1
|
Veeck J, Wild PJ, Fuchs T, Schüffler PJ, Hartmann A, Knüchel R, Dahl E. Prognostic relevance of Wnt-inhibitory factor-1 (WIF1) and Dickkopf-3 (DKK3) promoter methylation in human breast cancer. BMC Cancer 2009; 9:217. [PMID: 19570204 PMCID: PMC2717119 DOI: 10.1186/1471-2407-9-217] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 07/01/2009] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Secreted Wnt signaling antagonists have recently been described as frequent targets of epigenetic inactivation in human tumor entities. Since gene silencing of certain Wnt antagonists was found to be correlated with adverse patient survival in cancer, we aimed at investigating a potential prognostic impact of the two Wnt antagonizing molecules WIF1 and DKK3 in breast cancer, which are frequently silenced by promoter methylation in this disease. METHODS WIF1 and DKK3 promoter methylation were assessed by methylation-specific PCR with bisulfite-converted DNA from 19 normal breast tissues and 150 primary breast carcinomas. Promoter methylation was interpreted in a qualitative, binary fashion. Statistical evaluations included two-sided Fisher's exact tests, univariate log-rank tests of Kaplan-Meier curves as well as multivariate Cox regression analyses. RESULTS WIF1 and DKK3 promoter methylation were detected in 63.3% (95/150) and 61.3% (92/150) of breast carcinoma samples, respectively. In normal breast tissues, WIF1 methylation was present in 0% (0/19) and DKK3 methylation in 5.3% (1/19) of samples. In breast carcinomas, WIF1 methylation was significantly associated with methylation of DKK3 (p = 0.009). Methylation of either gene was not associated with clinicopathological parameters, except for DKK3 methylation being associated with patient age (p = 0.007). In univariate analysis, WIF1 methylation was not associated with clinical patient outcome. In contrast, DKK3 methylation was a prognostic factor in patient overall survival (OS) and disease-free survival (DFS). Estimated OS rates after 10 years were 54% for patients with DKK3-methylated tumors, in contrast to patients without DKK3 methylation in the tumor, who had a favorable 97% OS after 10 years (p < 0.001). Likewise, DFS at 10 years for patients harboring DKK3 methylation in the tumor was 58%, compared with 78% for patients with unmethylated DKK3 (p = 0.037). Multivariate analyses revealed that DKK3 methylation was an independent prognostic factor predicting poor OS (hazard ratio (HR): 14.4; 95% confidence interval (CI): 1.9-111.6; p = 0.011), and short DFS (HR: 2.5; 95% CI: 1.0-6.0; p = 0.047) in breast cancer. CONCLUSION Although the Wnt antagonist genes WIF1 and DKK3 show a very similar frequency of promoter methylation in human breast cancer, only DKK3 methylation proves as a novel prognostic marker potentially useful in the clinical management of this disease.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
72 |
2
|
Surinova S, Choi M, Tao S, Schüffler PJ, Chang CY, Clough T, Vysloužil K, Khoylou M, Srovnal J, Liu Y, Matondo M, Hüttenhain R, Weisser H, Buhmann JM, Hajdúch M, Brenner H, Vitek O, Aebersold R. Prediction of colorectal cancer diagnosis based on circulating plasma proteins. EMBO Mol Med 2016; 7:1166-78. [PMID: 26253081 PMCID: PMC4568950 DOI: 10.15252/emmm.201404873] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Non-invasive detection of colorectal cancer with blood-based markers is a critical clinical need. Here we describe a phased mass spectrometry-based approach for the discovery, screening, and validation of circulating protein biomarkers with diagnostic value. Initially, we profiled human primary tumor tissue epithelia and characterized about 300 secreted and cell surface candidate glycoproteins. These candidates were then screened in patient systemic circulation to identify detectable candidates in blood plasma. An 88-plex targeting method was established to systematically monitor these proteins in two large and independent cohorts of plasma samples, which generated quantitative clinical datasets at an unprecedented scale. The data were deployed to develop and evaluate a five-protein biomarker signature for colorectal cancer detection.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
68 |
3
|
Schüffler PJ, Schapiro D, Giesen C, Wang HAO, Bodenmiller B, Buhmann JM. Automatic single cell segmentation on highly multiplexed tissue images. Cytometry A 2015; 87:936-42. [DOI: 10.1002/cyto.a.22702] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 04/14/2015] [Accepted: 05/14/2015] [Indexed: 11/12/2022]
|
|
10 |
47 |
4
|
Schüffler PJ, Fuchs TJ, Ong CS, Wild PJ, Rupp NJ, Buhmann JM. TMARKER: A free software toolkit for histopathological cell counting and staining estimation. J Pathol Inform 2013; 4:S2. [PMID: 23766938 PMCID: PMC3678753 DOI: 10.4103/2153-3539.109804] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/21/2013] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Histological tissue analysis often involves manual cell counting and staining estimation of cancerous cells. These assessments are extremely time consuming, highly subjective and prone to error, since immunohistochemically stained cancer tissues usually show high variability in cell sizes, morphological structures and staining quality. To facilitate reproducible analysis in clinical practice as well as for cancer research, objective computer assisted staining estimation is highly desirable. METHODS We employ machine learning algorithms as randomized decision trees and support vector machines for nucleus detection and classification. Superpixels as segmentation over the tissue image are classified into foreground and background and thereafter into malignant and benign, learning from the user's feedback. As a fast alternative without nucleus classification, the existing color deconvolution method is incorporated. RESULTS Our program TMARKER connects already available workflows for computational pathology and immunohistochemical tissue rating with modern active learning algorithms from machine learning and computer vision. On a test dataset of human renal clear cell carcinoma and prostate carcinoma, the performance of the used algorithms is equivalent to two independent pathologists for nucleus detection and classification. CONCLUSION We present a novel, free and operating system independent software package for computational cell counting and staining estimation, supporting IHC stained tissue analysis in clinic and for research. Proprietary toolboxes for similar tasks are expensive, bound to specific commercial hardware (e.g. a microscope) and mostly not quantitatively validated in terms of performance and reproducibility. We are confident that the presented software package will proof valuable for the scientific community and we anticipate a broader application domain due to the possibility to interactively learn models for new image types.
Collapse
|
research-article |
12 |
45 |
5
|
Fankhauser CD, Schüffler PJ, Gillessen S, Omlin A, Rupp NJ, Rueschoff JH, Hermanns T, Poyet C, Sulser T, Moch H, Wild PJ. Comprehensive immunohistochemical analysis of PD-L1 shows scarce expression in castration-resistant prostate cancer. Oncotarget 2018; 9:10284-10293. [PMID: 29535806 PMCID: PMC5828186 DOI: 10.18632/oncotarget.22888] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/15/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND We aimed to analyze the frequency and distribution of PD-L1 expression in specimens from prostate cancer (PC) patients using two different anti-PD-L1 antibodies (E1L3N, SP263). MATERIALS AND METHODS PD-L1 immunohistochemistry was performed in a tissue microarray consisting of 82 castration-resistant prostate cancer (CRPC) specimens, 70 benign prostate hyperplasia (BPH) specimens, 96 localized PC cases, and 3 PC cell lines, using two different antibodies (clones E1L3N, and SP263). Staining images for CD4, CD8, PD-L1, and PanCK of a single PD-L1 positive case were compared, using a newly developed dot-wise correlation method for digital images to objectively test for co-expression. RESULTS Depending on the antibody used, in tumor cells (TC) only five (E1L3N: 6%) and three (SP263: 3.7%) samples were positive. In infiltrating immune cells (IC) 12 (SP263: 14.6%) and 8 (E1L3N: 9.9%) specimens showed PD-L1 expression. Two PC cell lines (PC3, LnCaP) also displayed membranous immunoreactivity. All localized PCs or BPH samples tested were negative. Dot-wise digital correlation of expression patterns revealed a moderate positive correlation between PD-L1 and PanCK expression, whereas both PanCK and PD-L1 showed a weak negative Pearson correlation coefficient between CD4 and CD8. CONCLUSIONS PD-L1 was not expressed in localized PC or BPH, and was only found in a minority of CRPC tumors and infiltrating immune cells. Protein expression maps and systematic dot-wise comparison could be a useful objective way to describe the relationship between immuno- and tumor-related proteins in the future, without the need to develop multiplex staining methods.
Collapse
|
research-article |
7 |
39 |
6
|
Schüffler PJ, Geneslaw L, Yarlagadda DVK, Hanna MG, Samboy J, Stamelos E, Vanderbilt C, Philip J, Jean MH, Corsale L, Manzo A, Paramasivam NHG, Ziegler JS, Gao J, Perin JC, Kim YS, Bhanot UK, Roehrl MHA, Ardon O, Chiang S, Giri DD, Sigel CS, Tan LK, Murray M, Virgo C, England C, Yagi Y, Sirintrapun SJ, Klimstra D, Hameed M, Reuter VE, Fuchs TJ. Integrated digital pathology at scale: A solution for clinical diagnostics and cancer research at a large academic medical center. J Am Med Inform Assoc 2021; 28:1874-1884. [PMID: 34260720 PMCID: PMC8344580 DOI: 10.1093/jamia/ocab085] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/25/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Broad adoption of digital pathology (DP) is still lacking, and examples for DP connecting diagnostic, research, and educational use cases are missing. We blueprint a holistic DP solution at a large academic medical center ubiquitously integrated into clinical workflows; researchapplications including molecular, genetic, and tissue databases; and educational processes. MATERIALS AND METHODS We built a vendor-agnostic, integrated viewer for reviewing, annotating, sharing, and quality assurance of digital slides in a clinical or research context. It is the first homegrown viewer cleared by New York State provisional approval in 2020 for primary diagnosis and remote sign-out during the COVID-19 (coronavirus disease 2019) pandemic. We further introduce an interconnected Honest Broker for BioInformatics Technology (HoBBIT) to systematically compile and share large-scale DP research datasets including anonymized images, redacted pathology reports, and clinical data of patients with consent. RESULTS The solution has been operationally used over 3 years by 926 pathologists and researchers evaluating 288 903 digital slides. A total of 51% of these were reviewed within 1 month after scanning. Seamless integration of the viewer into 4 hospital systems clearly increases the adoption of DP. HoBBIT directly impacts the translation of knowledge in pathology into effective new health measures, including artificial intelligence-driven detection models for prostate cancer, basal cell carcinoma, and breast cancer metastases, developed and validated on thousands of cases. CONCLUSIONS We highlight major challenges and lessons learned when going digital to provide orientation for other pathologists. Building interconnected solutions will not only increase adoption of DP, but also facilitate next-generation computational pathology at scale for enhanced cancer research.
Collapse
|
Research Support, N.I.H., Extramural |
4 |
36 |
7
|
Raciti P, Sue J, Retamero JA, Ceballos R, Godrich R, Kunz JD, Casson A, Thiagarajan D, Ebrahimzadeh Z, Viret J, Lee D, Schüffler PJ, DeMuth G, Gulturk E, Kanan C, Rothrock B, Reis-Filho J, Klimstra DS, Reuter V, Fuchs TJ. Clinical Validation of Artificial Intelligence-Augmented Pathology Diagnosis Demonstrates Significant Gains in Diagnostic Accuracy in Prostate Cancer Detection. Arch Pathol Lab Med 2023; 147:1178-1185. [PMID: 36538386 DOI: 10.5858/arpa.2022-0066-oa] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 09/29/2023]
Abstract
CONTEXT.— Prostate cancer diagnosis rests on accurate assessment of tissue by a pathologist. The application of artificial intelligence (AI) to digitized whole slide images (WSIs) can aid pathologists in cancer diagnosis, but robust, diverse evidence in a simulated clinical setting is lacking. OBJECTIVE.— To compare the diagnostic accuracy of pathologists reading WSIs of prostatic biopsy specimens with and without AI assistance. DESIGN.— Eighteen pathologists, 2 of whom were genitourinary subspecialists, evaluated 610 prostate needle core biopsy WSIs prepared at 218 institutions, with the option for deferral. Two evaluations were performed sequentially for each WSI: initially without assistance, and immediately thereafter aided by Paige Prostate (PaPr), a deep learning-based system that provides a WSI-level binary classification of suspicious for cancer or benign and pinpoints the location that has the greatest probability of harboring cancer on suspicious WSIs. Pathologists' changes in sensitivity and specificity between the assisted and unassisted modalities were assessed, together with the impact of PaPr output on the assisted reads. RESULTS.— Using PaPr, pathologists improved their sensitivity and specificity across all histologic grades and tumor sizes. Accuracy gains on both benign and cancerous WSIs could be attributed to PaPr, which correctly classified 100% of the WSIs showing corrected diagnoses in the PaPr-assisted phase. CONCLUSIONS.— This study demonstrates the effectiveness and safety of an AI tool for pathologists in simulated diagnostic practice, bridging the gap between computational pathology research and its clinical application, and resulted in the first US Food and Drug Administration authorization of an AI system in pathology.
Collapse
|
|
2 |
32 |
8
|
Campanella G, Rajanna AR, Corsale L, Schüffler PJ, Yagi Y, Fuchs TJ. Towards machine learned quality control: A benchmark for sharpness quantification in digital pathology. Comput Med Imaging Graph 2018; 65:142-151. [PMID: 29241972 PMCID: PMC9113532 DOI: 10.1016/j.compmedimag.2017.09.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 08/05/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022]
Abstract
Pathology is on the verge of a profound change from an analog and qualitative to a digital and quantitative discipline. This change is mostly driven by the high-throughput scanning of microscope slides in modern pathology departments, reaching tens of thousands of digital slides per month. The resulting vast digital archives form the basis of clinical use in digital pathology and allow large scale machine learning in computational pathology. One of the most crucial bottlenecks of high-throughput scanning is quality control (QC). Currently, digital slides are screened manually to detected out-of-focus regions, to compensate for the limitations of scanner software. We present a solution to this problem by introducing a benchmark dataset for blur detection, an in-depth comparison of state-of-the art sharpness descriptors and their prediction performance within a random forest framework. Furthermore, we show that convolution neural networks, like residual networks, can be used to train blur detectors from scratch. We thoroughly evaluate the accuracy of feature based and deep learning based approaches for sharpness classification (99.74% accuracy) and regression (MSE 0.004) and additionally compare them to domain experts in a comprehensive human perception study. Our pipeline outputs spacial heatmaps enabling to quantify and localize blurred areas on a slide. Finally, we tested the proposed framework in the clinical setting and demonstrate superior performance over the state-of-the-art QC pipeline comprising commercial software and human expert inspection by reducing the error rate from 17% to 4.7%.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
26 |
9
|
Zhong Q, Rüschoff JH, Guo T, Gabrani M, Schüffler PJ, Rechsteiner M, Liu Y, Fuchs TJ, Rupp NJ, Fankhauser C, Buhmann JM, Perner S, Poyet C, Blattner M, Soldini D, Moch H, Rubin MA, Noske A, Rüschoff J, Haffner MC, Jochum W, Wild PJ. Image-based computational quantification and visualization of genetic alterations and tumour heterogeneity. Sci Rep 2016; 6:24146. [PMID: 27052161 PMCID: PMC4823793 DOI: 10.1038/srep24146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/22/2016] [Indexed: 12/31/2022] Open
Abstract
Recent large-scale genome analyses of human tissue samples have uncovered a high degree of genetic alterations and tumour heterogeneity in most tumour entities, independent of morphological phenotypes and histopathological characteristics. Assessment of genetic copy-number variation (CNV) and tumour heterogeneity by fluorescence in situ hybridization (ISH) provides additional tissue morphology at single-cell resolution, but it is labour intensive with limited throughput and high inter-observer variability. We present an integrative method combining bright-field dual-colour chromogenic and silver ISH assays with an image-based computational workflow (ISHProfiler), for accurate detection of molecular signals, high-throughput evaluation of CNV, expressive visualization of multi-level heterogeneity (cellular, inter- and intra-tumour heterogeneity), and objective quantification of heterogeneous genetic deletions (PTEN) and amplifications (19q12, HER2) in diverse human tumours (prostate, endometrial, ovarian and gastric), using various tissue sizes and different scanners, with unprecedented throughput and reproducibility.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
22 |
10
|
Schüffler P, Mikeska T, Waha A, Lengauer T, Bock C. MethMarker: user-friendly design and optimization of gene-specific DNA methylation assays. Genome Biol 2009; 10:R105. [PMID: 19804638 PMCID: PMC2784320 DOI: 10.1186/gb-2009-10-10-r105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 08/19/2009] [Accepted: 10/05/2009] [Indexed: 12/19/2022] Open
Abstract
A software workflow to translate known differentially methylated regions into clinical biomarkers DNA methylation is a key mechanism of epigenetic regulation that is frequently altered in diseases such as cancer. To confirm the biological or clinical relevance of such changes, gene-specific DNA methylation changes need to be validated in multiple samples. We have developed the MethMarker http://methmarker.mpi-inf.mpg.de/ software to help design robust and cost-efficient DNA methylation assays for six widely used methods. Furthermore, MethMarker implements a bioinformatic workflow for transforming disease-specific differentially methylated genomic regions into robust clinical biomarkers.
Collapse
|
Research Support, Non-U.S. Gov't |
16 |
21 |
11
|
Puylaert CAJ, Schüffler PJ, Naziroglu RE, Tielbeek JAW, Li Z, Makanyanga JC, Tutein Nolthenius CJ, Nio CY, Pendsé DA, Menys A, Ponsioen CY, Atkinson D, Forbes A, Buhmann JM, Fuchs TJ, Hatzakis H, van Vliet LJ, Stoker J, Taylor SA, Vos FM. Semiautomatic Assessment of the Terminal Ileum and Colon in Patients with Crohn Disease Using MRI (the VIGOR++ Project). Acad Radiol 2018; 25:1038-1045. [PMID: 29428210 DOI: 10.1016/j.acra.2017.12.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/20/2017] [Accepted: 12/25/2017] [Indexed: 01/18/2023]
Abstract
RATIONALE AND OBJECTIVES The objective of this study was to develop and validate a predictive magnetic resonance imaging (MRI) activity score for ileocolonic Crohn disease activity based on both subjective and semiautomatic MRI features. MATERIALS AND METHODS An MRI activity score (the "virtual gastrointestinal tract [VIGOR]" score) was developed from 27 validated magnetic resonance enterography datasets, including subjective radiologist observation of mural T2 signal and semiautomatic measurements of bowel wall thickness, excess volume, and dynamic contrast enhancement (initial slope of increase). A second subjective score was developed based on only radiologist observations. For validation, two observers applied both scores and three existing scores to a prospective dataset of 106 patients (59 women, median age 33) with known Crohn disease, using the endoscopic Crohn's Disease Endoscopic Index of Severity (CDEIS) as a reference standard. RESULTS The VIGOR score (17.1 × initial slope of increase + 0.2 × excess volume + 2.3 × mural T2) and other activity scores all had comparable correlation to the CDEIS scores (observer 1: r = 0.58 and 0.59, and observer 2: r = 0.34-0.40 and 0.43-0.51, respectively). The VIGOR score, however, improved interobserver agreement compared to the other activity scores (intraclass correlation coefficient = 0.81 vs 0.44-0.59). A diagnostic accuracy of 80%-81% was seen for the VIGOR score, similar to the other scores. CONCLUSIONS The VIGOR score achieves comparable accuracy to conventional MRI activity scores, but with significantly improved reproducibility, favoring its use for disease monitoring and therapy evaluation.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
20 |
12
|
Kim D, Pantanowitz L, Schüffler P, Yarlagadda DVK, Ardon O, Reuter VE, Hameed M, Klimstra DS, Hanna MG. (Re) Defining the High-Power Field for Digital Pathology. J Pathol Inform 2020; 11:33. [PMID: 33343994 PMCID: PMC7737490 DOI: 10.4103/jpi.jpi_48_20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/04/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The microscope high-power field (HPF) is the cornerstone for histopathology diagnostic evaluation such as the quantification of mitotic figures, lymphocytes, and tumor grading. With traditional light microscopy, HPFs are typically evaluated by quantifying histologic events in 10 fields of view at × 400 magnification. In the era of digital pathology, new variables are introduced that may affect HPF evaluation. The aim of this study was to determine the parameters that influence HPF in whole slide images (WSIs). MATERIALS AND METHODS Glass slides scanned on various devices (Leica's Aperio GT450, AT2, and ScanScope XT; Philips UltraFast Scanner; Hamamatsu's Nanozoomer 2.0HT; and 3DHistech's P1000) were compared to acquired digital slides reviewed on each vendor's respective WSI viewer software (e.g., Aperio ImageScope, ImageScope DX, Philips IMS, 3DHistech CaseViewer, and Hamamatsu NDP.view) and an in-house developed vendor-agnostic viewer. WSIs were reviewed at "×40" equivalent HPF on different sized monitors with varying display resolutions (1900 × 1080-4500 × 3000) and aspect ratios (e.g., Food and Drug Administration [FDA]-cleared 27" Philips PS27QHDCR, FDA-cleared 24" Dell MR2416, 24" Hewlett Packard Z24n G2, and 28" Microsoft Surface Studio). Digital and microscopic HPF areas were calculated and compared. RESULTS A significant variation of HPF area occurred between differing monitor size and display resolutions with minor differences between WSI viewers. No differences were identified by scanner or WSIs scanned at different resolutions (e.g., 0.5, 0.25, 0.24, and 0.12 μm/pixel). CONCLUSION Glass slide HPF at × 400 magnification with conventional light microscopy was not equivalent to "×40" digital HPF areas. Digital HPF quantification may vary due to differences in the tissue area displayed by monitor sizes, display resolutions, and WSI viewers but not by scanner or scanning resolution. These findings will need to be further clinically validated with potentially new digital metrics for evaluation.
Collapse
|
other |
5 |
20 |
13
|
Ghigna MR, Reineke T, Rincé P, Schüffler P, El Mchichi B, Fabre M, Jacquemin E, Durrbach A, Samuel D, Joab I, Guettier C, Lucioni M, Paulli M, Tinguely M, Raphael M. Epstein-Barr virus infection and altered control of apoptotic pathways in posttransplant lymphoproliferative disorders. Pathobiology 2012; 80:53-9. [PMID: 22868923 DOI: 10.1159/000339722] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/25/2012] [Indexed: 11/19/2022] Open
Abstract
Posttransplant lymphoproliferative disorders (PTLD) represent a spectrum of lymphoid diseases complicating the clinical course of transplant recipients. Most PTLD are Epstein-Barr virus (EBV) associated with viral latency type III. Several in vitro studies have revealed an interaction between EBV latency proteins and molecules of the apoptosis pathway. Data on human PTLD regarding an association between Bcl-2 family proteins and EBV are scarce. We analyzed 60 primary PTLD for expression of 8 anti- (Bcl-2, Bcl-XL, and Mcl-1) and proapoptotic proteins (Bak and Bax), the so-called BH3-only proteins (Bad, Bid, Bim, and Puma), as well as the apoptosis effector cleaved PARP by immunohistochemistry. Bim and cleaved PARP were both significantly (p = 0.001 and p = 5.251e-6) downregulated in EBV-positive compared to EBV-negative PTLD [Bim: 6/40 (15%), cleaved PARP: 10/43 (23%), vs. Bim: 13/16 (81%), cleaved PARP: 12/17 (71%)]. Additionally, we observed a tendency toward increased Bcl-2 protein expression (p = 0.24) in EBV-positive PTLD. Hence, we provide evidence of a distinct regulation of Bcl-2 family proteins in EBV-positive versus negative PTLD. The low-expression pattern of the proapoptotic proteins Bim and cleaved PARP together with the high-expression pattern of the antiapoptotic protein Bcl-2 by trend in EBV-positive tumor cells suggests disruption of the apoptotic pathway by EBV in PTLD, promoting survival signals in the host cells.
Collapse
|
Journal Article |
13 |
16 |
14
|
Brandt S, Montagna C, Georgis A, Schüffler PJ, Bühler MM, Seifert B, Thiesler T, Curioni-Fontecedro A, Hegyi I, Dehler S, Martin V, Tinguely M, Soldini D. The combined expression of the stromal markers fibronectin and SPARC improves the prediction of survival in diffuse large B-cell lymphoma. Exp Hematol Oncol 2013; 2:27. [PMID: 24499539 PMCID: PMC3852975 DOI: 10.1186/2162-3619-2-27] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/30/2013] [Indexed: 01/01/2023] Open
Abstract
Background In diffuse large B-cell lymphomas, gene expression profiling studies attributed a major biologic role to non-neoplastic cells of the tumour microenvironment as its composition and characteristics were shown to predict survival. In particular, the expression of selected genes encoding components of the extracellular matrix was reported to be associated with clinical outcome. Nevertheless, the translation of these data into robust, routinely applicable immunohistochemical markers is still warranted. Therefore, in this study, we analysed the combination of the expression of the extracellular matrix components Fibronectin and SPARC on formalin-fixed paraffin embedded tissue derived from 173 patients with DLBCL in order to recapitulate gene expression profiling data. Results The expression of Fibronectin and SPARC was detected in 77/173 (44.5%) and 125/173 (72.3%) cases, respectively, and 55/173 (31.8%) cases were double positive. Patients with lymphomas expressing Fibronectin showed significantly longer overall survival when compared to negative ones (6.3 versus 3.6 years). Moreover, patients with double positive lymphomas also presented with significantly longer overall survival when compared with the remaining cases (11.6 versus 3.6 years) and this combined expression of both markers results in a better association with overall survival data than the expression of SPARC or Fibronectin taken separately (Hazard ratio 0.41, 95% confidence interval 0.17 to 0.95, p = 0.037). Finally, neither Fibronectin nor SPARC expression was associated with any of the collected clinico-pathological parameters. Conclusions The combined immunohistochemical assessment of Fibronectin and SPARC, two components of the extracellular matrix, represents an important tool for the prediction of survival in diffuse large B-cell lymphomas. Our study suggests that translation of gene expression profiling data on tumour microenvironment into routinely applicable immunohistochemical markers is a useful approach for a further characterization of this heterogeneous type of lymphoma.
Collapse
|
Journal Article |
12 |
14 |
15
|
Rupp NJ, Schüffler PJ, Zhong Q, Falkner F, Rechsteiner M, Rüschoff JH, Fankhauser C, Drach M, Largo R, Tremp M, Poyet C, Sulser T, Kristiansen G, Moch H, Buhmann J, Müntener M, Wild PJ. Oxygen supply maps for hypoxic microenvironment visualization in prostate cancer. J Pathol Inform 2016; 7:3. [PMID: 26955501 PMCID: PMC4763504 DOI: 10.4103/2153-3539.175376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/26/2015] [Indexed: 12/04/2022] Open
Abstract
Background: Intratumoral hypoxia plays an important role with regard to tumor biology and susceptibility to radio- and chemotherapy. For further investigation of hypoxia-related changes, areas of certain hypoxia must be reliably detected within cancer tissues. Pimonidazole, a 2-nitroimindazole, accumulates in hypoxic tissue and can be easily visualized using immunohistochemistry. Materials and Methods: To improve detection of highly hypoxic versus normoxic areas in prostate cancer, immunoreactivity of pimonidazole and a combination of known hypoxia-related proteins was used to create computational oxygen supply maps of prostate cancer. Pimonidazole was intravenously administered before radical prostatectomy in n = 15 patients, using the da Vinci robot-assisted surgical system. Prostatectomy specimens were immediately transferred into buffered formaldehyde, fixed overnight, and completely embedded in paraffin. Pimonidazole accumulation and hypoxia-related protein expression were visualized by immunohistochemistry. Oxygen supply maps were created using the normalized information from pimonidazole and hypoxia-related proteins. Results: Based on pimonidazole staining and other hypoxia.related proteins (osteopontin, hypoxia-inducible factor 1-alpha, and glucose transporter member 1) oxygen supply maps in prostate cancer were created. Overall, oxygen supply maps consisting of information from all hypoxia-related proteins showed high correlation and mutual information to the golden standard of pimonidazole. Here, we describe an improved computer-based ex vivo model for an accurate detection of oxygen supply in human prostate cancer tissue. Conclusions: This platform can be used for precise colocalization of novel candidate hypoxia-related proteins in a representative number of prostate cancer cases, and improve issues of single marker correlations. Furthermore, this study provides a source for further in situ tests and biochemical investigations
Collapse
|
Journal Article |
9 |
10 |
16
|
Ho DJ, Agaram NP, Schüffler PJ, Vanderbilt CM, Jean MH, Hameed MR, Fuchs TJ. Deep Interactive Learning: An Efficient Labeling Approach for Deep Learning-Based Osteosarcoma Treatment Response Assessment. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION – MICCAI 2020 2020. [DOI: 10.1007/978-3-030-59722-1_52] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
|
5 |
9 |
17
|
Kupfer B, Sing T, Schüffler P, Hall R, Kurz R, McKeown A, Schneweis KE, Eberl W, Oldenburg J, Brackmann HH, Rockstroh JK, Spengler U, Däumer MP, Kaiser R, Lengauer T, Matz B. Fifteen years of env C2V3C3 evolution in six individuals infected clonally with human immunodeficiency virus type 1. J Med Virol 2007; 79:1629-39. [PMID: 17854039 DOI: 10.1002/jmv.20976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The study of the evolution of human immunodeficiency virus type 1 (HIV-1) requires blood samples collected longitudinally and data on the approximate time point of infection. Although these requirements were fulfilled in several previous studies, the infectious sources were either unknown or heterogeneous genetically. In the present study, HIV-1 env C2V3C3 (nt 7029-7315) evolution was examined retrospectively in a cohort of hemophiliacs. Compared to other cohorts, the area of interest here was the infection of six hemophiliacs by the same virus strain, that is, the infecting viruses shared an identical genome. As expected, divergence from the founder sequence as well as interpatient divergence of the predominant virus strains increased significantly over time. Based on the V3 nucleotide sequences, CCR5 usage was predicted exclusively throughout the whole period of infection in all patients. Interestingly, common patterns of viral evolution were detected in the patients of the cohort. Four amino acid substitutions within the V3 loop emerged and persisted subsequently in five (positions 305 and 308 of the HXB2 gp120 reference sequence) and six patients (positions 325 and 328 in HXB2 gp120), respectively. These common changes within the V3 loop are likely to be enforced by HIV-1 specific immune response.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
6 |
18
|
Schüffler P, Steiger K, Weichert W. How to use AI in pathology. Genes Chromosomes Cancer 2023; 62:564-567. [PMID: 37254901 DOI: 10.1002/gcc.23178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 06/01/2023] Open
Abstract
AI plays an important role in pathology, both in clinical practice supporting pathologists in their daily work, and in research discovering novel biomarkers for improved patient care. Still, AI is in its starting phase, and many pathology labs still need to transition to a digital workflow to be able to enjoy the benefits of AI. In this perspective, we explain the major benefits of AI in pathology, highlight key requirements that need to be met and example how to use it in a typical workflow.
Collapse
|
|
2 |
6 |
19
|
Goetze S, Schüffler P, Athanasiou A, Koetemann A, Poyet C, Fankhauser CD, Wild PJ, Schiess R, Wollscheid B. Use of MS-GUIDE for identification of protein biomarkers for risk stratification of patients with prostate cancer. Clin Proteomics 2022; 19:9. [PMID: 35477343 PMCID: PMC9044739 DOI: 10.1186/s12014-022-09349-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background Non-invasive liquid biopsies could complement current pathological nomograms for risk stratification of prostate cancer patients. Development and testing of potential liquid biopsy markers is time, resource, and cost-intensive. For most protein targets, no antibodies or ELISAs for efficient clinical cohort pre-evaluation are currently available. We reasoned that mass spectrometry-based prescreening would enable the cost-effective and rational preselection of candidates for subsequent clinical-grade ELISA development. Methods Using Mass Spectrometry-GUided Immunoassay DEvelopment (MS-GUIDE), we screened 48 literature-derived biomarker candidates for their potential utility in risk stratification scoring of prostate cancer patients. Parallel reaction monitoring was used to evaluate these 48 potential protein markers in a highly multiplexed fashion in a medium-sized patient cohort of 78 patients with ground-truth prostatectomy and clinical follow-up information. Clinical-grade ELISAs were then developed for two of these candidate proteins and used for significance testing in a larger, independent patient cohort of 263 patients. Results Machine learning-based analysis of the parallel reaction monitoring data of the liquid biopsies prequalified fibronectin and vitronectin as candidate biomarkers. We evaluated their predictive value for prostate cancer biochemical recurrence scoring in an independent validation cohort of 263 prostate cancer patients using clinical-grade ELISAs. The results of our prostate cancer risk stratification test were statistically significantly 10% better than results of the current gold standards PSA alone, PSA plus prostatectomy biopsy Gleason score, or the National Comprehensive Cancer Network score in prediction of recurrence. Conclusion Using MS-GUIDE we identified fibronectin and vitronectin as candidate biomarkers for prostate cancer risk stratification. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-022-09349-x.
Collapse
|
|
3 |
5 |
20
|
Schaumberg AJ, Sirintrapun SJ, Al-Ahmadie HA, Schüffler PJ, Fuchs TJ. DeepScope: Nonintrusive Whole Slide Saliency Annotation and Prediction from Pathologists at the Microscope. COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS : ... INTERNATIONAL MEETING, CIBB ... : REVISED SELECTED PAPERS. CIBB (MEETING) 2017; 10477:42-58. [PMID: 29601065 PMCID: PMC5870882 DOI: 10.1007/978-3-319-67834-4_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Modern digital pathology departments have grown to produce whole-slide image data at petabyte scale, an unprecedented treasure chest for medical machine learning tasks. Unfortunately, most digital slides are not annotated at the image level, hindering large-scale application of supervised learning. Manual labeling is prohibitive, requiring pathologists with decades of training and outstanding clinical service responsibilities. This problem is further aggravated by the United States Food and Drug Administration's ruling that primary diagnosis must come from a glass slide rather than a digital image. We present the first end-to-end framework to overcome this problem, gathering annotations in a nonintrusive manner during a pathologist's routine clinical work: (i) microscope-specific 3D-printed commodity camera mounts are used to video record the glass-slide-based clinical diagnosis process; (ii) after routine scanning of the whole slide, the video frames are registered to the digital slide; (iii) motion and observation time are estimated to generate a spatial and temporal saliency map of the whole slide. Demonstrating the utility of these annotations, we train a convolutional neural network that detects diagnosis-relevant salient regions, then report accuracy of 85.15% in bladder and 91.40% in prostate, with 75.00% accuracy when training on prostate but predicting in bladder, despite different pathologists examining the different tissues. When training on one patient but testing on another, AUROC in bladder is 0.79±0.11 and in prostate is 0.96±0.04. Our tool is available at https://bitbucket.org/aschaumberg/deepscope.
Collapse
|
research-article |
8 |
3 |
21
|
Schüffler PJ, Stamelos E, Ahmed I, Yarlagadda DVK, Ardon O, Hanna MG, Reuter VE, Klimstra DS, Hameed M. Efficient Visualization of Whole Slide Images in Web-based Viewers for Digital Pathology. Arch Pathol Lab Med 2022; 146:1273-1280. [PMID: 34979569 PMCID: PMC10060618 DOI: 10.5858/arpa.2021-0197-oa] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Wide adoption of digital pathology requires efficient visualization and navigation in Web-based digital slide viewers, which is poorly defined. OBJECTIVE.— To define and quantify relevant performance metrics for efficient visualization of cases and slides in digital slide viewers. DESIGN.— With a universal slide viewer used in clinical routine diagnostics, we evaluated the impact of slide caching, compression type, tile, and block size of whole slide images generated from Philips, Leica, and 3DHistech scanners on streaming performance on case, slide, and field of view levels. RESULTS.— Two hundred thirty-nine pathologists routinely reviewed 60 080 whole slide images over 3 months. The median time to open a case's slides from the laboratory information system was less than 4 seconds, the time to change to a slide within the case was less than 1 second, and the time to render the adjacent field of view when navigating the slide was less than one-quarter of a second. A whole slide image's block size and a viewer tile size of 1024 pixels showed best performance to display a field of view and was preferrable over smaller tiles due to fewer mosaic effects. For Philips, fastest median slide streaming pace was 238 ms per field of view and for 3DHistech, 125 ms. For Leica, the fastest pace of 108 ms per field of view was established with block serving without decompression. CONCLUSIONS.— This is the first study to systematically assess user-centric slide visualization performance metrics for digital viewers, including time to open a case, time to change a slide, and time to change a field of view. These metrics help to improve the viewer's configuration, leading to an efficient visualization baseline that is widely accepted among pathologists using routine digital pathology.
Collapse
|
research-article |
3 |
3 |
22
|
Schüffler PJ, Ozcan GG, Al-Ahmadie H, Fuchs TJ. FlexTileSource: An OpenSeadragon Extension for Efficient Whole-Slide Image Visualization. J Pathol Inform 2021; 12:31. [PMID: 34760328 PMCID: PMC8529343 DOI: 10.4103/jpi.jpi_13_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/03/2021] [Accepted: 07/01/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Web-based digital slide viewers for pathology commonly use OpenSlide and OpenSeadragon (OSD) to access, visualize, and navigate whole-slide images (WSI). Their standard settings represent WSI as deep zoom images (DZI), a generic image pyramid structure that differs from the proprietary pyramid structure in the WSI files. The transformation from WSI to DZI is an additional, time-consuming step when rendering digital slides in the viewer, and inefficiency of digital slide viewers is a major criticism for digital pathology. AIMS To increase efficiency of digital slide visualization by serving tiles directly from the native WSI pyramid, making the transformation from WSI to DZI obsolete. METHODS We implemented a new flexible tile source for OSD that accepts arbitrary native pyramid structures instead of DZI levels. We measured its performance on a data set of 8104 WSI reviewed by 207 pathologists over 40 days in a web-based digital slide viewer used for routine diagnostics. RESULTS The new FlexTileSource accelerates the display of a field of view in general by 67 ms and even by 117 ms if the block size of the WSI and the tile size of the viewer is increased to 1024 px. We provide the code of our open-source library freely on https://github.com/schuefflerlab/openseadragon. CONCLUSIONS This is the first study to quantify visualization performance on a web-based slide viewer at scale, taking block size and tile size of digital slides into account. Quantifying performance will enable to compare and improve web-based viewers and therewith facilitate the adoption of digital pathology.
Collapse
|
research-article |
4 |
2 |
23
|
Puylaert CAJ, Tielbeek JAW, Schüffler PJ, Nio CY, Horsthuis K, Mearadji B, Ponsioen CY, Vos FM, Stoker J. Comparison of contrast-enhanced and diffusion-weighted MRI in assessment of the terminal ileum in Crohn's disease patients. Abdom Radiol (NY) 2019; 44:398-405. [PMID: 30109377 DOI: 10.1007/s00261-018-1734-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE The purpose of the study was to compare the performance of contrast-enhanced (CE)-MRI and diffusion-weighted imaging (DW)-MRI in grading Crohn's disease activity of the terminal ileum. METHODS Three readers evaluated CE-MRI, DW-MRI, and their combinations (CE/DW-MRI and DW/CE-MRI, depending on which protocol was used at the start of evaluation). Disease severity grading scores were correlated to the Crohn's Disease Endoscopic Index of Severity (CDEIS). Diagnostic accuracy, severity grading, and levels of confidence were compared between imaging protocols and interobserver agreement was calculated. RESULTS Sixty-one patients were included (30 female, median age 36). Diagnostic accuracy for active disease for CE-MRI, DW-MRI, CE/DW-MRI, and DW/CE-MRI ranged between 0.82 and 0.85, 0.75 and 0.83, 0.79 and 0.84, and 0.74 and 0.82, respectively. Severity grading correlation to CDEIS ranged between 0.70 and 0.74, 0.66 and 0.70, 0.69 and 0.75, and 0.67 and 0.74, respectively. For each reader, CE-MRI values were consistently higher than DW-MRI, albeit not significantly. Confidence levels for all readers were significantly higher for CE-MRI compared to DW-MRI (P < 0.001). Further increased confidence was seen when using combined imaging protocols. CONCLUSIONS There was no significant difference of CE-MRI and DW-MRI in determining disease activity, but the higher confidence levels may favor CE-MRI. DW-MRI is a good alternative in cases with relative contraindications for the use of intravenous contrast medium.
Collapse
|
Comparative Study |
6 |
2 |
24
|
Iwuajoku V, Haas A, Ekici K, Khan MZ, Stögbauer F, Steiger K, Mogler C, Schüffler PJ. [Digital transformation of a routine histopathology lab : Dos and don'ts!]. PATHOLOGIE (HEIDELBERG, GERMANY) 2024; 45:98-105. [PMID: 38189845 PMCID: PMC10902067 DOI: 10.1007/s00292-023-01291-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 01/09/2024]
Abstract
The implementation of digital histopathology in the laboratory marks a crucial milestone in the overall digital transformation of pathology. This shift offers a range of new possibilities, including access to extensive datasets for AI-assisted analyses, the flexibility of remote work and home office arrangements for specialists, and the expedited and simplified sharing of images and data for research, conferences, and tumor boards. However, the transition to a fully digital workflow involves significant technological and personnel-related efforts. It necessitates careful and adaptable change management to minimize disruptions, particularly in the personnel domain, and to prevent the loss of valuable potential from employees who may be resistant to change. This article consolidates our institute's experiences, highlighting technical and personnel-related challenges encountered during the transition to digital pathology. It also presents a comprehensive overview of potential difficulties at various interfaces when converting routine operations to a digital workflow.
Collapse
|
English Abstract |
1 |
1 |
25
|
Schüffler PJ, Yarlagadda DVK, Vanderbilt C, Fuchs TJ. Overcoming an Annotation Hurdle: Digitizing Pen Annotations from Whole Slide Images. J Pathol Inform 2021; 12:9. [PMID: 34012713 PMCID: PMC8112348 DOI: 10.4103/jpi.jpi_85_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 12/20/2020] [Indexed: 01/01/2023] Open
Abstract
Background: The development of artificial intelligence (AI) in pathology frequently relies on digitally annotated whole slide images (WSI). The creation of these annotations – manually drawn by pathologists in digital slide viewers – is time consuming and expensive. At the same time, pathologists routinely annotate glass slides with a pen to outline cancerous regions, for example, for molecular assessment of the tissue. These pen annotations are currently considered artifacts and excluded from computational modeling. Methods: We propose a novel method to segment and fill hand-drawn pen annotations and convert them into a digital format to make them accessible for computational models. Our method is implemented in Python as an open source, publicly available software tool. Results: Our method is able to extract pen annotations from WSI and save them as annotation masks. On a data set of 319 WSI with pen markers, we validate our algorithm segmenting the annotations with an overall Dice metric of 0.942, Precision of 0.955, and Recall of 0.943. Processing all images takes 15 min in contrast to 5 h manual digital annotation time. Further, the approach is robust against text annotations. Conclusions: We envision that our method can take advantage of already pen-annotated slides in scenarios in which the annotations would be helpful for training computational models. We conclude that, considering the large archives of many pathology departments that are currently being digitized, our method will help to collect large numbers of training samples from those data.
Collapse
|
Journal Article |
4 |
1 |