1
|
Gyarmati P, Kjellander C, Aust C, Song Y, Öhrmalm L, Giske CG. Metagenomic analysis of bloodstream infections in patients with acute leukemia and therapy-induced neutropenia. Sci Rep 2016; 6:23532. [PMID: 26996149 PMCID: PMC4800731 DOI: 10.1038/srep23532] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/08/2016] [Indexed: 01/05/2023] Open
Abstract
Leukemic patients are often immunocompromised due to underlying conditions, comorbidities and the effects of chemotherapy, and thus at risk for developing systemic infections. Bloodstream infection (BSI) is a severe complication in neutropenic patients, and is associated with increased mortality. BSI is routinely diagnosed with blood culture, which only detects culturable pathogens. We analyzed 27 blood samples from 9 patients with acute leukemia and suspected BSI at different time points of their antimicrobial treatment using shotgun metagenomics sequencing in order to detect unculturable and non-bacterial pathogens. Our findings confirm the presence of bacterial, fungal and viral pathogens alongside antimicrobial resistance genes. Decreased white blood cell (WBC) counts were associated with the presence of microbial DNA, and was inversely proportional to the number of sequencing reads. This study could indicate the use of high-throughput sequencing for personalized antimicrobial treatments in BSIs.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
60 |
2
|
Zohari S, Gyarmati P, Thorén P, Czifra G, Bröjer C, Belák S, Berg M. Genetic characterization of the NS gene indicates co-circulation of two sub-lineages of highly pathogenic avian influenza virus of H5N1 subtype in Northern Europe in 2006. Virus Genes 2008; 36:117-25. [PMID: 18172752 DOI: 10.1007/s11262-007-0188-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 12/13/2007] [Indexed: 01/05/2023]
Abstract
The non-structural (NS) gene of highly pathogenic avian influenza viruses of the H5N1 subtype (HPAI-H5N1) isolated in Baltic Sea area of Sweden in 2006 was studied. The phylogenetic analysis data demonstrated that two distinct sub-lineages of HPAI-H5N1 were circulating during the outbreak in Northern Europe in Spring 2006. Sub-lineage I viruses fell into the same clade as viruses found in Denmark and Germany and formed a sub-clade which also included viruses isolated in the Russian Federation in late 2005. Sub-lineage II viruses formed a sub-clade closely related to European, Middle Eastern and African isolates reported in 2006. Analysis of the inferred amino acid sequences of the NS1 protein showed a deletion of five amino acids at positions 80-84. No viruses represented in this study contained Glu92 in the NS1 and all isolates contained the avian-like ESKV amino acid sequences at the NS1 C-terminal end. Sub-lineage I isolates contained unique substitutions V194I in NS1 and G63E in Nuclear export protein (NEP).
Collapse
|
|
17 |
33 |
3
|
Boychuk CR, Gyarmati P, Xu H, Smith BN. Glucose sensing by GABAergic neurons in the mouse nucleus tractus solitarii. J Neurophysiol 2015; 114:999-1007. [PMID: 26084907 DOI: 10.1152/jn.00310.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/15/2015] [Indexed: 12/23/2022] Open
Abstract
Changes in blood glucose concentration alter autonomic function in a manner consistent with altered neural activity in brain regions controlling digestive processes, including neurons in the brain stem nucleus tractus solitarii (NTS), which process viscerosensory information. With whole cell or on-cell patch-clamp recordings, responses to elevating glucose concentration from 2.5 to 15 mM were assessed in identified GABAergic NTS neurons in slices from transgenic mice that express EGFP in a subset of GABA neurons. Single-cell real-time RT-PCR was also performed to detect glutamic acid decarboxylase (GAD67) in recorded neurons. In most identified GABA neurons (73%), elevating glucose concentration from 2.5 to 15 mM resulted in either increased (40%) or decreased (33%) neuronal excitability, reflected by altered membrane potential and/or action potential firing. Effects on membrane potential were maintained when action potentials or fast synaptic inputs were blocked, suggesting direct glucose sensing by GABA neurons. Glucose-inhibited GABA neurons were found predominantly in the lateral NTS, whereas glucose-excited cells were mainly in the medial NTS, suggesting regional segregation of responses. Responses were prevented in the presence of glucosamine, a glucokinase (GCK) inhibitor. Depolarizing responses were prevented when KATP channel activity was blocked with tolbutamide. Whereas effects on synaptic input to identified GABAergic neurons were variable in GABA neurons, elevating glucose increased glutamate release subsequent to stimulation of tractus solitarius in unlabeled, unidentified neurons. These results indicate that GABAergic NTS neurons act as GCK-dependent glucose sensors in the vagal complex, providing a means of modulating central autonomic signals when glucose is elevated.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
31 |
4
|
Halmos KC, Gyarmati P, Xu H, Maimaiti S, Jancsó G, Benedek G, Smith BN. Molecular and functional changes in glucokinase expression in the brainstem dorsal vagal complex in a murine model of type 1 diabetes. Neuroscience 2015; 306:115-22. [PMID: 26297899 PMCID: PMC4575893 DOI: 10.1016/j.neuroscience.2015.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/24/2015] [Accepted: 08/12/2015] [Indexed: 11/27/2022]
Abstract
Glucose concentration changes in the nucleus tractus solitarius (NTS) affect visceral function and metabolism by influencing central vagal circuits, especially inhibitory, GABAergic NTS neurons. Acutely elevated glucose can alter NTS neuron activity, and prolonged hyperglycemia and hypoinsulemia in animal models of type 1 diabetes results in plasticity of neural responses in the NTS. NTS neurons contributing to metabolic regulation therefore act as central glucose sensors and are functionally altered in type 1 diabetes. Glucokinase (GCK) mediates cellular utilization of glucose, linking increased glucose concentration to excitability changes mediated by ATP-sensitive K(+) channels (KATP). Using quantitative reverse transcriptase-polymerase chain reaction (RT-PCR), Western blot, and in vitro electrophysiology, we tested the hypothesis that changes in GCK expression in the NTS accompany the development of diabetes symptoms in the streptozotocin (STZ)-treated mouse model of type 1 diabetes. After several days of hyperglycemia in STZ-treated mice, RNA expression of GCK, but not Kir6.2 or SUR1, was decreased versus controls in the dorsal vagal complex. Electrophysiological recordings in vitro indicated that neural responses to acute hyperglycemia, and synaptic responsiveness to blockade of GCK with glucosamine, were attenuated in GABAergic NTS neurons from STZ-treated mice, consistent with reduced molecular and functional expression of GCK in the vagal complex of hyperglycemic, STZ-treated mice. Altered autonomic responses to glucose in type 1 diabetes may therefore involve reduced functional GCK expression in the dorsal vagal complex.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
18 |
5
|
Yacoub A, Kiss I, Zohari S, Hakhverdyan M, Czifra G, Mohamed N, Gyarmati P, Blomberg J, Belák S. The rapid molecular subtyping and pathotyping of avian influenza viruses. J Virol Methods 2008; 156:157-61. [PMID: 19026689 DOI: 10.1016/j.jviromet.2008.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 10/03/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
Abstract
Highly conserved nucleotide stretches flanking the cleavage site of the haemagglutinin (HA) gene of influenza type A viruses were utilised for generating PCR amplicons from a broad range of avian influenza viruses (AIV) in a one-step real-time SYBR Green RT-PCR assay. The nucleotide sequencing of the amplified PCR products simultaneously reveals both the HA subtype and the pathotype of the AIV isolates, as we demonstrated in case of H5 subtype viruses. The specificity of the assay was confirmed by investigating 66 strains of AIV and nine heterologous pathogens, including influenza B, C and various avian pathogenic viruses. This assay enables a general HA subtype identification and pathotype determination of AIV isolates providing a useful alternative tool for avian influenza diagnosis.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
12 |
6
|
Song Y, Gyarmati P. Microbiota changes in a pediatric acute lymphocytic leukemia mouse model. Microbiologyopen 2019; 9:e982. [PMID: 31884727 PMCID: PMC7066458 DOI: 10.1002/mbo3.982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 01/01/2023] Open
Abstract
Hematological malignancies are the most common type of pediatric cancers, and acute lymphocytic leukemia (ALL) is the most frequently occurring hematological malignancy during childhood. A major cause of mortality in leukemia is bloodstream infection (BSI). The aim of the current study was to explore the gut microbiota in ALL and its potential functional alterations. High-throughput sequencing was used to characterize the bacterial and fungal microbiota in feces and their predicted functional characteristics in a xenotransplant pediatric ALL mouse model. Our work shows that gut microbiota significantly changes in leukemia, which may result in functional alterations. This study may provide potential therapeutic or preventive strategies of BSI in ALL.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
9 |
7
|
Song Y, Giske CG, Gille-Johnson P, Emanuelsson O, Lundeberg J, Gyarmati P. Nuclease-assisted suppression of human DNA background in sepsis. PLoS One 2014; 9:e103610. [PMID: 25076135 PMCID: PMC4116218 DOI: 10.1371/journal.pone.0103610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/29/2014] [Indexed: 11/18/2022] Open
Abstract
Sepsis is a severe medical condition characterized by a systemic inflammatory response of the body caused by pathogenic microorganisms in the bloodstream. Blood or plasma is typically used for diagnosis, both containing large amount of human DNA, greatly exceeding the DNA of microbial origin. In order to enrich bacterial DNA, we applied the C0t effect to reduce human DNA background: a model system was set up with human and Escherichia coli (E. coli) DNA to mimic the conditions of bloodstream infections; and this system was adapted to plasma and blood samples from septic patients. As a consequence of the C0t effect, abundant DNA hybridizes faster than rare DNA. Following denaturation and re-hybridization, the amount of abundant DNA can be decreased with the application of double strand specific nucleases, leaving the non-hybridized rare DNA intact. Our experiments show that human DNA concentration can be reduced approximately 100,000-fold without affecting the E. coli DNA concentration in a model system with similarly sized amplicons. With clinical samples, the human DNA background was decreased 100-fold, as bacterial genomes are approximately 1,000-fold smaller compared to the human genome. According to our results, background suppression can be a valuable tool to enrich rare DNA in clinical samples where a high amount of background DNA can be found.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
8 |
8
|
Song Y, Gyarmati P. Optimized detection of bacteria in bloodstream infections. PLoS One 2019; 14:e0219086. [PMID: 31242256 PMCID: PMC6594679 DOI: 10.1371/journal.pone.0219086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/15/2019] [Indexed: 11/19/2022] Open
Abstract
Bloodstream infection (BSI) is a life-threatening condition characterized by the presence of pathogens in the blood. It is associated with increased morbidity and mortality, and has to be treated promptly as mortality increases with every hour of delayed treatment. Therefore, rapid and sensitive diagnosis of BSI is essential. The routine diagnostic method for BSI is blood culture, which can only detect culturable pathogens and takes several days to obtain results. The 16S rRNA gene is present in all bacteria and is commonly used as a target for universal bacterial detection in rapid molecular assays such as PCR. However, molecular detection of the 16S gene is hampered by the large amount of human DNA found in blood samples, making diagnostic results aspecific and less sensitive. We have optimized the selection of PCR primers targeting the 16S rRNA gene to avoid cross-reaction with human DNA background. The developed method increases specificity and sensitivity for pathogen diagnosis, and provides rapid and accurate pathogen detection for rare bacterial DNA in the presence of abundant host DNA.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
6 |
9
|
Song Y, Gyarmati P. Rapid DNA detection using filter paper. N Biotechnol 2019; 55:77-83. [PMID: 31622785 DOI: 10.1016/j.nbt.2019.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 09/07/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
Point-of-care (POC) detection is crucial in clinical diagnosis in order to provide timely and specific treatment. Combining polyamidoamine (PAMAM) dendrimer, p-phenylene diisothiocyanate (PDITC) and superparamagnetic beads, a novel method to activate the surface of filter paper to bind DNA molecules has been developed. The method is based on the primary amination of the filter paper surface with PAMAM dendrimer, followed by generation of isothiocyanate groups via PDITC, and subsequent repetition of these two steps. Different parameters of the process have been optimized, including probe printing, preparation of target DNAs and detection. The result shows that, due to the highly porous structure of filter paper, high amounts of printed probes, target DNAs and magnetic beads can provide high signal intensities in the detection area via probe/target duplex formation. This method is suitable for rapid, specific and cost-efficient DNA detection on cellulose filter paper. It can be used as a POC device, in particular for diagnosis and treatment management of infectious diseases and identification of antimicrobial drug resistance genes.
Collapse
|
Journal Article |
6 |
6 |
10
|
Gyarmati P, Song Y, Dotimas J, Yoshiba G, Christison A. Cross-sectional comparisons of gut microbiome and short-chain fatty acid levels among children with varied weight classifications. Pediatr Obes 2021; 16:e12750. [PMID: 33174684 DOI: 10.1111/ijpo.12750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Limited studies associate changes in microbiota composition and metabolites among children and adolescents with obesity. Decreases in compositional diversity, increases in the proportion of Firmicutes and Bacteroidetes (F/B ratio) and increases in short-chain fatty acids (SCFAs) have been proposed as contributing factors in the pathophysiology of obesity. OBJECTIVES The aim of the current study was to characterize the faecal microbiota composition, diversity, F/B ratio and SCFA levels in different weight categories (lean, overweight, obesity classes 1-3) of children ages 5 to 12 years. METHODS We collected and processed 83 samples from different weight categories (27.7% lean, 11% overweight, 15%, 17% and 17% of obesity classes 1, 2, and 3, respectively). Microbiota content was determined by sequencing the V4 region of the 16S rRNA gene, and SCFA content was analyzed. RESULTS Microbiota compositions showed no significant differences in diversity or F/B ratios between weight categories. However, a relative abundance of Proteobacteria and lack of Verrucomicrobia were demonstrated when comparing severe obesity to the leaner groups. Faecal butyrate, propionate and isopentanoate concentrations increased progressively with weight category demonstrating significance in the class 3 obesity group. CONCLUSIONS Our results show that severe childhood obesity in our study population was associated with changes in gut microbiome composition correlated to previously reported cardiometabolic disease states in obesity. Increased SCFA levels correlate with obesity-related microbiome metabolic function without a reduction in diversity characterized at a phyla level. Further characterization of these specimens at a species level and longitudinal studies are needed to elucidate these relationships.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
6 |
11
|
Song Y, Gyarmati P. Bacterial translocation in acute lymphocytic leukemia. PLoS One 2019; 14:e0214526. [PMID: 30934014 PMCID: PMC6443231 DOI: 10.1371/journal.pone.0214526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
Bloodstream infection (BSI) is the major cause of mortality in acute lymphocytic leukemia (ALL). Causative pathogens in BSI originate from the gut microbiota due to an increase in intestinal permeability, a process known as bacterial translocation (BT). The gut microbiota in physiological conditions is controlled by a large number of immune cells as part of the gut-associated lymphoid tissue (GALT).The aim of the current study was to investigate the mechanism of bacterial translocation in leukemia by identifying and characterizing alterations in the GALT in leukemic mouse model. Our studies revealed a severe impairment of the GALT characterized by a loss of lymphatic cells in ALL, which eventually led to BSI. We identified differentially expressed genes in the intraepithelium and the lamina propria, which may contribute to BT and to the impairment of lymphocyte migration.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
6 |
12
|
Song Y, Neff M, Gyarmati P. Challenges and advances in the diagnosis of bloodstream infection. Future Microbiol 2022; 17:311-314. [PMID: 35172600 DOI: 10.2217/fmb-2021-0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
Editorial |
3 |
|
13
|
Song Y, Gyarmati P. Potential role of short-chain fatty acids in the pathogenesis and management of acute lymphocytic leukemia. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:74. [PMID: 39118956 PMCID: PMC11304434 DOI: 10.21037/atm-23-1806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/06/2023] [Indexed: 08/10/2024]
Abstract
Acute lymphocytic leukemia (ALL) is an aggressive hematological malignancy of highly proliferative lymphoblasts. ALL is the most common cancer in children, and is typically treated with combination chemotherapy. The 5-year survival of ALL improved significantly in recent decades with this treatment approach. However, certain age groups (below 2 and over 10 years of age) have much worse prognosis, and over 50% of patients with ALL experience long-term side effects proportional to the dosage of anticancer drugs. Therefore, different treatment strategies are required to improve survival in ALL and to reduce side effects of chemotherapy. Since epigenetic modifications are dominantly reversible, "epidrugs" (drugs targeting epigenetic markers) are considered for feasibility in the treatment of ALL as epigenetic modifications, and acetylation of histones was demonstrated to play a critical role in the pathogenesis of ALL. Histone deacetylases (HDACs) have been shown to be differentially expressed in several hematological malignancies, including ALL. HDAC inhibitors (HDACis) have been shown to express selective toxicity for ALL cells, but they showed limited efficacy and higher than expected toxicity in mouse models or clinical trials in ALL. The aim of this review is to examine the role of the microbiota and microbial metabolites in the mechanisms of HDAC functions, and explore the utilization of the microbiota and microbial metabolites in improving the efficacy of HDACi in ALL. HDAC regulators and natural HDACi are depleted in ALL due to microbiota change leading to a decrease in butyrate and propionate, and HDACi treatment is not effective in ALL due to their short half-life. We propose that HDACi released by the microbiota may be necessary in HDAC regulation and this process is impaired in ALL. Furthermore, the review will also consider the role of restoration of the microbiota or supplementation of natural HDACi in potentially restoring HDAC and HDACi functions.
Collapse
|
Review |
1 |
|
14
|
Challa SR, Fornal CA, Wang BC, Boyineni J, DeVera RE, Unnam P, Song Y, Soares MB, Malchenko S, Gyarmati P, Veeravalli KK. The Impact of Social Isolation and Environmental Deprivation on Blood Pressure and Depression-Like Behavior in Young Male and Female Mice. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2023; 7:24705470231207010. [PMID: 37859939 PMCID: PMC10583512 DOI: 10.1177/24705470231207010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023]
Abstract
Background: Social isolation (SI) and loneliness are major adult and adolescent health concerns, particularly in the coronavirus disease 2019 (COVID-19) era. Recent prospective cohort studies indicate that older women who experienced both SI and loneliness had a significantly higher risk of cardiovascular disease (CVD). Hypertension, a well-established risk factor for CVD, is more prevalent in elderly women than men. Furthermore, a lack of social relationships is strongly associated with an increased risk of hypertension in middle-aged and elderly women compared to men. Although this has not been extensively studied, adolescents and young adults who experience loneliness or SI may also be at risk for CVD and depression. The purpose of this study was to examine the effect of SI on blood pressure and depression-like behavior in young male and female mice. Methods: Weaned C57BL/6 mice were randomly assigned (n = 6/group/sex) to either group housing (GH) or SI. Animals in the SI group were housed in individual cages for 8 weeks with no view of other animals. The cages were kept in ventilated racks to prevent pheromone exposure and socially isolated animals had no cage enrichment. Results: SI increased systolic, diastolic, and mean arterial blood pressure in females and elevated heart rate in both sexes. Body weight gain was dramatically increased in socially isolated females but tended to decrease in socially isolated males. In the forced swim test, which detects depression-like behavior, there was no difference between groups in total immobility time. The latency to immobility, however, was significantly decreased in socially isolated females. Serum concentrations of corticosterone and metanephrine did not differ between socially isolated and group-housed females, but corticosterone levels were significantly reduced in socially isolated males. Conclusions: Our results indicate that 8 weeks of SI leads to significant changes in blood pressure and heart rate and mild changes in depression-like behavior in young mice, with females affected more than males.
Collapse
|
research-article |
2 |
|