintain anticancer efficacy as compared to conventional RT. Treatment of head and neck tumors with conventional RT is commonly associated with severe toxicity, hence the normal tissue sparing effect of FLASH RT potentially makes it especially advantageous for treating oral tumors. In this work, the objective was to study the adverse effects of dogs with spontaneous oral tumors treated with FLASH RT. Methods Privately-owned dogs with macroscopic malignant tumors of the oral cavity were treated with a single fraction of ≥30Gy electron FLASH RT and subsequently followed for 12 months. A modified conventional linear accelerator was used to deliver the FLASH RT. Results Eleven dogs were enrolled in this prospective study. High grade adverse effects were common, especially if bone was included in the treatment field. Four out of six dogs, who had bone in their treatment field and lived at least 5 months after RT, developed osteoradionecrosis at 3-12 months post treatment. The treatment was overall effective with 8/11 complete clinical responses and 3/11 partial responses. Conclusion This study shows that single-fraction high dose FLASH RT was generally effective in this mixed group of malignant oral tumors, but the risk of osteoradionecrosis is a serious clinical concern. It is possible that the risk of osteonecrosis can be mitigated through fractionation and improved dose conformity, which needs to be addressed before moving forward with clinical trials in human cancer patients.
Collapse
|
research-article |
2 |
15 |
24
|
Mason AJ, Giusti V, Green S, Munck af Rosenschöld P, Beynon TD, Hopewell JW. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure. Int J Radiat Biol 2011; 87:1162-72. [PMID: 21923301 DOI: 10.3109/09553002.2011.624154] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The relative biological effectiveness of two epithermal neutron sources, a reactor based source at Studsvik, Sweden, and a proton accelerator-based source in Birmingham, UK, was studied in relation to the proportional absorbed dose distribution as a function of neutron energy. Evidence for any interactions between the effects of biological damage induced by high- and low-linear energy transfer (LET) dose components, in this 'mixed field' irradiation, was also examined MATERIALS AND METHODS Clonogenic survival in Chinese Hamster-derived V79 cells was used to assess biological effectiveness in this study. Cells were irradiated in suspension at 4 °C at depths of 20, 35, 50 and 65 mm in a water phantom. This prevented the repair of sublethal damage, predominantly that produced by both incident and induced γ-rays in the field, over the variable periods of exposure required to irradiate cells with the same total absorbed dose. Cell survival, as a function of the absorbed radiation dose and depth in the phantom, was compared with Monte Carlo N-Particle (MCNP) calculations of the proportional absorbed dose distribution as a function of neutron energy for the two sources. RESULTS In terms of the dose-related reduction in clonogenic cell survival, the epithermal neutron source at Studsvik was more biologically effective than the Birmingham source at all depths considered in the phantom. Although the contribution from the high-LET dose component was greater for the Studsvik source at 20 mm depth in the phantom, at greater depths the dose contribution from the high-LET dose component at Studsvik overlap with those for the Birmingham source. However, the most striking difference is in the fast neutron component to the dose of the two sources, neutron energies>1 MeV were only associated with the Studsvik source. The relative biological effectiveness (RBE) of both sources declined slightly with depth in the phantom, as the total high-LET dose component declined. The maximum source RBE for Studsvik was 2.70±0.50 at 20 mm; reduced to 2.10±0.35 at depths of 50 and 65 mm. The corresponding values for Birmingham were 1.68±0.25 and 1.31±0.19, all values relate only to the surviving fraction of V79 cells at 37%, since RBE values are only applicable to the selected endpoint. Based on a dose reduction factor (DRF) of 1.0 for the total low-LET component to the absorbed dose, the RBE values for the high-LET dose component (fast neutrons and induced protons from the nitrogen capture reaction) was 14.5 and 7.05 for the Studsvik and Birmingham neutron sources, respectively. This is well outside the range of RBE historically reported values for V79 cells for the same level of cell survival for fast neutrons. The calculation of RBE values, based on the proportional absorbed dose distribution as a function of neutron energy, from historical data, and using a RBE of 1.8 for the dose from the nitrogen capture reaction, suggests RBE values for the total high-LET dose component of 3.1-2.8 and 2.5-2.0 for Studsvik and Birmingham, respectively, values again declining with depth in the phantom. CONCLUSIONS The overall biological effectiveness of the mixed field irradiation from an epithermal neutron sources depends on the composition and quality of the different dose components. The experimentally derived RBE values for the total high-LET dose components in these 'mixed field' irradiations are well in excess of historical data for fast neutrons. The difference between the historically expected and the observed RBE values is attributed to the interactions between the damage produced by high- and low-LET radiation.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
12 |
25
|
Knöös T, Rosenschöld PMA, Wieslander E. Modelling of an Orthovoltage X-ray Therapy Unit with the EGSnrc Monte Carlo Package. ACTA ACUST UNITED AC 2007. [DOI: 10.1088/1742-6596/74/1/021009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
|
18 |
10 |