1
|
Boogaard PJ, van Sittert NJ. Biological monitoring of exposure to benzene: a comparison between S-phenylmercapturic acid, trans,trans-muconic acid, and phenol. Occup Environ Med 1995; 52:611-20. [PMID: 7550802 PMCID: PMC1128315 DOI: 10.1136/oem.52.9.611] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Comparison of the suitability of two minor urinary metabolites of benzene, trans,trans-muconic acid (tt-MA) and S-phenylmercapturic acid (S-PMA), as biomarkers for low levels of benzene exposure. METHODS The sensitivity of analytical methods of measuring tt-MA and S-PMA were improved and applied to 434 urine samples collected from 188 workers in 12 studies in different petrochemical industries and from 52 control workers with no occupational exposure to benzene. In nine studies airborne benzene concentrations were assessed by personal air monitoring. RESULTS Strong correlations were found between tt-MA and S-PMA concentrations in samples from the end of the shift and between either of these variables and airborne benzene concentrations. It was calculated that exposure to 1 ppm (8 hour time weighted average (TWA)) benzene leads to an average concentration of 1.7 mg tt-MA and 47 micrograms S-PMA/g creatinine in samples from the end of the shift. It was estimated that, on average, 3.9% (range 1.9%-7.3%) of an inhaled dose of benzene was excreted as tt-MA with an apparent elimination half life of 5.0 (SD 2.3) hours and 0.11% (range 0.05%-0.26%) as S-PMA with a half life of 9.1 (SD 3.7) hours. The mean urinary S-PMA in 14 moderate smokers and 38 non-smokers was 3.61 and 1.99 micrograms/g creatinine, respectively and the mean urinary tt-MA was 0.058 and 0.037 mg/g creatinine, respectively. S-PMA proved to be more specific and more sensitive (P = 0.030, Fisher's exact test) than tt-MA. S-PMA, but not tt-MA, was always detectable in the urine of smokers who were not occupationally exposed. S-PMA was also detectable in 20 of the 38 non-smokers from the control group whereas tt-MA was detectable in only nine of these samples. The inferior specificity of tt-MA is due to relatively high background values (up to 0.71 mg/g creatinine in this study) that may be found in non-occupationally exposed people. CONCLUSIONS Although both tt-MA and S-PMA are sensitive biomarkers, only S-PMA allows reliable determination of benzene exposures down to 0.3 ppm (8 h TWA) due to its superior specificity. Because it has a longer elimination half life S-PMA is also a more reliable biomarker than tt-MA for benzene exposures during 12 hour shifts. For biological monitoring of exposure to benzene concentrations higher than 1 ppm (8 h TWA) tt-MA is also suitable and may even be preferred due to its greater ease of measurement.
Collapse
|
research-article |
30 |
122 |
2
|
Arnold SM, Angerer J, Boogaard PJ, Hughes MF, O'Lone RB, Robison SH, Schnatter AR. The use of biomonitoring data in exposure and human health risk assessment: benzene case study. Crit Rev Toxicol 2013; 43:119-53. [PMID: 23346981 PMCID: PMC3585443 DOI: 10.3109/10408444.2012.756455] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 11/30/2012] [Accepted: 12/04/2012] [Indexed: 01/08/2023]
Abstract
Abstract A framework of "Common Criteria" (i.e. a series of questions) has been developed to inform the use and evaluation of biomonitoring data in the context of human exposure and risk assessment. The data-rich chemical benzene was selected for use in a case study to assess whether refinement of the Common Criteria framework was necessary, and to gain additional perspective on approaches for integrating biomonitoring data into a risk-based context. The available data for benzene satisfied most of the Common Criteria and allowed for a risk-based evaluation of the benzene biomonitoring data. In general, biomarker (blood benzene, urinary benzene and urinary S-phenylmercapturic acid) central tendency (i.e. mean, median and geometric mean) concentrations for non-smokers are at or below the predicted blood or urine concentrations that would correspond to exposure at the US Environmental Protection Agency reference concentration (30 µg/m(3)), but greater than blood or urine concentrations relating to the air concentration at the 1 × 10(-5) excess cancer risk (2.9 µg/m(3)). Smokers clearly have higher levels of benzene exposure, and biomarker levels of benzene for non-smokers are generally consistent with ambient air monitoring results. While some biomarkers of benzene are specific indicators of exposure, the interpretation of benzene biomonitoring levels in a health-risk context are complicated by issues associated with short half-lives and gaps in knowledge regarding the relationship between the biomarkers and subsequent toxic effects.
Collapse
|
Review |
12 |
84 |
3
|
Boogaard PJ, van Sittert NJ. Exposure to polycyclic aromatic hydrocarbons in petrochemical industries by measurement of urinary 1-hydroxypyrene. Occup Environ Med 1994; 51:250-8. [PMID: 8199667 PMCID: PMC1127956 DOI: 10.1136/oem.51.4.250] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Biological monitoring of exposure of workers to polycyclic aromatic hydrocarbons (PAHs) in petrochemical industries was performed by the measurement of urinary excretion of 1-hydroxypyrene. In 121 of the 462 workers studied (both smokers and non-smokers) who had had no recent occupational exposure to PAHs a median 1-hydroxypyrene concentration of 0.21 micrograms/g creatinine was found. The upper limit of the 95% confidence interval in these workers of 0.99 micrograms/g creatinine was used as the upper normal value for industrial workers. Urinary 1-hydroxypyrene concentrations were measured in workers involved in manufacture and maintenance operations in oil refineries (13 studies in eight different settings), in workers manufacturing or handling products containing PAHs in chemical plants (five studies in three settings) and laboratories (four studies), and in workers digging soil contaminated with PAHs (three studies). In most studies in oil refineries 1-hydroxypyrene concentrations were only marginally greater than the values measured in the 121 workers with no recent occupational exposure to PAHs. This was also the case in maintenance operations with higher potential exposure to PAHs, indicating that personal protection equipment was generally adequate to prevent excessive exposure. The studies in chemical plants also showed that exposure to PAHs is low. An exception was the workers engaged in the production of needle coke from ethylene cracker residue, where increased urinary 1-hydroxypyrene concentrations were measured. The excretion of 1-hydroxypyrene by the operators and maintenance workers of this plant was investigated in relation to potential methods of exposure to PAHs. Dermal and inhalatory exposure were both significant determinants of exposure to PAHs.
Collapse
|
research-article |
31 |
72 |
4
|
Himmelstein MW, Boogaard PJ, Cadet J, Farmer PB, Kim JH, Martin EA, Persaud R, Shuker DEG. Creating context for the use of DNA adduct data in cancer risk assessment: II. Overview of methods of identification and quantitation of DNA damage. Crit Rev Toxicol 2010; 39:679-94. [PMID: 19743945 DOI: 10.1080/10408440903164163] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The formation of deoxyribonucleic acid (DNA) adducts can have important and adverse consequences for cellular and whole organism function. Available methods for identification of DNA damage and quantification of adducts are reviewed. Analyses can be performed on various samples including tissues, isolated cells, and intact or hydrolyzed (digested) DNA from a variety of biological samples of interest for monitoring in humans. Sensitivity and specificity are considered key factors for selecting the type of method for assessing DNA perturbation. The amount of DNA needed for analysis is dependent upon the method and ranges widely, from <1 microg to 3 mg. The methods discussed include the Comet assay, the ligation-mediated polymerase reaction, histochemical and immunologic methods, radiolabeled ((14)C- and (3)H-) binding, (32)P-postlabeling, and methods dependent on gas chromatography (GC) or high-performance liquid chromatography (HPLC) with detection by electron capture, electrochemical detection, single or tandem mass spectrometry, or accelerator mass spectrometry. Sensitivity is ranked, and ranges from approximately 1 adduct in 10(4) to 10(12) nucleotides. A brief overview of oxidatively generated DNA damage is also presented. Assay limitations are discussed along with issues that may have impact on the reliability of results, such as sample collection, processing, and storage. Although certain methodologies are mature, improving technology will continue to enhance the specificity and sensitivity of adduct analysis. Because limited guidance and recommendations exist for adduct analysis, this effort supports the HESI Committee goal of developing a framework for use of DNA adduct data in risk assessment.
Collapse
|
Review |
15 |
68 |
5
|
van Sittert NJ, Megens HJ, Watson WP, Boogaard PJ. Biomarkers of exposure to 1,3-butadiene as a basis for cancer risk assessment. Toxicol Sci 2000; 56:189-202. [PMID: 10869468 DOI: 10.1093/toxsci/56.1.189] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
1,3-Butadiene (BD) is carcinogenic in mice and rats, with mice being considerably more sensitive than rats. Urine metabolites are 1, 2-dihydroxybutyl mercapturic acid (DHBMA) and a mixture of monohydroxy-3-butenyl mercapturic acids (MHBMA). The reactive metabolite 1,2-epoxy-3-butene forms 1- and 2-hydroxy-3-butenyl valine adducts in hemoglobin (MHBVal). The objectives of the study were (1) to compare the suitability of MHBMA, DHBMA, and MHBVal as biomarkers for low levels of exposure to BD, and (2) to explore relative pathways of metabolism of BD in humans for comparison with mice and rats, which is important in relation to cancer risk assessment in man. Analytical methods of measuring MHBMA, DHBMA, and MHBVal were modified and applied in 2 studies to workers engaged in the manufacture and use of BD. Airborne BD concentrations were assessed by personal air monitoring. MHBMA in urine was more sensitive for monitoring recent exposures to BD when compared to DHBMA and could measure 8-h time weighted average exposures as low as 0.13 ppm. Relatively high natural background levels in urine restricted the sensitivity of DHBMA. The origin of this background is currently unknown. The measurement of MHBVal adducts in hemoglobin was a sensitive method for monitoring cumulative exposures to BD at or above 0.35 ppm. Statistically significant relationships were found between urinary MHBMA and DHBMA concentrations, between either of these variables and 8-h airborne BD levels and between MHBVal adducts and average airborne BD levels over 60 days. The data on biomarkers demonstrated a much higher rate of hydrolytic metabolism of 1,2-epoxy-3-butene in humans compared to mice and rats, which was reflected in a much higher DHBMA/(DHBMA + MHBMA) ratio and in much lower levels of MHBVal in humans. Assuming a genotoxic mechanism, the data of this study, coupled with other published data on DNA and hemoglobin binding in mice and rats, suggest that the cancer risk for man from exposure to BD is expected to be less than for the rat and much less than for the mouse.
Collapse
|
Comparative Study |
25 |
67 |
6
|
Boogaard PJ, Bond JA. The role of hydrolysis in the detoxification of 1,2:3,4-diepoxybutane by human, rat, and mouse liver and lung in vitro. Toxicol Appl Pharmacol 1996; 141:617-27. [PMID: 8975787 DOI: 10.1006/taap.1996.0328] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1,2:3,4-Diepoxybutane (BDE) is probably the ultimate genotoxic metabolite of the rodent carcinogen 1,3-butadiene (BD). The formation of BDE from BD has been characterized in vitro using tissues from rats, mice, and humans. For assessment of human risk following exposure to BD, a quantitative understanding between the balance of formation and inactivation of BDE is essential. BDE can be removed by glutathione (GSH) conjugation and by hydrolysis. Recently, significant species differences were reported in GSH conjugation of BDE in vitro, with rats being more efficient than humans and mice being much more efficient than either rats or humans (Boogaard et al., Toxicol. Appl. Pharmacol. 136, 307, 1996). In the present study the microsomal hydrolysis of BDE was quantified using tissues of rats, mice, and humans. Hydrolysis of BDE was well described by Michaelis-Menten kinetics. Two metabolites, erythritol and anhydroerythritol, were identified following incubation of BDE with human microsomes, but these metabolites did not fully account for the disappearance of BDE, suggesting that there may be other as yet unidentified routes of metabolism. In contrast to GSH conjugation, which was most efficient in mice compared with rats or humans, the efficiency of hydrolysis as expressed by Vmax/Km was much lower in mouse (3.93 microl/min/mg protein) than in rat (19.2) or human (32.5) liver. Pulmonary hydrolysis was also most efficient in humans, with average Vmax/Km values of 7.7, 6.7, and 2.7 microl/min/mg protein for humans, mice, and rats, respectively. However, the interindividual variation among the human samples was considerable with individual Vmax/Km values varying from 17.9 to 49.5 microl/min/mg protein for liver and from 4.57 to 16.2 microl/min/mg protein for lung tissue. This means that the heterogeneity among humans in the formation as well as in the removal of BDE will be an important factor in human risk assessment. The present data, coupled with earlier studies on formation and removal of BDE and the observation that GSH conjugation of BDE is a potentially mutagenic pathway, explain the high susceptibility of mice to BD-induced carcinogenesis.
Collapse
|
|
29 |
61 |
7
|
Albertini RJ, Sram RJ, Vacek PM, Lynch J, Wright M, Nicklas JA, Boogaard PJ, Henderson RF, Swenberg JA, Tates AD, Ward JB. Biomarkers for assessing occupational exposures to 1,3-butadiene. Chem Biol Interact 2001; 135-136:429-53. [PMID: 11397405 DOI: 10.1016/s0009-2797(01)00181-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The overall objective of this study was to evaluate a continuum of biomarkers in blood and urine for their sensitivities as indicators of low level occupational exposures to 1,3 butadiene (BD). The study design was largely cross-sectional, with biological samples collected within a short timeframe. Personal 8-h BD exposure measures were made on several occasions over a 60-day period for each potentially exposed worker in order provide maximum accuracy for this independent variable and to accommodate the different expression intervals of the several biomarkers. Co-exposures to styrene, toluene and benzene were also measured. The study included 24 BD monomer production workers (mean BD exposure=0.642 mg/m(3)), 34 polymerization workers (mean BD exposure=1.794 mg/m(3)) and 25 controls (mean BD exposure=0.023 mg/m(3)). The several biomarkers were measured by a consortium of investigators at different locations in the US and Europe. These biomarkers included: (1) metabolic genotypes (CYP2E1, EH, GST M1, GST T1, ADH2, ADH3), determined in Prague and Burlington, VT; (2) urinary M1 and M2 metabolites (1,2-dihydroxy-4-[N-acetylcysteinyl]-butane and 1-hydroxy-2-[N-acetylcysteinyl]-3-butene, respectively), determined in Albuquerque, NM and Leiden; (3) hemoglobin adducts (N-[2-dihydroxy-3-butenyl]valine=HBVal and N-[2,3,4-trihydroxybutyl]valine=THBVal), determined in Amsterdam and Chapel Hill, NC, respectively; (4) HPRT mutations determined by autoradiographic assay in Galveston, TX, with slides re-read in Burlington, VT; (6) hypoxanthine-guanine phosphoribosyltransferase (HPRT) mutations determined by cloning assay in Leiden with mutational spectra characterized in Burlington, VT; (7) sister chromatid exchanges and chromosome aberrations determined by standard methods and FISH analysis in Prague. Urinary M1 and M2 metabolites and HBVal and THBVal hemoglobin adducts were all significantly correlated with BD exposure levels, with adducts being the most highly associated. No significant relationships were observed between BD exposures and HPRT mutations or any of the cytogenetic endpoints, regardless of method of assay.
Collapse
|
|
24 |
59 |
8
|
Boogaard PJ, van Sittert NJ. Suitability of S-phenyl mercapturic acid and trans-trans-muconic acid as biomarkers for exposure to low concentrations of benzene. ENVIRONMENTAL HEALTH PERSPECTIVES 1996; 104 Suppl 6:1151-1157. [PMID: 9118886 PMCID: PMC1469762 DOI: 10.1289/ehp.961041151] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Phenol is not reliable as a biomarker for exposure to benzene at concentrations below 5 ppm (8-hr time-weighted average [TWA]). S-Phenylmercapturic acid (S-PMA) and trans-trans-muconic acid (tt-MA), two minor urinary metabolites of benzene, have been proposed as biomarkers for low-level exposures. The aim of this study was to compare their suitability as biomarkers. S-PMA and tt-MA were determined in 434 urine samples collected from 188 workers in various settings in the petrochemical industry and from 52 control workers with no occupational exposure to benzene. Benzene concentrations in the breathing zone of the potentially exposed workers were assessed by personal air monitoring. Strong correlations were found between S-PMA and tt-MA concentrations in end-of-shift samples and between either of these parameters and airborne benzene concentrations. Exposure to 1 ppm benzene (8-hr TWA) leads to an average concentration in end-of-shift samples of 21 mol S-PMA and 1.5 mmol tt-MA per mol creatinine. Of an inhaled dose of benzene, on average 0.11% (range 0.05-0.26%) was excreted as S-PMA with an apparent elimination half-life of 9.1 (standard error [SE] 0.7) hr and 3.9% (range 1.9-7.3%) as tt-MA with a half-life of 5.0 (SE 0.5) hr. Due to its longer elimination half-life, S-PMA proved a more reliable biomarker than tt-MA for benzene exposures during 12-hr shifts. Specificity of S-PMA, but not tt-MA, was sufficient to discriminate between the 14 moderate smokers and the 38 nonsmokers from the control group. The mean urinary S-PMA was 1.71 (SE 0.27) in smokers and 0.94 (SE 0.15) mol/mol creatinine in nonsmokers (p = 0.013). The mean urinary tt-MA was 0.046 (SE 0.010) in smokers and 0.029 (SE 0.013) mmol/mol creatinine in nonsmokers (p = 0.436). The inferior specificity of tt-MA was due to relatively high background values of up to 0.56 mmol/mol creatinine, which may be found in nonexposed individuals and limits the use of tt-MA to concentrations of benzene over 1 ppm (8-hr TWA). We conclude that S-PMA is superior to tt-MA as a biomarker for low-level benzene exposures because it is more specific, enabling reliable determination of benzene exposures down to 0.3 ppm (8-hr TWA), and because its longer half-life makes it more suited for biological monitoring of operators working in shifts longer than 8 hr.
Collapse
|
Comparative Study |
29 |
54 |
9
|
Grimm FA, Iwata Y, Sirenko O, Chappell GA, Wright FA, Reif DM, Braisted J, Gerhold DL, Yeakley JM, Shepard P, Seligmann B, Roy T, Boogaard PJ, Ketelslegers HB, Rohde AM, Rusyn I. A chemical-biological similarity-based grouping of complex substances as a prototype approach for evaluating chemical alternatives. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2016; 18:4407-4419. [PMID: 28035192 PMCID: PMC5179981 DOI: 10.1039/c6gc01147k] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 05/16/2016] [Indexed: 05/15/2023]
Abstract
Comparative assessment of potential human health impacts is a critical step in evaluating both chemical alternatives and existing products on the market. Most alternatives assessments are conducted on a chemical-by-chemical basis and it is seldom acknowledged that humans are exposed to complex products, not individual substances. Indeed, substances of Unknown or Variable composition, Complex reaction products, and Biological materials (UVCBs) are ubiquitous in commerce yet they present a major challenge for registration and health assessments. Here, we present a comprehensive experimental and computational approach to categorize UVCBs according to global similarities in their bioactivity using a suite of in vitro models. We used petroleum substances, an important group of UVCBs which are grouped for regulatory approval and read-across primarily on physico-chemical properties and the manufacturing process, and only partially based on toxicity data, as a case study. We exposed induced pluripotent stem cell-derived cardiomyocytes and hepatocytes to DMSO-soluble extracts of 21 petroleum substances from five product groups. Concentration-response data from high-content imaging in cardiomyocytes and hepatocytes, as well as targeted high-throughput transcriptomic analysis of the hepatocytes, revealed distinct groups of petroleum substances. Data integration showed that bioactivity profiling affords clustering of petroleum substances in a manner similar to the manufacturing process-based categories. Moreover, we observed a high degree of correlation between bioactivity profiles and physico-chemical properties, as well as improved groupings when chemical and biological data were combined. Altogether, we demonstrate how novel in vitro screening approaches can be effectively utilized in combination with physico-chemical characteristics to group complex substances and enable read-across. This approach allows for rapid and scientifically-informed evaluation of health impacts of both existing substances and their chemical alternatives.
Collapse
|
research-article |
9 |
54 |
10
|
Boogaard PJ, Sumner SC, Bond JA. Glutathione conjugation of 1,2:3,4- diepoxybutane in human liver and rat and mouse liver and lung in vitro. Toxicol Appl Pharmacol 1996; 136:307-16. [PMID: 8619238 DOI: 10.1006/taap.1996.0037] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
1,3-Butadiene (BD) has been classified as a probable human carcinogen based on sufficient evidence of a carcinogenic response in B6C3F1 mice and Sprague-Dawley rats and limited human evidence of carcinogenicity. Mice are much more susceptible to BD-induced carcinogenicity than rats. Previous in vitro studies revealed that mouse liver microsomes formed 1,2-epoxy-3-butene (BMO) from BD and 1,2:3,4-diepoxybutane (BDE) from BMO at much higher rates than rat or human microsomes. BDE was also readily quantitated in blood and tissues of mice exposed to BD but could not be detected in rats similarly exposed. These findings suggest a key role for BDE in BD-induced carcinogenicity. The purpose of this study was to characterize the glutathione (GSH) conjugation of BDE by liver and lung cytosol from B6C3F1 mice and Sprague-Dawley rats and human liver cytosol from six different individuals in vitro. BDE and glycine-[2-3H]GSH were incubated, at pH 7.4, with cytosol. 13C NMR and mass spectral analysis indicated formation of two isomeric conjugates, S-(1-(hydroxy-methyl)-2,3-epoxypropyl)glutathione and S-(2-hydroxy-3,4-epoxy--butyl)glutathione, which were rapidly hydrolyzed in cytosol to the corresponding trihydroxy conjugates. Total conjugates were quantitated by HPLC. Conjugation of BDE with GSH followed Michaelis-Menten kinetics in human as well as rat and mouse cytosolic fractions. The conjugation rates in mouse and rat liver cytosol were similar (Vmax 162 +/- 16 and 186 +/- 37 nmol/mg protein/min, respectively) and an order of magnitude higher than in human liver cytosol (Vmax 6.4 +/- 1.9 nmol/mg protein/min). the apparent KM values were lower in human (2.1 +/- 1.4 mM) than mouse (6.4 +/- 1.6 mM) or rat (24 +/- 6 mM) liver. Mouse lung cytosol (Vmax 38.5 +/- 2.5 nmol/mg protein/min, KM 1.70 +/- 0.37mM) is also more efficient in GSH conjugation than rat lung cytosol (Vmax 17.1 +/- 3.0 nmol/mg protein/min, KM +/- 1.7 mM). These results suggest that the higher BDE blood concentrations in mice compared with rats following inhalation exposure to BD are not due to differences in hepatic or pulmonary GSH conjugation of BDE. Also, considering the low oxidation rates of BD to BMO and of BMO to BDE in humans as compared to mice, the relatively low capacity of GSH conjugation of BDE in human liver will not necessarily lead to increased BDE blood levels in humans potentially exposed to BD.
Collapse
|
|
29 |
52 |
11
|
Boogaard PJ. Use of haemoglobin adducts in exposure monitoring and risk assessment. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 778:309-22. [PMID: 12376137 DOI: 10.1016/s0378-4347(01)00445-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many industrial bulk chemicals are oxiranes or alkenes that are easily metabolised to oxiranes in mammalian systems. Many oxiranes may react with DNA and are therefore mutagenic in vitro. Some oxiranes have been shown to be carcinogenic in rodents in vivo as well. Despite the very limited evidence of the carcinogenicity of oxiranes in humans, they should be considered potential human carcinogens. As a consequence, exposure to these compounds should be minimised and controlled. Twenty-five years ago, Ehrenberg and co-workers suggested that exposure to oxiranes might be determined through the measurement of the adducts they form with haemoglobin (Hb). Ten years later, a modification of the Edman degradation was developed at Stockholm University that allowed determination of adducts with the N-terminal valine of Hb by GC-MS. In our laboratory, this methodology was modified and adapted for analysis on an industrial scale. Since 1987, exposure of operators in our facilities to ethylene oxide (EO) has been routinely monitored by determination of N-(2-hydroxyethyl)valine in Hb. Biological monitoring programmes for propylene oxide (PO) and 1,3-butadiene (BD) were developed later. In this review, the methodology and its results are discussed as a tool in human risk assessment of industrial chemicals. Two major advantages of Hb adduct determinations in risk assessment are (1) the qualitative information on the structure of reactive intermediates that may be obtained through the mass spectrometry, which may provide insight in the molecular toxicology of compounds such as BD, and (2) the possibility of reliable determination of exposure over periods of several months with limited number of samples for compounds such as ethylene oxide (EO), propylene oxide (PO) and BD which form stable adducts with Hb. Since good correlations between the airborne concentrations of these chemicals with their respective adducts have been established, Hb adducts can also be used to quantitate airborne exposure which is of paramount importance as exposure assessment is usually one of the weaker parameters in risk assessment.
Collapse
|
Review |
23 |
52 |
12
|
Boogaard PJ, Rocchi PS, van Sittert NJ. Biomonitoring of exposure to ethylene oxide and propylene oxide by determination of hemoglobin adducts: correlations between airborne exposure and adduct levels. Int Arch Occup Environ Health 1999; 72:142-50. [PMID: 10392561 DOI: 10.1007/s004200050353] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Ethylene oxide (EO) and propylene oxide (PO) are important industrial chemicals. Exposure to these directly acting mutagens may be monitored by determination of their adducts to hemoglobin (Hb). This study establishes correlations between airborne concentrations of EO and PO and their Hb adducts in petrochemical workers. METHODS In three different studies conducted during maintenance shutdown of petrochemical plants the external occupational exposure to EO and PO was assessed by personal air monitoring (PAM). The internal exposure to EO and PO was concomitantly assessed by determination of N-(2-hydroxyethyl)valine (HOEtVal) and N-(3-hydroxypropyl)valine (HOPrVal) in blood samples of the operators using the N-alkyl-Edman degradation method. RESULTS In the first study, PAM was applied once a month at random over a period of 4 months. Blood samples for Hb-adduct determination were collected at the end of this period. No significant correlation was found between PAM and Hb-adduct data. In the next two studies, PAM was applied to the operators during the entire shift on every working day during the shutdown. Blood samples were collected before and immediately after the shutdown period. Highly significant correlations were found between the increment in the concentration of HOEtVal and HOPrVal over this period and the total exposure to EO and PO, respectively. CONCLUSIONS Time-integrated exposure to EO or PO can be readily and reliably assessed by measurement of the concentration of HOEtVal or HOPrVal in a small blood sample. In workers occupationally exposed to low concentrations of EO or PO, good correlations were found between these Hb adducts and the airborne concentrations of EO and PO. These correlations allow the calculation of tentative biological exposure limits (BELs) for EO and PO. At the current Dutch occupational exposure limit (OEL) for EO (0.84 mg m(-3), 8-h TWA) the BEL is 3.2 nmol HOEtVal/g globin. At the value of 10 mg m(-3) (8-h TWA), which is currently being investigated as the new Dutch OEL for PO, the corresponding BEL is 5.3 nmol HOPrVal/g globin.
Collapse
|
Comparative Study |
26 |
45 |
13
|
Boogaard PJ, Boisset M, Blunden S, Davies S, Ong TJ, Taverne JP. Comparative assessment of gastrointestinal irritant potency in man of tin(II) chloride and tin migrated from packaging. Food Chem Toxicol 2003; 41:1663-70. [PMID: 14563391 DOI: 10.1016/s0278-6915(03)00216-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tin is present in low concentrations in most canned foods and beverages, the highest levels being found in products packaged in unlacquered or partially lacquered tinplate cans. A limited number of case-reports of acute gastrointestinal disorders after consumption of food containing 100-500 mg/kg tin have been reported, but these reports suffer many insufficiencies. Controlled clinical studies on acute effects of tin migrated from packaging suggest a threshold concentration for adverse effects (AEs) of >730 mg/kg. Two separate randomised, single-centre, double-blind, crossover studies, enabling comparison of the tolerability of tin added as tin(II) chloride at concentrations of <0.5, 161, 264 and 529 mg/kg in 250 ml tomato juice in 20 volunteers (Study 1) and tin migrated from packaging at concentrations of <0.5, 201 and 267 mg/kg in 250 ml tomato soup in 24 volunteers (Study 2) were carried out. Distribution studies were conducted to get insight in the acute AEs of low molecular weight (<1000 Da) tin species in the soluble fraction of food products. Results show that the chemical form of tin and not the elemental concentration per se determines the severity of AEs. A clear dose-response relationship was only observed when tin was added as tin(II) chloride in tomato juice. No clinically significant AEs were reported in Study 2 and comparison of the incidence of tin-related AEs showed no difference between the dose levels (including control). Tin species of low molecular weight in supernatant represented 31-32% of total tin in canned tomato soup versus 56-61% in juice freshly spiked with tin(II) chloride. Differences in the incidence of AEs following administration of tomato juice with 161 and 264 mg of tin per kg and tomato soup with 201 and 267 mg of tin per kg likely results from differences in the concentration of low molecular weight tin species and in the nature of tin complexes formed. The results of this work demonstrate that tin levels up to 267 mg/kg in canned food cause no AEs in healthy adults and support the currently proposed tin levels of 200 mg/kg and 250 mg/kg for canned beverages and canned foods, respectively, as safe levels for adults in the general population.
Collapse
|
|
22 |
43 |
14
|
van Sittert NJ, Boogaard PJ, Natarajan AT, Tates AD, Ehrenberg LG, Törnqvist MA. Formation of DNA adducts and induction of mutagenic effects in rats following 4 weeks inhalation exposure to ethylene oxide as a basis for cancer risk assessment. Mutat Res 2000; 447:27-48. [PMID: 10686305 DOI: 10.1016/s0027-5107(99)00208-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ethylene oxide (EO) is mutagenic in various in vitro and in vivo test systems and carcinogenic in rodents. EO forms different adducts upon reaction with DNA, N7-(2-hydroxyethyl)guanine (N7-HEG) being the main adduct. The major objectives of this study were: (a) to determine the formation and persistence of N7-HEG adducts in liver DNA of adult male rats exposed to 0, 50, 100 and 200 ppm by inhalation (4 weeks, 5 days/week, 6 h/day) and (b) to assess dose-response relationships for Hprt gene mutations and various types of chromosomal changes in splenic lymphocytes.N7-HEG adducts were measured 5, 21, 35 and 49 days after cessation of exposure. By extrapolation, the mean concentrations of N7-HEG immediately after cessation of exposure ('day 0') to 50, 100 and 200 ppm were calculated as 310, 558 and 1202 adducts/10(8) nucleotides, respectively, while the mean concentration in control rats was 2.6 adducts/10(8) nucleotides. At 49 days, N7-HEG values had returned close to background levels. The mean levels of N-(2-hydroxyethylvaline) adducts in haemoglobin were also determined and amounted 61.7, 114 and 247 nmol/g globin, respectively. Statistically significant linear relationships were found between mean N7-HEG levels ('day 0') and Hprt mutant frequencies at expression times 21/22 and 49/50 days and between mean N7-HEG ('day 0') and sister-chromatid exchanges (SCEs) or high frequency cells (HFC) measured 5 days post-exposure. At day 21 post-exposure, SCEs and HFCs in-part persisted and were significantly correlated with persistent N7-HEG adducts. No statistically significant dose effect relationships were observed for induction of micronuclei, nor for chromosome breaks or translocations. In conclusion, this study indicates that following sub-chronic exposure, EO is only weakly mutagenic in adult rats. Using the data of this study to predict cancer risk in man resulting from low level EO exposures in conjunction with other published data, i.e., those on (a) genotoxic effects of EO in humans and rats, (b) DNA binding of other carcinogens, (c) natural background DNA binding and (d) genotoxic potency of low energy transfer (LET) radiation, it is not expected that long term occupational exposure to airborne concentrations of EO at or below 1 ppm EO produces an unacceptable increased risk in man.
Collapse
|
|
25 |
42 |
15
|
Tates AD, Boogaard PJ, Darroudi F, Natarajan AT, Caubo ME, van Sittert NJ. Biological effect monitoring in industrial workers following incidental exposure to high concentrations of ethylene oxide. Mutat Res 1995; 329:63-77. [PMID: 7770077 DOI: 10.1016/0027-5107(95)00018-e] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Peripheral blood from four groups of seven workers from a chemical manufacturing plant in The Netherlands was analyzed for hemoglobin adducts in erythrocytes and for hprt mutants, micronuclei and SCEs in lymphocytes. Group I workers were incidentally exposed to acute high doses of ethylene oxide ranging from 52 to 785 mg/m3. Group II and III workers were chronically exposed to low doses of ethylene oxide for < 5 years or > 15 years respectively. Group IV workers served as unexposed controls and came from the Occupational Health Department. Hemoglobin adduct levels in group I workers were very high and ranged from 1461 to 19913 pmol HOEtVal/g Hb approximately 1 month after the accident. HOEtVal values for group II and III workers fluctuated between 0 and 190 pmol/g Hb corresponding with average EtO exposure levels in the range of < 0.01 and 0.06 mg/m3 EtO. The statistical analysis of the genetic data did not reveal any statistically significant differences between any combination of worker groups. The genetic tests for group I workers were performed on blood samples collected 89-180 days after the incidental exposure. The absence of enhanced frequencies of mutations, micronuclei and SCEs suggests that significant induction of hprt mutations in vivo did not occur and that persistent preclastogenic lesions were not present in significant amounts when the exposed lymphocytes were put in culture to visualize any induced cytogenetic damage. This finding implies that the incidental exposure to high concentrations of EtO did not cause any measurable permanent mutational/cytogenetic damage in exposed lymphocytes.
Collapse
|
|
30 |
41 |
16
|
Boogaard PJ, Commandeur JN, Mulder GJ, Vermeulen NP, Nagelkerke JF. Toxicity of the cysteine-S-conjugates and mercapturic acids of four structurally related difluoroethylenes in isolated proximal tubular cells from rat kidney. Uptake of the conjugates and activation to toxic metabolites. Biochem Pharmacol 1989; 38:3731-41. [PMID: 2597169 DOI: 10.1016/0006-2952(89)90579-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Isolated proximal tubular cells from rat kidney were incubated with the cysteine-S-conjugates and corresponding mercapturates of the potent nephrotoxicants tetrafluoroethylene (TFE), chlorotrifluoroethylene (CTFE), 1,1-dichloro-2,2-difluoroethylene (DCDFE) and 1,1-dibromo-2,2-difluoroethylene (DBDFE). Toxicity of these S-conjugates was determined by their ability to inhibit alpha-methylglucose uptake by the cells. The cytotoxicity of the cysteine-S-conjugates and mercapturates of TFE and CTFE was similar, but the cysteine-S-conjugates of DCDFE and DBDFE were more toxic than their mercapturates. The cytotoxicity of the conjugates decreased in the following order TFE approximately CTFE greater than DCDFE greater than DBDFE, which is the same as observed in vivo. Inhibition of renal cysteine-S-conjugate beta-lyase by aminooxyacetic acid alleviated the cytotoxicity of both the cysteine-S-conjugates and the mercapturic acids of the four haloethylenes. The cytotoxicity of the mercapturates, but not of the cysteine-S-conjugates, could be reduced by probenecid, suggesting that the cysteine-S-conjugates are transported by a different carrier system than the mercapturates. The deacetylation of the mercapturates of TFE and CTFE in the cells was much higher than that of the mercapturates of DCDFE and DBDFE. The cysteine-S-conjugates of DCDFE and DBDFE were N-acetylated by the cells whereas the other cysteine-S-conjugates were not (TFE) or only marginally (CTFE) N-acetylated. The observed differences in cytotoxicity may be explained by differences in (1) the balance between acetylation/deacetylation by the cells, (2) the conversion rate of the S-conjugates to toxic metabolites by renal beta-lyase and (3) the transport into the proximal tubular cells.
Collapse
|
Comparative Study |
36 |
39 |
17
|
Boogaard PJ, Mulder GJ, Nagelkerke JF. Isolated proximal tubular cells from rat kidney as an in vitro model for studies on nephrotoxicity. I. An improved method for preparation of proximal tubular cells and their functional characterization by alpha-methylglucose uptake. Toxicol Appl Pharmacol 1989; 101:135-43. [PMID: 2552615 DOI: 10.1016/0041-008x(89)90219-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rat renal proximal tubular cells were isolated by successive EGTA and collagenase perfusions and purified by filtration and isopycnic centrifugation. The method is rapid and provides a much higher fraction of proximal tubular cells (90-95%) than comparable methods. The yield of viable (97 +/- 3%) cells is high (30 X 10(6) cells/g kidney). The intracellular ATP was 16 +/- 2 nmol/mg protein and remained essentially constant for at least 3 hr. The cells were characterized for transport of organic ions and glucose. Glucose transport was studied by alpha-[14C]methylglucose uptake; apparent Km and Vmax values were 3.4 +/- 0.5 mM and 4.1 +/- 0.9 nmol/min.mg protein, respectively. This transport could almost be completely inhibited by phloridzin, indicating that the uptake is mediated by the brush border glucose carrier.
Collapse
|
|
36 |
39 |
18
|
Boogaard PJ, Nagelkerke JF, Mulder GJ. Renal proximal tubular cells in suspension or in primary culture as in vitro models to study nephrotoxicity. Chem Biol Interact 1990; 76:251-91. [PMID: 2225232 DOI: 10.1016/0009-2797(90)90096-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The kidney forms a frequent target for xenobiotic toxicity. The complex biochemical mechanisms underlying nephrotoxicity are best studied in vitro provided that reliable and relevant in vitro models are available. Since most nephrotoxicants affect primarily the cells of the proximal tubules (PTC), much effort has been directed towards the development of in vitro models of PTC. This review focuses on the preparation of PTC and the use of these cells. Discussed are important criteria such as the viability (survival time) of the cells and the parameters to assess toxicity. Recent studies have shown that isolated PTC in suspension are especially suitable for studies on the biochemical mechanisms of 'acute' nephrotoxicity, whereas PTC in primary culture may be used to investigate mechanisms of nephrotoxic damage at very low concentrations, upon prolonged exposure. PTC cultured on porous filter membranes provide new possibilities to study toxicity in relation to cell and transport polarity. Primary cell cultures of human PTC have been set up. Although a further characterization of these systems is needed, recent data indicate their usefulness.
Collapse
|
Review |
35 |
39 |
19
|
de Rooij BM, Boogaard PJ, Rijksen DA, Commandeur JN, Vermeulen NP. Urinary excretion of N-acetyl-S-allyl-L-cysteine upon garlic consumption by human volunteers. Arch Toxicol 1996; 70:635-9. [PMID: 8870956 DOI: 10.1007/s002040050322] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
N-Acetyl-S-allyl-L-cysteine (allylmercapturic acid, ALMA) was previously detected in urine from humans consuming garlic. Exposure of rats to allyl halides is also known to lead to excretion of ALMA in urine. ALMA is a potential biomarker for exposure assessment of workers exposed to allyl halides. It is not known whether garlic consumption can lead to urinary concentrations of ALMA which may interfere with biological monitoring of exposure to allyl halides by determination of urinary ALMA. Therefore, this study was undertaken to determine the cumulative excretion and the excretion kinetics of ALMA in urine of humans consuming garlic. Six human volunteers were given orally two garlic tablets, each containing 100 mg garlic extract (each representing 300 mg fresh garlic). Three of the volunteers consumed additional garlic after the garlic tablet intake. Urine samples were collected up to 24 h after the intake of the garlic tablets. ALMA was identified in the urine using gas chromatography-mass spectrometry (GC-MS) and determined quantitatively with a limit of detection of 0.10 microgram/ml with gas chromatography with sulphur selective detection. The total amount of ALMA found in urine of volunteers who consumed two garlic tablets was 0.43 +/- 0.14 mg (n = 3). In the urine of the three volunteers who consumed not only two garlic tablets but also additional fresh garlic, a significantly higher amount of ALMA was excreted in the urine, 1.4 +/- 0.2 mg (n = 3). The elimination half-life of ALMA, estimated from urinary excretion rate versus time curves, was 6.0 +/- 1.3 h (n = 5). One volunteer, who ate additional garlic, showed an irregular elimination profile and was excluded from this estimation. The highest urinary concentration of ALMA found in this study was 2.2 micrograms/ml. In a preliminary biological monitoring study of exposure in workers with potential exposure to allyl chloride (AC) up to the occupational exposure limit of 1 ppm (8-h TWA), we recently found urinary ALMA concentrations up to 4 micrograms/ml. Based on the results presented here, we conclude that garlic consumption is a potential confounder when monitoring human exposure to allylhalides and other chemicals leading to ALMA excretion when ALMA is used as a biomarker of exposure.
Collapse
|
|
29 |
36 |
20
|
Richardson KA, Peters MM, Wong BA, Megens RH, van Elburg PA, Booth ED, Boogaard PJ, Bond JA, Medinsky MA, Watson WP, van Sittert NJ. Quantitative and qualitative differences in the metabolism of 14C-1,3-butadiene in rats and mice: relevance to cancer susceptibility. Toxicol Sci 1999; 49:186-201. [PMID: 10416264 DOI: 10.1093/toxsci/49.2.186] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
1,3-Butadiene (butadiene) is a potent carcinogen in mice, but not in rats. Metabolic studies may provide an explanation of these species differences and their relevance to humans. Male Sprague-Dawley rats and B6C3F1 mice were exposed for 6 h to 200 ppm [2,3-14C]-butadiene (specific radioactivity [sa] 20 mCi/mmol) in a Cannon nose-only system. Radioactivity in urine, feces, exhaled volatiles and 14C-CO2 were measured during and up to 42 h after exposure. The total uptake of butadiene by rats and mice under these experimental conditions was 0.19 and 0.38 mmol (equivalent to 3.8 and 7.5 mCi) per kg body weight, respectively. In the rat, 40% of the recovered radioactivity was exhaled as 14C-CO2, 70% of which was trapped during the 6-h exposure period. In contrast, only 6% was exhaled as 14C-CO2 by mice, 3% during the 6-h exposure and 97% in the 42 h following cessation of exposure. The formation of 14C-CO2 from [2,3-14C]-labeled butadiene indicated a ready biodegradability of butadiene. Radioactivity excreted in urine accounted for 42% of the recovered radioactivity from rats and 71% from mice. Small amounts of radioactivity were recovered in feces, exhaled volatiles and carcasses. Although there was a large measure of commonality, the exposure to butadiene also led to the formation of different metabolites in rats and mice. These metabolites were not found after administration of [4-14C]-1,2-epoxy-3-butene to animals by i.p. injection. The results show that the species differences in the metabolism of butadiene are not simply confined to the quantitative formation of epoxides, but also reflect a species-dependent selection of metabolic pathways. No metabolites other than those formed via an epoxide intermediate were identified in the urine of rats or mice after exposure to 14C-butadiene. These findings may have relevance for the prediction of butadiene toxicity and provide a basis for a revision of the existing physiologically based pharmacokinetic models.
Collapse
|
|
26 |
35 |
21
|
Boogaard PJ, Slikkerveer A, Nagelkerke JF, Mulder GJ. The role of metallothionein in the reduction of cisplatin-induced nephrotoxicity by Bi3(+)-pretreatment in the rat in vivo and in vitro. Are antioxidant properties of metallothionein more relevant than platinum binding? Biochem Pharmacol 1991; 41:369-75. [PMID: 1994896 DOI: 10.1016/0006-2952(91)90533-b] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nephrotoxicity induced by cisplatin (CDDP) was reported to be reduced by Bi3(+)-pretreatment, which selectively induces renal metallothionein (MT). In the present study renal MT had increased to 250% of control in rats that received bismuth subnitrate (50 mumol/kg/day, orally) for 8 days. In vitro experiments demonstrated that the reduction of CDDP-induced toxicity is a renal effect: in proximal tubular cells (PTC) isolated from Bi3(+)-treated rats the toxicity of CDDP, and also of HgCl2, CdCl2 and p-aminophenol, was reduced as compared to PTC from untreated rats. In contrast to the reduction in CDDP, Hg2+ and Cd2+ toxicity, the reduction in p-aminophenol toxicity cannot be explained by the metal-binding properties of MT. MT was reported to act as a free radical scavenger, which may explain our observation since p-aminophenol toxicity is thought to be a consequence of the generation of oxygen radicals. In vivo experiments showed that the overall renal Pt-content as well as the Pt bound to renal MT is lower in Bi3(+)-pretreated rats than in untreated rats, 24 hr after administration of CDDP (12 mg/kg), suggesting that the reduction in nephrotoxicity is not due to increased binding of Pt2+ to renal MT. Renal superoxide dismutase (SOD) activity was increased in rats that had only received CDDP. Such a rise in SOD may result from peroxidative damage caused by exposure to CDDP. The fact that SOD was not elevated in rats that received Bi3+ prior to CDDP suggests that (i) peroxidation contributes to CDDP-induced nephrotoxicity and (ii) the anti-oxidant properties of MT are responsible for the reduction of this toxicity.
Collapse
|
|
34 |
34 |
22
|
Bos PM, Brouwer DH, Stevenson H, Boogaard PJ, de Kort WL, van Hemmen JJ. Proposal for the assessment of quantitative dermal exposure limits in occupational environments: Part 1. Development of a concept to derive a quantitative dermal occupational exposure limit. Occup Environ Med 1998; 55:795-804. [PMID: 9924440 PMCID: PMC1757540 DOI: 10.1136/oem.55.12.795] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Dermal uptake of chemicals at the workplace may contribute considerably to the total internal exposure and so needs to be regulated. At present only qualitative warning signs--the "skin notations"--are available as instruments. An attempt was made to develop a quantitative dermal occupational exposure limit (DOEL) complementary to respiratory occupational exposure limits (OELs). The DOEL refers to the total dose deposited on the skin during a working shift. Based on available data and experience a theoretical procedure for the assessment of a DOEL was developed. A DOEL was derived for cyclophosphamide and 4,4-methylene dianiline (MDA) according to this procedure. The DOEL for MDA was tested for applicability in an actual occupational exposure scenario. An integrated approach is recommended for situations in which both dermal and respiratory exposures contribute considerably to the internal exposure of the worker. The starting point should be an internal health based occupational exposure limit--that is, the maximum dose to be absorbed without leading to adverse systemic effects. The proposed assessment of an external DOEL is then either based on absorption rate or absorption percentage. The estimation of skin penetration seems to be of crucial importance in this concept. If for a specific substance a maximal absorption rate can be estimated a maximal skin surface area to be exposed can be assessed which may then serve the purpose of a DOEL. As long as the actual skin surface exposed is smaller than this maximal skin surface area the internal OEL will not be exceeded, and therefore, no systemic health problems would be expected, independent of the dermal dose/unit area. If not, the DOEL may be interpreted as the product of dermal dose/unit area (mg/cm2) and exposed skin surface area (cm2). The proposed concept for a DOEL is relevant and can be made applicable for health surveillance in the occupational situation where dermal exposure contributes notably to the systemic exposure. Further research should show whether this concept is more generally applicable.
Collapse
|
research-article |
27 |
33 |
23
|
Boogaard PJ, Denneman MA, Van Sittert NJ. Dermal penetration and metabolism of five glycidyl ethers in human, rat and mouse skin. Xenobiotica 2000; 30:469-83. [PMID: 10875681 DOI: 10.1080/004982500237488] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
1. Glycidyl ethers (GE), an important class of industrial chemicals, are considered to be potentially mutagenic in vivo because some GE have been shown to be direct mutagens in short-term in vitro tests. 2. The percutaneous penetration and metabolism of representatives of different classes of GE was studied in the fresh, full-thickness C3H mouse, and dermatomed human and Fisher 344 rat skin to determine the apparent permeability constants, lag times and metabolic profiles. 3. Five different GE, the diglycidyl ethers of bisphenol A (BADGE), 4,4'-dihydroxy-3,3',5,5'-tetramethylbiphenyl (Epikote YX4000) and 1,6-hexanediol (HDDGE) and the GE of 1-dodecanol (C12GE) and o-cresol (o-CGE), were synthesized by reaction of their alcohols with epichlorohydrin. Their radiolabelled analogues were synthesized with a 14C-label using [U-14C]-epichlorohydrin. 4. There was a large variation (four orders of magnitude) in percutaneous penetration between the five GE. In general, penetration through full-thickness mouse skin was higher than through dermatomed rat skin, whereas dermatomed human skin was the least permeable. The permeability increased in the order YX4000 < BADGE < C12GE < o-CGE < HDDGE. 5. The relative skin permeability of the five GE could be explained for a significant part by the lipophilicity, expressed as log P(o/w), in combination with the molecular weight of the compounds. 6. During skin penetration, all GE were extensively metabolized to their corresponding (bis-)diols. Virtually no YX4000, and only very small amounts of C12GE and BADGE, penetrated the skin unchanged, but significant amounts of HDDGE and o-CGE penetrated the skin unchanged. For o-CGE, but none of the other GE, the percentage of the applied dose that penetrated the skin unchanged increased over time. 7. The large variation in response observed with the five selected GE indicates that GE should not be considered as a single class of compounds but rather on the basis of their individual properties.
Collapse
|
Comparative Study |
25 |
32 |
24
|
Money CD, Tomenson JA, Penman MG, Boogaard PJ, Jeffrey Lewis R. A systematic approach for evaluating and scoring human data. Regul Toxicol Pharmacol 2013; 66:241-7. [DOI: 10.1016/j.yrtph.2013.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 10/27/2022]
|
|
12 |
32 |
25
|
Boogaard PJ, Zoeteweij JP, van Berkel TJ, van't Noordende JM, Mulder GJ, Nagelkerke JF. Primary culture of proximal tubular cells from normal rat kidney as an in vitro model to study mechanisms of nephrotoxicity. Toxicity of nephrotoxicants at low concentrations during prolonged exposure. Biochem Pharmacol 1990; 39:1335-45. [PMID: 2322315 DOI: 10.1016/0006-2952(90)90010-i] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The aim of this study was to set up an in vitro system to study nephrotoxicity of xenobiotics which allows exposure at low concentrations for long periods (1-5 days). A very pure preparation of isolated proximal tubular cells (PTC) from rat kidney (Boogaard et al., Toxicol Appl Pharmacol 101: 135-143, 1989) was brought into primary culture. Cells grew to confluence in 3 days and could be maintained up to 8 days in a modification of Dulbecco's modified Eagle's medium Ham F12 nutrient mixture supplemented with fetal calf serum. Fibroblast growth was completely suppressed by replacement of L-valine by D-valine and of L-arginine by L-ornithine. Polarity was retained: in cells grown on filters organic anions were transported at the basolateral membrane while D-glucose transport was located at the apical membrane. Inhibition of the latter was used to assess the functional integrity of the cells after exposure to nephrotoxins. The newly grown cells expressed gamma-glutamyltranspeptidase activity since incubation with the glutathione-conjugate of 1,1-dichloro-2,2-difluoroethylene (DCDFE) induced cytotoxicity. Both beta-lyase and acylase activities were expressed because the cysteine-S-conjugate and the corresponding mercapturate of DCDFE showed cytotoxicity. Cultured cells showed toxicity on prolonged exposure to very low concentrations of gentamicin, cephaloridine, cisplatin and the cysteine-S-conjugate of chlorotrifluoroethylene. The lowest concentrations at which toxicity can be observed are 1-3 orders of magnitude lower in primary cultures than in freshly isolated PTC in suspension. This indicates that this cell model is suitable to investigate mechanisms of nephrotoxicity in vitro, at prolonged exposure to the low concentrations that are relevant in vivo levels.
Collapse
MESH Headings
- Acetylcysteine
- Animals
- Biological Transport/drug effects
- Cells, Cultured/cytology
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Chlorofluorocarbons
- Cysteine
- Glutathione
- Hydrocarbons, Halogenated/toxicity
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Male
- Methylglucosides/metabolism
- Microscopy, Electron, Scanning
- Models, Biological
- Rats
- Rats, Inbred Strains
- Time Factors
Collapse
|
|
35 |
31 |