1
|
Stanaway JD, Afshin A, Gakidou E, Lim SS, Abate D, Abate KH, Abbafati C, Abbasi N, Abbastabar H, Abd-Allah F, Abdela J, Abdelalim A, Abdollahpour I, Abdulkader RS, Abebe M, Abebe Z, Abera SF, Abil OZ, Abraha HN, Abrham AR, Abu-Raddad LJ, Abu-Rmeileh NME, Accrombessi MMK, Acharya D, Acharya P, Adamu AA, Adane AA, Adebayo OM, Adedoyin RA, Adekanmbi V, Ademi Z, Adetokunboh OO, Adib MG, Admasie A, Adsuar JC, Afanvi KA, Afarideh M, Agarwal G, Aggarwal A, Aghayan SA, Agrawal A, Agrawal S, Ahmadi A, Ahmadi M, Ahmadieh H, Ahmed MB, Aichour AN, Aichour I, Aichour MTE, Akbari ME, Akinyemiju T, Akseer N, Al-Aly Z, Al-Eyadhy A, Al-Mekhlafi HM, Alahdab F, Alam K, Alam S, Alam T, Alashi A, Alavian SM, Alene KA, Ali K, Ali SM, Alijanzadeh M, Alizadeh-Navaei R, Aljunid SM, Alkerwi A, Alla F, Alsharif U, Altirkawi K, Alvis-Guzman N, Amare AT, Ammar W, Anber NH, Anderson JA, Andrei CL, Androudi S, Animut MD, Anjomshoa M, Ansha MG, Antó JM, Antonio CAT, Anwari P, Appiah LT, Appiah SCY, Arabloo J, Aremu O, Ärnlöv J, Artaman A, Aryal KK, Asayesh H, Ataro Z, Ausloos M, Avokpaho EFGA, Awasthi A, Ayala Quintanilla BP, Ayer R, Ayuk TB, Azzopardi PS, Babazadeh A, Badali H, Badawi A, Balakrishnan K, Bali AG, Ball K, Ballew SH, Banach M, Banoub JAM, Barac A, Barker-Collo SL, Bärnighausen TW, Barrero LH, Basu S, Baune BT, Bazargan-Hejazi S, Bedi N, Beghi E, Behzadifar M, Behzadifar M, Béjot Y, Bekele BB, Bekru ET, Belay E, Belay YA, Bell ML, Bello AK, Bennett DA, Bensenor IM, Bergeron G, Berhane A, Bernabe E, Bernstein RS, Beuran M, Beyranvand T, Bhala N, Bhalla A, Bhattarai S, Bhutta ZA, Biadgo B, Bijani A, Bikbov B, Bilano V, Bililign N, Bin Sayeed MS, Bisanzio D, Biswas T, Bjørge T, Blacker BF, Bleyer A, Borschmann R, Bou-Orm IR, Boufous S, Bourne R, Brady OJ, Brauer M, Brazinova A, Breitborde NJK, Brenner H, Briko AN, Britton G, Brugha T, Buchbinder R, Burnett RT, Busse R, Butt ZA, Cahill LE, Cahuana-Hurtado L, Campos-Nonato IR, Cárdenas R, Carreras G, Carrero JJ, Carvalho F, Castañeda-Orjuela CA, Castillo Rivas J, Castro F, Catalá-López F, Causey K, Cercy KM, Cerin E, Chaiah Y, Chang HY, Chang JC, Chang KL, Charlson FJ, Chattopadhyay A, Chattu VK, Chee ML, Cheng CY, Chew A, Chiang PPC, Chimed-Ochir O, Chin KL, Chitheer A, Choi JYJ, Chowdhury R, Christensen H, Christopher DJ, Chung SC, Cicuttini FM, Cirillo M, Cohen AJ, Collado-Mateo D, Cooper C, Cooper OR, Coresh J, Cornaby L, Cortesi PA, Cortinovis M, Costa M, Cousin E, Criqui MH, Cromwell EA, Cundiff DK, Daba AK, Dachew BA, Dadi AF, Damasceno AAM, Dandona L, Dandona R, Darby SC, Dargan PI, Daryani A, Das Gupta R, Das Neves J, Dasa TT, Dash AP, Davitoiu DV, Davletov K, De la Cruz-Góngora V, De La Hoz FP, De Leo D, De Neve JW, Degenhardt L, Deiparine S, Dellavalle RP, Demoz GT, Denova-Gutiérrez E, Deribe K, Dervenis N, Deshpande A, Des Jarlais DC, Dessie GA, Deveber GA, Dey S, Dharmaratne SD, Dhimal M, Dinberu MT, Ding EL, Diro HD, Djalalinia S, Do HP, Dokova K, Doku DT, Doyle KE, Driscoll TR, Dubey M, Dubljanin E, Duken EE, Duncan BB, Duraes AR, Ebert N, Ebrahimi H, Ebrahimpour S, Edvardsson D, Effiong A, Eggen AE, El Bcheraoui C, El-Khatib Z, Elyazar IR, Enayati A, Endries AY, Er B, Erskine HE, Eskandarieh S, Esteghamati A, Estep K, Fakhim H, Faramarzi M, Fareed M, Farid TA, Farinha CSES, Farioli A, Faro A, Farvid MS, Farzaei MH, Fatima B, Fay KA, Fazaeli AA, Feigin VL, Feigl AB, Fereshtehnejad SM, Fernandes E, Fernandes JC, Ferrara G, Ferrari AJ, Ferreira ML, Filip I, Finger JD, Fischer F, Foigt NA, Foreman KJ, Fukumoto T, Fullman N, Fürst T, Furtado JM, Futran ND, Gall S, Gallus S, Gamkrelidze A, Ganji M, Garcia-Basteiro AL, Gardner WM, Gebre AK, Gebremedhin AT, Gebremichael TG, Gelano TF, Geleijnse JM, Geramo YCD, Gething PW, Gezae KE, Ghadimi R, Ghadiri K, Ghasemi Falavarjani K, Ghasemi-Kasman M, Ghimire M, Ghosh R, Ghoshal AG, Giampaoli S, Gill PS, Gill TK, Gillum RF, Ginawi IA, Giussani G, Gnedovskaya EV, Godwin WW, Goli S, Gómez-Dantés H, Gona PN, Gopalani SV, Goulart AC, Grada A, Grams ME, Grosso G, Gugnani HC, Guo Y, Gupta R, Gupta R, Gupta T, Gutiérrez RA, Gutiérrez-Torres DS, Haagsma JA, Habtewold TD, Hachinski V, Hafezi-Nejad N, Hagos TB, Hailegiyorgis TT, Hailu GB, Haj-Mirzaian A, Haj-Mirzaian A, Hamadeh RR, Hamidi S, Handal AJ, Hankey GJ, Hao Y, Harb HL, Harikrishnan S, Haro JM, Hassankhani H, Hassen HY, Havmoeller R, Hawley CN, Hay SI, Hedayatizadeh-Omran A, Heibati B, Heidari B, Heidari M, Hendrie D, Henok A, Heredia-Pi I, Herteliu C, Heydarpour F, Heydarpour S, Hibstu DT, Higazi TB, Hilawe EH, Hoek HW, Hoffman HJ, Hole MK, Homaie Rad E, Hoogar P, Hosgood HD, Hosseini SM, Hosseinzadeh M, Hostiuc M, Hostiuc S, Hoy DG, Hsairi M, Hsiao T, Hu G, Hu H, Huang JJ, Hussen MA, Huynh CK, Iburg KM, Ikeda N, Ilesanmi OS, Iqbal U, Irvani SSN, Irvine CMS, Islam SMS, Islami F, Jackson MD, Jacobsen KH, Jahangiry L, Jahanmehr N, Jain SK, Jakovljevic M, James SL, Jassal SK, Jayatilleke AU, Jeemon P, Jha RP, Jha V, Ji JS, Jonas JB, Jonnagaddala J, Jorjoran Shushtari Z, Joshi A, Jozwiak JJ, Jürisson M, Kabir Z, Kahsay A, Kalani R, Kanchan T, Kant S, Kar C, Karami M, Karami Matin B, Karch A, Karema C, Karimi N, Karimi SM, Kasaeian A, Kassa DH, Kassa GM, Kassa TD, Kassebaum NJ, Katikireddi SV, Kaul A, Kawakami N, Kazemi Z, Karyani AK, Kefale AT, Keiyoro PN, Kemp GR, Kengne AP, Keren A, Kesavachandran CN, Khader YS, Khafaei B, Khafaie MA, Khajavi A, Khalid N, Khalil IA, Khan G, Khan MS, Khan MA, Khang YH, Khater MM, Khazaei M, Khazaie H, Khoja AT, Khosravi A, Khosravi MH, Kiadaliri AA, Kiirithio DN, Kim CI, Kim D, Kim YE, Kim YJ, Kimokoti RW, Kinfu Y, Kisa A, Kissimova-Skarbek K, Kivimäki M, Knibbs LD, Knudsen AKS, Kochhar S, Kokubo Y, Kolola T, Kopec JA, Kosen S, Koul PA, Koyanagi A, Kravchenko MA, Krishan K, Krohn KJ, Kromhout H, Kuate Defo B, Kucuk Bicer B, Kumar GA, Kumar M, Kuzin I, Kyu HH, Lachat C, Lad DP, Lad SD, Lafranconi A, Lalloo R, Lallukka T, Lami FH, Lang JJ, Lansingh VC, Larson SL, Latifi A, Lazarus JV, Lee PH, Leigh J, Leili M, Leshargie CT, Leung J, Levi M, Lewycka S, Li S, Li Y, Liang J, Liang X, Liao Y, Liben ML, Lim LL, Linn S, Liu S, Lodha R, Logroscino G, Lopez AD, Lorkowski S, Lotufo PA, Lozano R, Lucas TCD, Lunevicius R, Ma S, Macarayan ERK, Machado ÍE, Madotto F, Mai HT, Majdan M, Majdzadeh R, Majeed A, Malekzadeh R, Malta DC, Mamun AA, Manda AL, Manguerra H, Mansournia MA, Mantovani LG, Maravilla JC, Marcenes W, Marks A, Martin RV, Martins SCO, Martins-Melo FR, März W, Marzan MB, Massenburg BB, Mathur MR, Mathur P, Matsushita K, Maulik PK, Mazidi M, McAlinden C, McGrath JJ, McKee M, Mehrotra R, Mehta KM, Mehta V, Meier T, Mekonnen FA, Melaku YA, Melese A, Melku M, Memiah PTN, Memish ZA, Mendoza W, Mengistu DT, Mensah GA, Mensink GBM, Mereta ST, Meretoja A, Meretoja TJ, Mestrovic T, Mezgebe HB, Miazgowski B, Miazgowski T, Millear AI, Miller TR, Miller-Petrie MK, Mini GK, Mirarefin M, Mirica A, Mirrakhimov EM, Misganaw AT, Mitiku H, Moazen B, Mohajer B, Mohammad KA, Mohammadi M, Mohammadifard N, Mohammadnia-Afrouzi M, Mohammed S, Mohebi F, Mokdad AH, Molokhia M, Momeniha F, Monasta L, Moodley Y, Moradi G, Moradi-Lakeh M, Moradinazar M, Moraga P, Morawska L, Morgado-Da-Costa J, Morrison SD, Moschos MM, Mouodi S, Mousavi SM, Mozaffarian D, Mruts KB, Muche AA, Muchie KF, Mueller UO, Muhammed OS, Mukhopadhyay S, Muller K, Musa KI, Mustafa G, Nabhan AF, Naghavi M, Naheed A, Nahvijou A, Naik G, Naik N, Najafi F, Nangia V, Nansseu JR, Nascimento BR, Neal B, Neamati N, Negoi I, Negoi RI, Neupane S, Newton CRJ, Ngunjiri JW, Nguyen AQ, Nguyen G, Nguyen HT, Nguyen HLT, Nguyen HT, Nguyen M, Nguyen NB, Nichols E, Nie J, Ningrum DNA, Nirayo YL, Nishi N, Nixon MR, Nojomi M, Nomura S, Norheim OF, Noroozi M, Norrving B, Noubiap JJ, Nouri HR, Nourollahpour Shiadeh M, Nowroozi MR, Nsoesie EO, Nyasulu PS, Obermeyer CM, Odell CM, Ofori-Asenso R, Ogbo FA, Oh IH, Oladimeji O, Olagunju AT, Olagunju TO, Olivares PR, Olsen HE, Olusanya BO, Olusanya JO, Ong KL, Ong SK, Oren E, Orpana HM, Ortiz A, Ota E, Otstavnov SS, Øverland S, Owolabi MO, P A M, Pacella R, Pakhare AP, Pakpour AH, Pana A, Panda-Jonas S, Park EK, Parry CDH, Parsian H, Patel S, Pati S, Patil ST, Patle A, Patton GC, Paudel D, Paulson KR, Paz Ballesteros WC, Pearce N, Pereira A, Pereira DM, Perico N, Pesudovs K, Petzold M, Pham HQ, Phillips MR, Pillay JD, Piradov MA, Pirsaheb M, Pischon T, Pishgar F, Plana-Ripoll O, Plass D, Polinder S, Polkinghorne KR, Postma MJ, Poulton R, Pourshams A, Poustchi H, Prabhakaran D, Prakash S, Prasad N, Purcell CA, Purwar MB, Qorbani M, Radfar A, Rafay A, Rafiei A, Rahim F, Rahimi Z, Rahimi-Movaghar A, Rahimi-Movaghar V, Rahman M, Rahman MHU, Rahman MA, Rai RK, Rajati F, Rajsic S, Raju SB, Ram U, Ranabhat CL, Ranjan P, Rath GK, Rawaf DL, Rawaf S, Reddy KS, Rehm CD, Rehm J, Reiner RC, Reitsma MB, Remuzzi G, Renzaho AMN, Resnikoff S, Reynales-Shigematsu LM, Rezaei S, Ribeiro ALP, Rivera JA, Roba KT, Rodríguez-Ramírez S, Roever L, Román Y, Ronfani L, Roshandel G, Rostami A, Roth GA, Rothenbacher D, Roy A, Rubagotti E, Rushton L, Sabanayagam C, Sachdev PS, Saddik B, Sadeghi E, Saeedi Moghaddam S, Safari H, Safari Y, Safari-Faramani R, Safdarian M, Safi S, Safiri S, Sagar R, Sahebkar A, Sahraian MA, Sajadi HS, Salam N, Salamati P, Saleem Z, Salimi Y, Salimzadeh H, Salomon JA, Salvi DD, Salz I, Samy AM, Sanabria J, Sanchez-Niño MD, Sánchez-Pimienta TG, Sanders T, Sang Y, Santomauro DF, Santos IS, Santos JV, Santric Milicevic MM, Sao Jose BP, Sardana M, Sarker AR, Sarmiento-Suárez R, Sarrafzadegan N, Sartorius B, Sarvi S, Sathian B, Satpathy M, Sawant AR, Sawhney M, Saylan M, Sayyah M, Schaeffner E, Schmidt MI, Schneider IJC, Schöttker B, Schutte AE, Schwebel DC, Schwendicke F, Scott JG, Seedat S, Sekerija M, Sepanlou SG, Serre ML, Serván-Mori E, Seyedmousavi S, Shabaninejad H, Shaddick G, Shafieesabet A, Shahbazi M, Shaheen AA, Shaikh MA, Shamah Levy T, Shams-Beyranvand M, Shamsi M, Sharafi H, Sharafi K, Sharif M, Sharif-Alhoseini M, Sharifi H, Sharma J, Sharma M, Sharma R, She J, Sheikh A, Shi P, Shibuya K, Shiferaw MS, Shigematsu M, Shin MJ, Shiri R, Shirkoohi R, Shiue I, Shokraneh F, Shoman H, Shrime MG, Shupler MS, Si S, Siabani S, Sibai AM, Siddiqi TJ, Sigfusdottir ID, Sigurvinsdottir R, Silva DAS, Silva JP, Silveira DGA, Singh JA, Singh NP, Singh V, Sinha DN, Skiadaresi E, Skirbekk V, Smith DL, Smith M, Sobaih BH, Sobhani S, Somayaji R, Soofi M, Sorensen RJD, Soriano JB, Soyiri IN, Spinelli A, Sposato LA, Sreeramareddy CT, Srinivasan V, Starodubov VI, Steckling N, Stein DJ, Stein MB, Stevanovic G, Stockfelt L, Stokes MA, Sturua L, Subart ML, Sudaryanto A, Sufiyan MB, Sulo G, Sunguya BF, Sur PJ, Sykes BL, Szoeke CEI, Tabarés-Seisdedos R, Tabuchi T, Tadakamadla SK, Takahashi K, Tandon N, Tassew SG, Tavakkoli M, Taveira N, Tehrani-Banihashemi A, Tekalign TG, Tekelemedhin SW, Tekle MG, Temesgen H, Temsah MH, Temsah O, Terkawi AS, Tessema B, Teweldemedhin M, Thankappan KR, Theis A, Thirunavukkarasu S, Thomas HJ, Thomas ML, Thomas N, Thurston GD, Tilahun B, Tillmann T, To QG, Tobollik M, Tonelli M, Topor-Madry R, Torre AE, Tortajada-Girbés M, Touvier M, Tovani-Palone MR, Towbin JA, Tran BX, Tran KB, Truelsen TC, Truong NT, Tsadik AG, Tudor Car L, Tuzcu EM, Tymeson HD, Tyrovolas S, Ukwaja KN, Ullah I, Updike RL, Usman MS, Uthman OA, Vaduganathan M, Vaezi A, Valdez PR, Van Donkelaar A, Varavikova E, Varughese S, Vasankari TJ, Venkateswaran V, Venketasubramanian N, Villafaina S, Violante FS, Vladimirov SK, Vlassov V, Vollset SE, Vos T, Vosoughi K, Vu GT, Vujcic IS, Wagnew FS, Waheed Y, Waller SG, Walson JL, Wang Y, Wang Y, Wang YP, Weiderpass E, Weintraub RG, Weldegebreal F, Werdecker A, Werkneh AA, West JJ, Westerman R, Whiteford HA, Widecka J, Wijeratne T, Winkler AS, Wiyeh AB, Wiysonge CS, Wolfe CDA, Wong TY, Wu S, Xavier D, Xu G, Yadgir S, Yadollahpour A, Yahyazadeh Jabbari SH, Yamada T, Yan LL, Yano Y, Yaseri M, Yasin YJ, Yeshaneh A, Yimer EM, Yip P, Yisma E, Yonemoto N, Yoon SJ, Yotebieng M, Younis MZ, Yousefifard M, Yu C, Zaidi Z, Zaman SB, Zamani M, Zavala-Arciniega L, Zhang AL, Zhang H, Zhang K, Zhou M, Zimsen SRM, Zodpey S, Murray CJL. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392:1923-1994. [PMID: 30496105 PMCID: PMC6227755 DOI: 10.1016/s0140-6736(18)32225-6] [Citation(s) in RCA: 2786] [Impact Index Per Article: 398.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk-outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk-outcome pairs, and new data on risk exposure levels and risk-outcome associations. METHODS We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk-outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017. FINDINGS In 2017, 34·1 million (95% uncertainty interval [UI] 33·3-35·0) deaths and 1·21 billion (1·14-1·28) DALYs were attributable to GBD risk factors. Globally, 61·0% (59·6-62·4) of deaths and 48·3% (46·3-50·2) of DALYs were attributed to the GBD 2017 risk factors. When ranked by risk-attributable DALYs, high systolic blood pressure (SBP) was the leading risk factor, accounting for 10·4 million (9·39-11·5) deaths and 218 million (198-237) DALYs, followed by smoking (7·10 million [6·83-7·37] deaths and 182 million [173-193] DALYs), high fasting plasma glucose (6·53 million [5·23-8·23] deaths and 171 million [144-201] DALYs), high body-mass index (BMI; 4·72 million [2·99-6·70] deaths and 148 million [98·6-202] DALYs), and short gestation for birthweight (1·43 million [1·36-1·51] deaths and 139 million [131-147] DALYs). In total, risk-attributable DALYs declined by 4·9% (3·3-6·5) between 2007 and 2017. In the absence of demographic changes (ie, population growth and ageing), changes in risk exposure and risk-deleted DALYs would have led to a 23·5% decline in DALYs during that period. Conversely, in the absence of changes in risk exposure and risk-deleted DALYs, demographic changes would have led to an 18·6% increase in DALYs during that period. The ratios of observed risk exposure levels to exposure levels expected based on SDI (O/E ratios) increased globally for unsafe drinking water and household air pollution between 1990 and 2017. This result suggests that development is occurring more rapidly than are changes in the underlying risk structure in a population. Conversely, nearly universal declines in O/E ratios for smoking and alcohol use indicate that, for a given SDI, exposure to these risks is declining. In 2017, the leading Level 4 risk factor for age-standardised DALY rates was high SBP in four super-regions: central Europe, eastern Europe, and central Asia; north Africa and Middle East; south Asia; and southeast Asia, east Asia, and Oceania. The leading risk factor in the high-income super-region was smoking, in Latin America and Caribbean was high BMI, and in sub-Saharan Africa was unsafe sex. O/E ratios for unsafe sex in sub-Saharan Africa were notably high, and those for alcohol use in north Africa and the Middle East were notably low. INTERPRETATION By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning. FUNDING Bill & Melinda Gates Foundation.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
2786 |
2
|
Feigin VL, Nichols E, Alam T, Bannick MS, Beghi E, Blake N, Culpepper WJ, Dorsey ER, Elbaz A, Ellenbogen RG, Fisher JL, Fitzmaurice C, Giussani G, Glennie L, James SL, Johnson CO, Kassebaum NJ, Logroscino G, Marin B, Mountjoy-Venning WC, Nguyen M, Ofori-Asenso R, Patel AP, Piccininni M, Roth GA, Steiner TJ, Stovner LJ, Szoeke CEI, Theadom A, Vollset SE, Wallin MT, Wright C, Zunt JR, Abbasi N, Abd-Allah F, Abdelalim A, Abdollahpour I, Aboyans V, Abraha HN, Acharya D, Adamu AA, Adebayo OM, Adeoye AM, Adsuar JC, Afarideh M, Agrawal S, Ahmadi A, Ahmed MB, Aichour AN, Aichour I, Aichour MTE, Akinyemi RO, Akseer N, Al-Eyadhy A, Al-Shahi Salman R, Alahdab F, Alene KA, Aljunid SM, Altirkawi K, Alvis-Guzman N, Anber NH, Antonio CAT, Arabloo J, Aremu O, Ärnlöv J, Asayesh H, Asghar RJ, Atalay HT, Awasthi A, Ayala Quintanilla BP, Ayuk TB, Badawi A, Banach M, Banoub JAM, Barboza MA, Barker-Collo SL, Bärnighausen TW, Baune BT, Bedi N, Behzadifar M, Behzadifar M, Béjot Y, Bekele BB, Belachew AB, Bennett DA, Bensenor IM, Berhane A, Beuran M, Bhattacharyya K, Bhutta ZA, Biadgo B, Bijani A, Bililign N, Bin Sayeed MS, Blazes CK, Brayne C, Butt ZA, Campos-Nonato IR, Cantu-Brito C, Car M, Cárdenas R, Carrero JJ, Carvalho F, Castañeda-Orjuela CA, Castro F, Catalá-López F, Cerin E, Chaiah Y, Chang JC, Chatziralli I, Chiang PPC, Christensen H, Christopher DJ, Cooper C, Cortesi PA, Costa VM, Criqui MH, Crowe CS, Damasceno AAM, Daryani A, De la Cruz-Góngora V, De la Hoz FP, De Leo D, Demoz GT, Deribe K, Dharmaratne SD, Diaz D, Dinberu MT, Djalalinia S, Doku DT, Dubey M, Dubljanin E, Duken EE, Edvardsson D, El-Khatib Z, Endres M, Endries AY, Eskandarieh S, Esteghamati A, Esteghamati S, Farhadi F, Faro A, Farzadfar F, Farzaei MH, Fatima B, Fereshtehnejad SM, Fernandes E, Feyissa GT, Filip I, Fischer F, Fukumoto T, Ganji M, Gankpe FG, Garcia-Gordillo MA, Gebre AK, Gebremichael TG, Gelaw BK, Geleijnse JM, Geremew D, Gezae KE, Ghasemi-Kasman M, Gidey MY, Gill PS, Gill TK, Girma ET, Gnedovskaya EV, Goulart AC, Grada A, Grosso G, Guo Y, Gupta R, Gupta R, Haagsma JA, Hagos TB, Haj-Mirzaian A, Haj-Mirzaian A, Hamadeh RR, Hamidi S, Hankey GJ, Hao Y, Haro JM, Hassankhani H, Hassen HY, Havmoeller R, Hay SI, Hegazy MI, Heidari B, Henok A, Heydarpour F, Hoang CL, Hole MK, Homaie Rad E, Hosseini SM, Hu G, Igumbor EU, Ilesanmi OS, Irvani SSN, Islam SMS, Jakovljevic M, Javanbakht M, Jha RP, Jobanputra YB, Jonas JB, Jozwiak JJ, Jürisson M, Kahsay A, Kalani R, Kalkonde Y, Kamil TA, Kanchan T, Karami M, Karch A, Karimi N, Kasaeian A, Kassa TD, Kassa ZY, Kaul A, Kefale AT, Keiyoro PN, Khader YS, Khafaie MA, Khalil IA, Khan EA, Khang YH, Khazaie H, Kiadaliri AA, Kiirithio DN, Kim AS, Kim D, Kim YE, Kim YJ, Kisa A, Kokubo Y, Koyanagi A, Krishnamurthi RV, Kuate Defo B, Kucuk Bicer B, Kumar M, Lacey B, Lafranconi A, Lansingh VC, Latifi A, Leshargie CT, Li S, Liao Y, Linn S, Lo WD, Lopez JCF, Lorkowski S, Lotufo PA, Lucas RM, Lunevicius R, Mackay MT, Mahotra NB, Majdan M, Majdzadeh R, Majeed A, Malekzadeh R, Malta DC, Manafi N, Mansournia MA, Mantovani LG, März W, Mashamba-Thompson TP, Massenburg BB, Mate KKV, McAlinden C, McGrath JJ, Mehta V, Meier T, Meles HG, Melese A, Memiah PTN, Memish ZA, Mendoza W, Mengistu DT, Mengistu G, Meretoja A, Meretoja TJ, Mestrovic T, Miazgowski B, Miazgowski T, Miller TR, Mini GK, Mirrakhimov EM, Moazen B, Mohajer B, Mohammad Gholi Mezerji N, Mohammadi M, Mohammadi-Khanaposhtani M, Mohammadibakhsh R, Mohammadnia-Afrouzi M, Mohammed S, Mohebi F, Mokdad AH, Monasta L, Mondello S, Moodley Y, Moosazadeh M, Moradi G, Moradi-Lakeh M, Moradinazar M, Moraga P, Moreno Velásquez I, Morrison SD, Mousavi SM, Muhammed OS, Muruet W, Musa KI, Mustafa G, Naderi M, Nagel G, Naheed A, Naik G, Najafi F, Nangia V, Negoi I, Negoi RI, Newton CRJ, Ngunjiri JW, Nguyen CT, Nguyen LH, Ningrum DNA, Nirayo YL, Nixon MR, Norrving B, Noubiap JJ, Nourollahpour Shiadeh M, Nyasulu PS, Ogah OS, Oh IH, Olagunju AT, Olagunju TO, Olivares PR, Onwujekwe OE, Oren E, Owolabi MO, PA M, Pakpour AH, Pan WH, Panda-Jonas S, Pandian JD, Patel SK, Pereira DM, Petzold M, Pillay JD, Piradov MA, Polanczyk GV, Polinder S, Postma MJ, Poulton R, Poustchi H, Prakash S, Prakash V, Qorbani M, Radfar A, Rafay A, Rafiei A, Rahim F, Rahimi-Movaghar V, Rahman M, Rahman MHU, Rahman MA, Rajati F, Ram U, Ranta A, Rawaf DL, Rawaf S, Reinig N, Reis C, Renzaho AMN, Resnikoff S, Rezaeian S, Rezai MS, Rios González CM, Roberts NLS, Roever L, Ronfani L, Roro EM, Roshandel G, Rostami A, Sabbagh P, Sacco RL, Sachdev PS, Saddik B, Safari H, Safari-Faramani R, Safi S, Safiri S, Sagar R, Sahathevan R, Sahebkar A, Sahraian MA, Salamati P, Salehi Zahabi S, Salimi Y, Samy AM, Sanabria J, Santos IS, Santric Milicevic MM, Sarrafzadegan N, Sartorius B, Sarvi S, Sathian B, Satpathy M, Sawant AR, Sawhney M, Schneider IJC, Schöttker B, Schwebel DC, Seedat S, Sepanlou SG, Shabaninejad H, Shafieesabet A, Shaikh MA, Shakir RA, Shams-Beyranvand M, Shamsizadeh M, Sharif M, Sharif-Alhoseini M, She J, Sheikh A, Sheth KN, Shigematsu M, Shiri R, Shirkoohi R, Shiue I, Siabani S, Siddiqi TJ, Sigfusdottir ID, Sigurvinsdottir R, Silberberg DH, Silva JP, Silveira DGA, Singh JA, Sinha DN, Skiadaresi E, Smith M, Sobaih BH, Sobhani S, Soofi M, Soyiri IN, Sposato LA, Stein DJ, Stein MB, Stokes MA, Sufiyan MB, Sykes BL, Sylaja PN, Tabarés-Seisdedos R, Te Ao BJ, Tehrani-Banihashemi A, Temsah MH, Temsah O, Thakur JS, Thrift AG, Topor-Madry R, Tortajada-Girbés M, Tovani-Palone MR, Tran BX, Tran KB, Truelsen TC, Tsadik AG, Tudor Car L, Ukwaja KN, Ullah I, Usman MS, Uthman OA, Valdez PR, Vasankari TJ, Vasanthan R, Veisani Y, Venketasubramanian N, Violante FS, Vlassov V, Vosoughi K, Vu GT, Vujcic IS, Wagnew FS, Waheed Y, Wang YP, Weiderpass E, Weiss J, Whiteford HA, Wijeratne T, Winkler AS, Wiysonge CS, Wolfe CDA, Xu G, Yadollahpour A, Yamada T, Yano Y, Yaseri M, Yatsuya H, Yimer EM, Yip P, Yisma E, Yonemoto N, Yousefifard M, Yu C, Zaidi Z, Zaman SB, Zamani M, Zandian H, Zare Z, Zhang Y, Zodpey S, Naghavi M, Murray CJL, Vos T. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18:459-480. [PMID: 30879893 PMCID: PMC6459001 DOI: 10.1016/s1474-4422(18)30499-x] [Citation(s) in RCA: 2647] [Impact Index Per Article: 441.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/31/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders. METHODS We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach. FINDINGS Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247-308]) and second leading cause of deaths (9·0 million [8·8-9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34-44] and DALYs by 15% [9-21]) whereas their age-standardised rates decreased (deaths by 28% [26-30] and DALYs by 27% [24-31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6-46·1]), migraine (16·3% [11·7-20·8]), Alzheimer's and other dementias (10·4% [9·0-12·1]), and meningitis (7·9% [6·6-10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05-1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5-90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8-35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8-17·5] of DALYs are risk attributable). INTERPRETATION Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies. FUNDING Bill & Melinda Gates Foundation.
Collapse
|
Research Support, N.I.H., Extramural |
6 |
2647 |
3
|
Kyu HH, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, Abbastabar H, Abd-Allah F, Abdela J, Abdelalim A, Abdollahpour I, Abdulkader RS, Abebe M, Abebe Z, Abil OZ, Aboyans V, Abrham AR, Abu-Raddad LJ, Abu-Rmeileh NME, Accrombessi MMK, Acharya D, Acharya P, Ackerman IN, Adamu AA, Adebayo OM, Adekanmbi V, Ademi Z, Adetokunboh OO, Adib MG, Adsuar JC, Afanvi KA, Afarideh M, Afshin A, Agarwal G, Agesa KM, Aggarwal R, Aghayan SA, Agrawal A, Ahmadi A, Ahmadi M, Ahmadieh H, Ahmed MB, Ahmed S, Aichour AN, Aichour I, Aichour MTE, Akinyemiju T, Akseer N, Al-Aly Z, Al-Eyadhy A, Al-Mekhlafi HM, Al-Raddadi RM, Alahdab F, Alam K, Alam T, Alashi A, Alavian SM, Alene KA, Alijanzadeh M, Alizadeh-Navaei R, Aljunid SM, Alkerwi A, Alla F, Allebeck P, Alonso J, Alsharif U, Altirkawi K, Alvis-Guzman N, Aminde LN, Amini E, Amiresmaili M, Ammar W, Amoako YA, Anber NH, Andrei CL, Androudi S, Animut MD, Anjomshoa M, Ansha MG, Antonio CAT, Anwari P, Arabloo J, Aremu O, Ärnlöv J, Arora A, Arora M, Artaman A, Aryal KK, Asayesh H, Ataro Z, Ausloos M, Avila-Burgos L, Avokpaho EFGA, Awasthi A, Ayala Quintanilla BP, Ayer R, Azzopardi PS, Babazadeh A, Badali H, Balakrishnan K, Bali AG, Banach M, Banoub JAM, Barac A, Barboza MA, Barker-Collo SL, Bärnighausen TW, Barquera S, Barrero LH, Bazargan-Hejazi S, Bedi N, Beghi E, Behzadifar M, Behzadifar M, Bekele BB, Bekru ET, Belachew AB, Belay YA, Bell ML, Bello AK, Bennett DA, Bensenor IM, Berhane A, Bernabe E, Bernstein RS, Beuran M, Beyranvand T, Bhala N, Bhatt S, Bhaumik S, Bhutta ZA, Biadgo B, Biehl MH, Bijani A, Bikbov B, Bilano V, Bililign N, Bin Sayeed MS, Bisanzio D, Bjørge T, Bleyer A, Bobasa EM, Bou-Orm IR, Boufous S, Bourne R, Brady OJ, Brant LC, Brayne C, Brazinova A, Breitborde NJK, Brenner H, Briant PS, Briko AN, Britton G, Brugha T, Buchbinder R, Busse R, Butt ZA, Cahuana-Hurtado L, Campuzano Rincon JC, Cano J, Cárdenas R, Carrero JJ, Carter A, Carvalho F, Castañeda-Orjuela CA, Castillo Rivas J, Castro F, Catalá-López F, Cercy KM, Cerin E, Chaiah Y, Chang JC, Charlson FJ, Chattu VK, Chiang PPC, Chitheer A, Choi JYJ, Christensen H, Christopher DJ, Chung SC, Cicuttini FM, Cirillo M, Collado-Mateo D, Cooper C, Cortesi PA, Cortinovis M, Cousin E, Criqui MH, Cromwell EA, Cross M, Crump JA, Daba AK, Dachew BA, Dadi AF, Dandona L, Dandona R, Dargan PI, Daryani A, Das Gupta R, Das Neves J, Dasa TT, Davitoiu DV, De La Hoz FP, De Leo D, De Neve JW, De Steur H, Degefa MG, Degenhardt L, Deiparine S, Demoz GT, Denova-Gutiérrez E, Deribe K, Dervenis N, Des Jarlais DC, Dey S, Dharmaratne SD, Dhimal M, Dinberu MT, Dirac MA, Djalalinia S, Doan L, Dokova K, Doku DT, Dorsey ER, Doyle KE, Driscoll TR, Dubey M, Dubljanin E, Duken EE, Duncan BB, Duraes AR, Ebrahimi H, Ebrahimpour S, Echko MM, Edessa D, Edvardsson D, Effiong A, Eggen AE, Ehrlich JR, El Bcheraoui C, El-Khatib Z, Elyazar IRF, Enayati A, Endalifer ML, Endries AY, Er B, Erskine HE, Eskandarieh S, Esteghamati A, Esteghamati S, Fakhim H, Faramarzi M, Fareed M, Farhadi F, Farid TA, Farinha CSES, Farioli A, Faro A, Farzadfar F, Fazaeli AA, Feigin VL, Fentahun N, Fereshtehnejad SM, Fernandes E, Fernandes JC, Ferrari AJ, Ferreira ML, Filip I, Fischer F, Fitzmaurice C, Foigt NA, Foreman KJ, Frank TD, Fukumoto T, Fullman N, Fürst T, Furtado JM, Gakidou E, Gall S, Gallus S, Ganji M, Garcia-Basteiro AL, Gardner WM, Gebre AK, Gebremedhin AT, Gebremichael TG, Gelano TF, Geleijnse JM, Genova-Maleras R, Geramo YCD, Gething PW, Gezae KE, Ghadami MR, Ghadiri K, Ghasemi-Kasman M, Ghimire M, Ghoshal AG, Gill PS, Gill TK, Ginawi IA, Giussani G, Gnedovskaya EV, Goldberg EM, Goli S, Gómez-Dantés H, Gona PN, Gopalani SV, Gorman TM, Goulart AC, Goulart BNG, Grada A, Grosso G, Gugnani HC, Guillemin F, Guo Y, Gupta PC, Gupta R, Gupta R, Gupta T, Gutiérrez RA, Gyawali B, Haagsma JA, Hachinski V, Hafezi-Nejad N, Haghparast Bidgoli H, Hagos TB, Hailegiyorgis TT, Haj-Mirzaian A, Haj-Mirzaian A, Hamadeh RR, Hamidi S, Handal AJ, Hankey GJ, Hao Y, Harb HL, Harikrishnan S, Haririan H, Haro JM, Hassankhani H, Hassen HY, Havmoeller R, Hay RJ, Hay SI, Hedayatizadeh-Omran A, Heibati B, Hendrie D, Henok A, Heredia-Pi I, Herteliu C, Heydarpour F, Heydarpour P, Hibstu DT, Hoek HW, Hoffman HJ, Hole MK, Homaie Rad E, Hoogar P, Hosgood HD, Hosseini SM, Hosseinzadeh M, Hostiuc M, Hostiuc S, Hotez PJ, Hoy DG, Hsairi M, Htet AS, Huang JJ, Iburg KM, Ikeda CT, Ilesanmi OS, Irvani SSN, Irvine CMS, Islam SMS, Islami F, Jacobsen KH, Jahangiry L, Jahanmehr N, Jain SK, Jakovljevic M, James SL, Jayatilleke AU, Jeemon P, Jha RP, Jha V, Ji JS, Johnson CO, Jonas JB, Jonnagaddala J, Jorjoran Shushtari Z, Joshi A, Jozwiak JJ, Jungari SB, Jürisson M, Kabir Z, Kadel R, Kahsay A, Kalani R, Kanchan T, Kar C, Karami M, Karami Matin B, Karch A, Karema C, Karimi N, Karimi SM, Kasaeian A, Kassa DH, Kassa GM, Kassa TD, Kassebaum NJ, Katikireddi SV, Kaul A, Kawakami N, Kazemi Z, Karyani AK, Keighobadi MM, Keiyoro PN, Kemmer L, Kemp GR, Kengne AP, Keren A, Khader YS, Khafaei B, Khafaie MA, Khajavi A, Khalid N, Khalil IA, Khan EA, Khan MS, Khan MA, Khang YH, Khater MM, Khazaei M, Khoja AT, Khosravi A, Khosravi MH, Kiadaliri AA, Kidanemariam ZT, Kiirithio DN, Kim CI, Kim D, Kim YE, Kim YJ, Kimokoti RW, Kinfu Y, Kisa A, Kissimova-Skarbek K, Knudsen AKS, Kocarnik JM, Kochhar S, Kokubo Y, Kolola T, Kopec JA, Kosen S, Kotsakis GA, Koul PA, Koyanagi A, Krishan K, Krishnaswami S, Krohn KJ, Kuate Defo B, Kucuk Bicer B, Kumar GA, Kumar M, Kuzin I, Lad DP, Lad SD, Lafranconi A, Lalloo R, Lallukka T, Lami FH, Lang JJ, Langan SM, Lansingh VC, Latifi A, Lau KMM, Lazarus JV, Leasher JL, Ledesma JR, Lee PH, Leigh J, Leili M, Leshargie CT, Leung J, Levi M, Lewycka S, Li S, Li Y, Liang X, Liao Y, Liben ML, Lim LL, Lim SS, Limenih MA, Linn S, Liu S, Looker KJ, Lopez AD, Lorkowski S, Lotufo PA, Lozano R, Lucas TCD, Lunevicius R, Lyons RA, Ma S, Macarayan ERK, Mackay MT, Maddison ER, Madotto F, Maghavani DP, Mai HT, Majdan M, Majdzadeh R, Majeed A, Malekzadeh R, Malta DC, Mamun AA, Manda AL, Manguerra H, Mansournia MA, Mantilla Herrera AM, Mantovani LG, Maravilla JC, Marcenes W, Marks A, Martins-Melo FR, Martopullo I, März W, Marzan MB, Massano J, Massenburg BB, Mathur MR, Maulik PK, Mazidi M, McAlinden C, McGrath JJ, McKee M, McMahon BJ, Mehata S, Mehrotra R, Mehta KM, Mehta V, Mejia-Rodriguez F, Mekonen T, Melese A, Melku M, Memiah PTN, Memish ZA, Mendoza W, Mengistu G, Mensah GA, Mereta ST, Meretoja A, Meretoja TJ, Mestrovic T, Miazgowski B, Miazgowski T, Millear AI, Miller TR, Mini GK, Mirarefin M, Mirica A, Mirrakhimov EM, Misganaw AT, Mitchell PB, Mitiku H, Moazen B, Mohajer B, Mohammad KA, Mohammadi M, Mohammadifard N, Mohammadnia-Afrouzi M, Mohammed MA, Mohammed S, Mohebi F, Mokdad AH, Molokhia M, Monasta L, Montañez JC, Moosazadeh M, Moradi G, Moradi M, Moradi-Lakeh M, Moradinazar M, Moraga P, Morawska L, Moreno Velásquez I, Morgado-Da-Costa J, Morrison SD, Moschos MM, Mousavi SM, Mruts KB, Muche AA, Muchie KF, Mueller UO, Muhammed OS, Mukhopadhyay S, Muller K, Mumford JE, Murthy GVS, Musa KI, Mustafa G, Nabhan AF, Nagata C, Nagel G, Naghavi M, Naheed A, Nahvijou A, Naik G, Najafi F, Nam HS, Nangia V, Nansseu JR, Neamati N, Negoi I, Negoi RI, Neupane S, Newton CRJ, Ngunjiri JW, Nguyen AQ, Nguyen G, Nguyen HT, Nguyen HLT, Nguyen HT, Nguyen LH, Nguyen M, Nguyen NB, Nguyen SH, Nichols E, Ningrum DNA, Nixon MR, Nomura S, Noroozi M, Norrving B, Noubiap JJ, Nouri HR, Shiadeh MN, Nowroozi MR, Nsoesie EO, Nyasulu PS, Odell CM, Ofori-Asenso R, Ogbo FA, Oh IH, Oladimeji O, Olagunju AT, Olagunju TO, Olivares PR, Olsen HE, Olusanya BO, Olusanya JO, Ong KL, Ong SK, Oren E, Ortiz A, Ota E, Otstavnov SS, Øverland S, Owolabi MO, P A M, Pacella R, Pakhare AP, Pakpour AH, Pana A, Panda-Jonas S, Park EK, Park J, Parry CDH, Parsian H, Pasdar Y, Patel S, Patil ST, Patle A, Patton GC, Paturi VR, Paudel D, Paulson KR, Pearce N, Pereira A, Pereira DM, Perico N, Pesudovs K, Petzold M, Pham HQ, Phillips MR, Pigott DM, Pillay JD, Piradov MA, Pirsaheb M, Pishgar F, Plana-Ripoll O, Polinder S, Popova S, Postma MJ, Pourshams A, Poustchi H, Prabhakaran D, Prakash S, Prakash V, Prasad N, Purcell CA, Qorbani M, Quistberg DA, Radfar A, Rafay A, Rafiei A, Rahim F, Rahimi K, Rahimi Z, Rahimi-Movaghar A, Rahimi-Movaghar V, Rahman M, Rahman MHU, Rahman MA, Rahman SU, Rai RK, Rajati F, Ranjan P, Rao PC, Rasella D, Rawaf DL, Rawaf S, Reddy KS, Reiner RC, Reitsma MB, Remuzzi G, Renzaho AMN, Resnikoff S, Rezaei S, Rezai MS, Ribeiro ALP, Roberts NLS, Robinson SR, Roever L, Ronfani L, Roshandel G, Rostami A, Roth GA, Rothenbacher D, Rubagotti E, Sachdev PS, Sadat N, Sadeghi E, Saeedi Moghaddam S, Safari H, Safari Y, Safari-Faramani R, Safdarian M, Safi S, Safiri S, Sagar R, Sahebkar A, Sahraian MA, Sajadi HS, Salam N, Salama JS, Salamati P, Saleem Z, Salimi Y, Salimzadeh H, Salomon JA, Salvi SS, Salz I, Samy AM, Sanabria J, Sanchez-Niño MD, Santomauro DF, Santos IS, Santos JV, Santric Milicevic MM, Sao Jose BP, Sardana M, Sarker AR, Sarmiento-Suárez R, Sarrafzadegan N, Sartorius B, Sarvi S, Sathian B, Satpathy M, Sawant AR, Sawhney M, Saxena S, Schaeffner E, Schmidt MI, Schneider IJC, Schutte AE, Schwebel DC, Schwendicke F, Scott JG, Sekerija M, Sepanlou SG, Serván-Mori E, Seyedmousavi S, Shabaninejad H, Shafieesabet A, Shahbazi M, Shaheen AA, Shaikh MA, Shams-Beyranvand M, Shamsi M, Sharafi H, Sharafi K, Sharif M, Sharif-Alhoseini M, Sharma J, Sharma R, She J, Sheikh A, Shi P, Shibuya K, Shiferaw MS, Shigematsu M, Shiri R, Shirkoohi R, Shiue I, Shokoohinia Y, Shokraneh F, Shoman H, Shrime MG, Si S, Siabani S, Sibai AM, Siddiqi TJ, Sigfusdottir ID, Sigurvinsdottir R, Silva DAS, Silva JP, Silveira DGA, Singam NSV, Singh JA, Singh NP, Singh V, Sinha DN, Skiadaresi E, Skirbekk V, Sliwa K, Smith DL, Smith M, Soares Filho AM, Sobaih BH, Sobhani S, Soofi M, Sorensen RJD, Soriano JB, Soyiri IN, Sposato LA, Sreeramareddy CT, Srinivasan V, Stanaway JD, Starodubov VI, Stein DJ, Steiner C, Steiner TJ, Stokes MA, Stovner LJ, Subart ML, Sudaryanto A, Sufiyan MB, Sulo G, Sunguya BF, Sur PJ, Sykes BL, Sylaja PN, Sylte DO, Szoeke CEI, Tabarés-Seisdedos R, Tabuchi T, Tadakamadla SK, Tandon N, Tassew SG, Tavakkoli M, Taveira N, Taylor HR, Tehrani-Banihashemi A, Tekalign TG, Tekelemedhin SW, Tekle MG, Temsah MH, Temsah O, Terkawi AS, Tessema B, Teweldemedhin M, Thankappan KR, Theis A, Thirunavukkarasu S, Thomas N, Tilahun B, To QG, Tonelli M, Topor-Madry R, Torre AE, Tortajada-Girbés M, Touvier M, Tovani-Palone MR, Towbin JA, Tran BX, Tran KB, Troeger CE, Tsadik AG, Tsoi D, Tudor Car L, Tyrovolas S, Ukwaja KN, Ullah I, Undurraga EA, Updike RL, Usman MS, Uthman OA, Vaduganathan M, Vaezi A, Valdez PR, Varavikova E, Varughese S, Vasankari TJ, Venketasubramanian N, Villafaina S, Violante FS, Vladimirov SK, Vlassov V, Vollset SE, Vos T, Vosoughi K, Vujcic IS, Wagnew FS, Waheed Y, Wang Y, Wang YP, Weiderpass E, Weintraub RG, Weiss DJ, Weldegebreal F, Weldegwergs KG, Werdecker A, West TE, Westerman R, Whiteford HA, Widecka J, Wijeratne T, Williams HC, Wilner LB, Wilson S, Winkler AS, Wiyeh AB, Wiysonge CS, Wolfe CDA, Woolf AD, Wyper GMA, Xavier D, Xu G, Yadgir S, Yahyazadeh Jabbari SH, Yamada T, Yan LL, Yano Y, Yaseri M, Yasin YJ, Yeshaneh A, Yimer EM, Yip P, Yisma E, Yonemoto N, Yoon SJ, Yotebieng M, Younis MZ, Yousefifard M, Yu C, Zadnik V, Zaidi Z, Zaman SB, Zamani M, Zandian H, Zar HJ, Zenebe ZM, Zhou M, Zipkin B, Zodpey S, Zucker I, Zuhlke LJ, Murray CJL. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392:1859-1922. [PMID: 30415748 PMCID: PMC6252083 DOI: 10.1016/s0140-6736(18)32335-3] [Citation(s) in RCA: 2062] [Impact Index Per Article: 294.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/31/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND How long one lives, how many years of life are spent in good and poor health, and how the population's state of health and leading causes of disability change over time all have implications for policy, planning, and provision of services. We comparatively assessed the patterns and trends of healthy life expectancy (HALE), which quantifies the number of years of life expected to be lived in good health, and the complementary measure of disability-adjusted life-years (DALYs), a composite measure of disease burden capturing both premature mortality and prevalence and severity of ill health, for 359 diseases and injuries for 195 countries and territories over the past 28 years. METHODS We used data for age-specific mortality rates, years of life lost (YLLs) due to premature mortality, and years lived with disability (YLDs) from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 to calculate HALE and DALYs from 1990 to 2017. We calculated HALE using age-specific mortality rates and YLDs per capita for each location, age, sex, and year. We calculated DALYs for 359 causes as the sum of YLLs and YLDs. We assessed how observed HALE and DALYs differed by country and sex from expected trends based on Socio-demographic Index (SDI). We also analysed HALE by decomposing years of life gained into years spent in good health and in poor health, between 1990 and 2017, and extra years lived by females compared with males. FINDINGS Globally, from 1990 to 2017, life expectancy at birth increased by 7·4 years (95% uncertainty interval 7·1-7·8), from 65·6 years (65·3-65·8) in 1990 to 73·0 years (72·7-73·3) in 2017. The increase in years of life varied from 5·1 years (5·0-5·3) in high SDI countries to 12·0 years (11·3-12·8) in low SDI countries. Of the additional years of life expected at birth, 26·3% (20·1-33·1) were expected to be spent in poor health in high SDI countries compared with 11·7% (8·8-15·1) in low-middle SDI countries. HALE at birth increased by 6·3 years (5·9-6·7), from 57·0 years (54·6-59·1) in 1990 to 63·3 years (60·5-65·7) in 2017. The increase varied from 3·8 years (3·4-4·1) in high SDI countries to 10·5 years (9·8-11·2) in low SDI countries. Even larger variations in HALE than these were observed between countries, ranging from 1·0 year (0·4-1·7) in Saint Vincent and the Grenadines (62·4 years [59·9-64·7] in 1990 to 63·5 years [60·9-65·8] in 2017) to 23·7 years (21·9-25·6) in Eritrea (30·7 years [28·9-32·2] in 1990 to 54·4 years [51·5-57·1] in 2017). In most countries, the increase in HALE was smaller than the increase in overall life expectancy, indicating more years lived in poor health. In 180 of 195 countries and territories, females were expected to live longer than males in 2017, with extra years lived varying from 1·4 years (0·6-2·3) in Algeria to 11·9 years (10·9-12·9) in Ukraine. Of the extra years gained, the proportion spent in poor health varied largely across countries, with less than 20% of additional years spent in poor health in Bosnia and Herzegovina, Burundi, and Slovakia, whereas in Bahrain all the extra years were spent in poor health. In 2017, the highest estimate of HALE at birth was in Singapore for both females (75·8 years [72·4-78·7]) and males (72·6 years [69·8-75·0]) and the lowest estimates were in Central African Republic (47·0 years [43·7-50·2] for females and 42·8 years [40·1-45·6] for males). Globally, in 2017, the five leading causes of DALYs were neonatal disorders, ischaemic heart disease, stroke, lower respiratory infections, and chronic obstructive pulmonary disease. Between 1990 and 2017, age-standardised DALY rates decreased by 41·3% (38·8-43·5) for communicable diseases and by 49·8% (47·9-51·6) for neonatal disorders. For non-communicable diseases, global DALYs increased by 40·1% (36·8-43·0), although age-standardised DALY rates decreased by 18·1% (16·0-20·2). INTERPRETATION With increasing life expectancy in most countries, the question of whether the additional years of life gained are spent in good health or poor health has been increasingly relevant because of the potential policy implications, such as health-care provisions and extending retirement ages. In some locations, a large proportion of those additional years are spent in poor health. Large inequalities in HALE and disease burden exist across countries in different SDI quintiles and between sexes. The burden of disabling conditions has serious implications for health system planning and health-related expenditures. Despite the progress made in reducing the burden of communicable diseases and neonatal disorders in low SDI countries, the speed of this progress could be increased by scaling up proven interventions. The global trends among non-communicable diseases indicate that more effort is needed to maximise HALE, such as risk prevention and attention to upstream determinants of health. FUNDING Bill & Melinda Gates Foundation.
Collapse
|
Comparative Study |
7 |
2062 |
4
|
James SL, Theadom A, Ellenbogen RG, Bannick MS, Montjoy-Venning W, Lucchesi LR, Abbasi N, Abdulkader R, Abraha HN, Adsuar JC, Afarideh M, Agrawal S, Ahmadi A, Ahmed MB, Aichour AN, Aichour I, Aichour MTE, Akinyemi RO, Akseer N, Alahdab F, Alebel A, Alghnam SA, Ali BA, Alsharif U, Altirkawi K, Andrei CL, Anjomshoa M, Ansari H, Ansha MG, Antonio CAT, Appiah SCY, Ariani F, Asefa NG, Asgedom SW, Atique S, Awasthi A, Ayala Quintanilla BP, Ayuk TB, Azzopardi PS, Badali H, Badawi A, Balalla S, Banstola A, Barker-Collo SL, Bärnighausen TW, Bedi N, Behzadifar M, Behzadifar M, Bekele BB, Belachew AB, Belay YA, Bennett DA, Bensenor IM, Berhane A, Beuran M, Bhalla A, Bhaumik S, Bhutta ZA, Biadgo B, Biffino M, Bijani A, Bililign N, Birungi C, Boufous S, Brazinova A, Brown AW, Car M, Cárdenas R, Carrero JJ, Carvalho F, Castañeda-Orjuela CA, Catalá-López F, Chaiah Y, Champs AP, Chang JC, Choi JYJ, Christopher DJ, Cooper C, Crowe CS, Dandona L, Dandona R, Daryani A, Davitoiu DV, Degefa MG, Demoz GT, Deribe K, Djalalinia S, Do HP, Doku DT, Drake TM, Dubey M, Dubljanin E, El-Khatib Z, Ofori-Asenso R, Eskandarieh S, Esteghamati A, Esteghamati S, Faro A, Farzadfar F, Farzaei MH, Fereshtehnejad SM, Fernandes E, Feyissa GT, Filip I, Fischer F, Fukumoto T, Ganji M, Gankpe FG, Gebre AK, Gebrehiwot TT, Gezae KE, Gopalkrishna G, Goulart AC, Haagsma JA, Haj-Mirzaian A, Haj-Mirzaian A, Hamadeh RR, Hamidi S, Haro JM, Hassankhani H, Hassen HY, Havmoeller R, Hawley C, Hay SI, Hegazy MI, Hendrie D, Henok A, Hibstu DT, Hoffman HJ, Hole MK, Homaie Rad E, Hosseini SM, Hostiuc S, Hu G, Hussen MA, Ilesanmi OS, Irvani SSN, Jakovljevic M, Jayaraman S, Jha RP, Jonas JB, Jones KM, Jorjoran Shushtari Z, Jozwiak JJ, Jürisson M, Kabir A, Kahsay A, Kahssay M, Kalani R, Karch A, Kasaeian A, Kassa GM, Kassa TD, Kassa ZY, Kengne AP, Khader YS, Khafaie MA, Khalid N, Khalil I, Khan EA, Khan MS, Khang YH, Khazaie H, Khoja AT, Khubchandani J, Kiadaliri AA, Kim D, Kim YE, Kisa A, Koyanagi A, Krohn KJ, Kuate Defo B, Kucuk Bicer B, Kumar GA, Kumar M, Lalloo R, Lami FH, Lansingh VC, Laryea DO, Latifi A, Leshargie CT, Levi M, Li S, Liben ML, Lotufo PA, Lunevicius R, Mahotra NB, Majdan M, Majeed A, Malekzadeh R, Manda AL, Mansournia MA, Massenburg BB, Mate KKV, Mehndiratta MM, Mehta V, Meles H, Melese A, Memiah PTN, Mendoza W, Mengistu G, Meretoja A, Meretoja TJ, Mestrovic T, Miazgowski T, Miller TR, Mini GK, Mirica A, Mirrakhimov EM, Moazen B, Mohammadi M, Mohammed S, Mokdad AH, Molokhia M, Monasta L, Mondello S, Moosazadeh M, Moradi G, Moradi M, Moradi-Lakeh M, Moradinazar M, Morrison SD, Moschos MM, Mousavi SM, Murthy S, Musa KI, Mustafa G, Naghavi M, Naik G, Najafi F, Nangia V, Nascimento BR, Negoi I, Nguyen TH, Nichols E, Ningrum DNA, Nirayo YL, Nyasulu PS, Ogbo FA, Oh IH, Okoro A, Olagunju AT, Olagunju TO, Olivares PR, Otstavnov SS, Owolabi MO, P A M, Pakhale S, Pandey AR, Pesudovs K, Pinilla-Monsalve GD, Polinder S, Poustchi H, Prakash S, Qorbani M, Radfar A, Rafay A, Rafiei A, Rahimi-Movaghar A, Rahimi-Movaghar V, Rahman M, Rahman MA, Rai RK, Rajati F, Ram U, Rawaf DL, Rawaf S, Reiner RC, Reis C, Renzaho AMN, Resnikoff S, Rezaei S, Rezaeian S, Roever L, Ronfani L, Roshandel G, Roy N, Ruhago GM, Saddik B, Safari H, Safiri S, Sahraian MA, Salamati P, Saldanha RDF, Samy AM, Sanabria J, Santos JV, Santric Milicevic MMM, Sartorius B, Satpathy M, Savuon K, Schneider IJC, Schwebel DC, Sepanlou SG, Shabaninejad H, Shaikh MAA, Shams-Beyranvand M, Sharif M, Sharif-Alhoseini M, Shariful Islam SM, She J, Sheikh A, Shen J, Sheth KN, Shibuya K, Shiferaw MS, Shigematsu M, Shiri R, Shiue I, Shoman H, Siabani S, Siddiqi TJ, Silva JP, Silveira DGA, Sinha DN, Smith M, Soares Filho AM, Sobhani S, Soofi M, Soriano JB, Soyiri IN, Stein DJ, Stokes MA, Sufiyan MB, Sunguya BF, Sunshine JE, Sykes BL, Szoeke CEI, Tabarés-Seisdedos R, Te Ao BJ, Tehrani-Banihashemi A, Tekle MG, Temsah MH, Temsah O, Topor-Madry R, Tortajada-Girbés M, Tran BX, Tran KB, Tudor Car L, Ukwaja KN, Ullah I, Usman MS, Uthman OA, Valdez PR, Vasankari TJ, Venketasubramanian N, Violante FS, Wagnew FWS, Waheed Y, Wang YP, Weldegwergs KG, Werdecker A, Wijeratne T, Winkler AS, Wyper GMA, Yano Y, Yaseri M, Yasin YJ, Ye P, Yimer EM, Yip P, Yisma E, Yonemoto N, Yoon SJ, Yost MG, Younis MZ, Yousefifard M, Yu C, Zaidi Z, Zaman SB, Zamani M, Zenebe ZM, Zodpey S, Feigin VL, Vos T, Murray CJL. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18:56-87. [PMID: 30497965 PMCID: PMC6291456 DOI: 10.1016/s1474-4422(18)30415-0] [Citation(s) in RCA: 1124] [Impact Index Per Article: 187.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/02/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) and spinal cord injury (SCI) are increasingly recognised as global health priorities in view of the preventability of most injuries and the complex and expensive medical care they necessitate. We aimed to measure the incidence, prevalence, and years of life lived with disability (YLDs) for TBI and SCI from all causes of injury in every country, to describe how these measures have changed between 1990 and 2016, and to estimate the proportion of TBI and SCI cases caused by different types of injury. METHODS We used results from the Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study 2016 to measure the global, regional, and national burden of TBI and SCI by age and sex. We measured the incidence and prevalence of all causes of injury requiring medical care in inpatient and outpatient records, literature studies, and survey data. By use of clinical record data, we estimated the proportion of each cause of injury that required medical care that would result in TBI or SCI being considered as the nature of injury. We used literature studies to establish standardised mortality ratios and applied differential equations to convert incidence to prevalence of long-term disability. Finally, we applied GBD disability weights to calculate YLDs. We used a Bayesian meta-regression tool for epidemiological modelling, used cause-specific mortality rates for non-fatal estimation, and adjusted our results for disability experienced with comorbid conditions. We also analysed results on the basis of the Socio-demographic Index, a compound measure of income per capita, education, and fertility. FINDINGS In 2016, there were 27·08 million (95% uncertainty interval [UI] 24·30-30·30 million) new cases of TBI and 0·93 million (0·78-1·16 million) new cases of SCI, with age-standardised incidence rates of 369 (331-412) per 100 000 population for TBI and 13 (11-16) per 100 000 for SCI. In 2016, the number of prevalent cases of TBI was 55·50 million (53·40-57·62 million) and of SCI was 27·04 million (24·98-30·15 million). From 1990 to 2016, the age-standardised prevalence of TBI increased by 8·4% (95% UI 7·7 to 9·2), whereas that of SCI did not change significantly (-0·2% [-2·1 to 2·7]). Age-standardised incidence rates increased by 3·6% (1·8 to 5·5) for TBI, but did not change significantly for SCI (-3·6% [-7·4 to 4·0]). TBI caused 8·1 million (95% UI 6·0-10·4 million) YLDs and SCI caused 9·5 million (6·7-12·4 million) YLDs in 2016, corresponding to age-standardised rates of 111 (82-141) per 100 000 for TBI and 130 (90-170) per 100 000 for SCI. Falls and road injuries were the leading causes of new cases of TBI and SCI in most regions. INTERPRETATION TBI and SCI constitute a considerable portion of the global injury burden and are caused primarily by falls and road injuries. The increase in incidence of TBI over time might continue in view of increases in population density, population ageing, and increasing use of motor vehicles, motorcycles, and bicycles. The number of individuals living with SCI is expected to increase in view of population growth, which is concerning because of the specialised care that people with SCI can require. Our study was limited by data sparsity in some regions, and it will be important to invest greater resources in collection of data for TBI and SCI to improve the accuracy of future assessments. FUNDING Bill & Melinda Gates Foundation.
Collapse
|
research-article |
6 |
1124 |
5
|
Dicker D, Nguyen G, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N, Abbastabar H, Abd-Allah F, Abdela J, Abdelalim A, Abdel-Rahman O, Abdi A, Abdollahpour I, Abdulkader RS, Abdurahman AA, Abebe HT, Abebe M, Abebe Z, Abebo TA, Aboyans V, Abraha HN, Abrham AR, Abu-Raddad LJ, Abu-Rmeileh NME, Accrombessi MMK, Acharya P, Adebayo OM, Adedeji IA, Adedoyin RA, Adekanmbi V, Adetokunboh OO, Adhena BM, Adhikari TB, Adib MG, Adou AK, Adsuar JC, Afarideh M, Afshin A, Agarwal G, Aggarwal R, Aghayan SA, Agrawal S, Agrawal A, Ahmadi M, Ahmadi A, Ahmadieh H, Ahmed MLCB, Ahmed S, Ahmed MB, Aichour AN, Aichour I, Aichour MTE, Akanda AS, Akbari ME, Akibu M, Akinyemi RO, Akinyemiju T, Akseer N, Alahdab F, Al-Aly Z, Alam K, Alebel A, Aleman AV, Alene KA, Al-Eyadhy A, Ali R, Alijanzadeh M, Alizadeh-Navaei R, Aljunid SM, Alkerwi A, Alla F, Allebeck P, Allen CA, Alonso J, Al-Raddadi RM, Alsharif U, Altirkawi K, Alvis-Guzman N, Amare AT, Amini E, Ammar W, Amoako YA, Anber NH, Andrei CL, Androudi S, Animut MD, Anjomshoa M, Anlay DZ, Ansari H, Ansariadi A, Ansha MG, Antonio CAT, Appiah SCY, Aremu O, Areri HA, Ärnlöv J, Arora M, Artaman A, Aryal KK, Asadi-Lari M, Asayesh H, Asfaw ET, Asgedom SW, Assadi R, Ataro Z, Atey TMM, Athari SS, Atique S, Atre SR, Atteraya MS, Attia EF, Ausloos M, Avila-Burgos L, Avokpaho EFGA, Awasthi A, Awuah B, Ayala Quintanilla BP, Ayele HT, Ayele Y, Ayer R, Ayuk TB, Azzopardi PS, Azzopardi-Muscat N, Badali H, Badawi A, Balakrishnan K, Bali AG, Banach M, Banstola A, Barac A, Barboza MA, Barquera S, Barrero LH, Basaleem H, Bassat Q, Basu A, Basu S, Baune BT, Bazargan-Hejazi S, Bedi N, Beghi E, Behzadifar M, Behzadifar M, Béjot Y, Bekele BB, Belachew AB, Belay AG, Belay E, Belay SA, Belay YA, Bell ML, Bello AK, Bennett DA, Bensenor IM, Berhane A, Berman AE, Bernabe E, Bernstein RS, Bertolacci GJ, Beuran M, Beyranvand T, Bhala N, Bhatia E, Bhatt S, Bhattarai S, Bhaumik S, Bhutta ZA, Biadgo B, Bijani A, Bikbov B, Bililign N, Bin Sayeed MS, Birlik SM, Birungi C, Bisanzio D, Biswas T, Bjørge T, Bleyer A, Basara BB, Bose D, Bosetti C, Boufous S, Bourne R, Brady OJ, Bragazzi NL, Brant LC, Brazinova A, Breitborde NJK, Brenner H, Britton G, Brugha T, Burke KE, Busse R, Butt ZA, Cahuana-Hurtado L, Callender CSKH, Campos-Nonato IR, Campuzano Rincon JC, Cano J, Car M, Cárdenas R, Carreras G, Carrero JJ, Carter A, Carvalho F, Castañeda-Orjuela CA, Castillo Rivas J, Castro F, Catalá-López F, Çavlin A, Cerin E, Chaiah Y, Champs AP, Chang HY, Chang JC, Chattopadhyay A, Chaturvedi P, Chen W, Chiang PPC, Chimed-Ochir O, Chin KL, Chisumpa VH, Chitheer A, Choi JYJ, Christensen H, Christopher DJ, Chung SC, Cicuttini FM, Ciobanu LG, Cirillo M, Claro RM, Cohen AJ, Collado-Mateo D, Constantin MM, Conti S, Cooper C, Cooper LT, Cortesi PA, Cortinovis M, Cousin E, Criqui MH, Cromwell EA, Crowe CS, Crump JA, Cucu A, Cunningham M, Daba AK, Dachew BA, Dadi AF, Dandona L, Dandona R, Dang AK, Dargan PI, Daryani A, Das SK, Das Gupta R, das Neves J, Dasa TT, Dash AP, Weaver ND, Davitoiu DV, Davletov K, Dayama A, Courten BD, De la Hoz FP, De leo D, De Neve JW, Degefa MG, Degenhardt L, Degfie TT, Deiparine S, Dellavalle RP, Demoz GT, Demtsu BB, Denova-Gutiérrez E, Deribe K, Dervenis N, Des Jarlais DC, Dessie GA, Dey S, Dharmaratne SD, Dhimal M, Ding EL, Djalalinia S, Doku DT, Dolan KA, Donnelly CA, Dorsey ER, Douwes-Schultz D, Doyle KE, Drake TM, Driscoll TR, Dubey M, Dubljanin E, Duken EE, Duncan BB, Duraes AR, Ebrahimi H, Ebrahimpour S, Edessa D, Edvardsson D, Eggen AE, El Bcheraoui C, El Sayed Zaki M, Elfaramawi M, El-Khatib Z, Ellingsen CL, Elyazar IRF, Enayati A, Endries AYY, Er B, Ermakov SP, Eshrati B, Eskandarieh S, Esmaeili R, Esteghamati A, Esteghamati S, Fakhar M, Fakhim H, Farag T, Faramarzi M, Fareed M, Farhadi F, Farid TA, Farinha CSES, Farioli A, Faro A, Farvid MS, Farzadfar F, Farzaei MH, Fazeli MS, Feigin VL, Feigl AB, Feizy F, Fentahun N, Fereshtehnejad SM, Fernandes E, Fernandes JC, Feyissa GT, Fijabi DO, Filip I, Finegold S, Fischer F, Flor LS, Foigt NA, Ford JA, Foreman KJ, Fornari C, Frank TD, Franklin RC, Fukumoto T, Fuller JE, Fullman N, Fürst T, Furtado JM, Futran ND, Galan A, Gallus S, Gambashidze K, Gamkrelidze A, Gankpe FG, Garcia-Basteiro AL, Garcia-Gordillo MA, Gebre T, Gebre AK, Gebregergs GB, Gebrehiwot TT, Gebremedhin AT, Gelano TF, Gelaw YA, Geleijnse JM, Genova-Maleras R, Gessner BD, Getachew S, Gething PW, Gezae KE, Ghadami MR, Ghadimi R, Ghasemi Falavarjani K, Ghasemi-Kasman M, Ghiasvand H, Ghimire M, Ghoshal AG, Gill PS, Gill TK, Gillum RF, Giussani G, Goenka S, Goli S, Gomez RS, Gomez-Cabrera MC, Gómez-Dantés H, Gona PN, Goodridge A, Gopalani SV, Goto A, Goulart AC, Goulart BNG, Grada A, Grosso G, Gugnani HC, Guimaraes ALS, Guo Y, Gupta PC, Gupta R, Gupta R, Gupta T, Gyawali B, Haagsma JA, Hachinski V, Hafezi-Nejad N, Hagos TB, Hailegiyorgis TT, Hailu GB, Haj-Mirzaian A, Haj-Mirzaian A, Hamadeh RR, Hamidi S, Handal AJ, Hankey GJ, Harb HL, Harikrishnan S, Haririan H, Haro JM, Hasan M, Hassankhani H, Hassen HY, Havmoeller R, Hay RJ, Hay SI, He Y, Hedayatizadeh-Omran A, Hegazy MI, Heibati B, Heidari M, Hendrie D, Henok A, Henry NJ, Heredia-Pi I, Herteliu C, Heydarpour F, Heydarpour P, Heydarpour S, Hibstu DT, Hoek HW, Hole MK, Homaie Rad E, Hoogar P, Horino M, Hosgood HD, Hosseini SM, Hosseinzadeh M, Hostiuc S, Hostiuc M, Hotez PJ, Hoy DG, Hsairi M, Htet AS, Hu G, Huang JJ, Husseini A, Hussen MM, Hutfless S, Iburg KM, Igumbor EU, Ikeda CT, Ilesanmi OS, Iqbal U, Irvani SSN, Isehunwa OO, Islam SMS, Islami F, Jahangiry L, Jahanmehr N, Jain R, Jain SK, Jakovljevic M, James SL, Javanbakht M, Jayaraman S, Jayatilleke AU, Jee SH, Jeemon P, Jha RP, Jha V, Ji JS, Johnson SC, Jonas JB, Joshi A, Jozwiak JJ, Jungari SB, Jürisson M, K M, Kabir Z, Kadel R, Kahsay A, Kahssay M, Kalani R, Kapil U, Karami M, Karami Matin B, Karch A, Karema C, Karimi N, Karimi SM, Karimi-Sari H, Kasaeian A, Kassa GM, Kassa TD, Kassa ZY, Kassebaum NJ, Katibeh M, Katikireddi SV, Kaul A, Kawakami N, Kazemeini H, Kazemi Z, Karyani AK, K C P, Kebede S, Keiyoro PN, Kemp GR, Kengne AP, Keren A, Kereselidze M, Khader YS, Khafaie MA, Khajavi A, Khalid N, Khalil IA, Khan EA, Khan G, Khan MS, Khan MA, Khang YH, Khanna T, Khater MM, Khatony A, Khazaie H, Khoja AT, Khosravi A, Khosravi MH, Khubchandani J, Kiadaliri AA, Kibret GDD, Kim CI, Kim D, Kim JY, Kim YE, Kimokoti RW, Kinfu Y, Kinra S, Kisa A, Kissimova-Skarbek K, Kissoon N, Kivimäki M, Kleber ME, Knibbs LD, Knudsen AKS, Kochhar S, Kokubo Y, Kolola T, Kopec JA, Kosek MN, Kosen S, Koul PA, Koyanagi A, Kravchenko MA, Krishan K, Krishnaswami S, Kuate Defo B, Kucuk Bicer B, Kudom AA, Kuipers EJ, Kulikoff XR, Kumar GA, Kumar M, Kumar P, Kumsa FA, Kutz MJ, Lad SD, Lafranconi A, Lal DK, Lalloo R, Lam H, Lami FH, Lan Q, Langan SM, Lansingh VC, Lansky S, Larson HJ, Laryea DO, Lassi ZS, Latifi A, Lavados PM, Laxmaiah A, Lazarus JV, Lebedev G, Lee PH, Leigh J, Leshargie CT, Leta S, Levi M, Li S, Li Y, Li X, Liang J, Liang X, Liben ML, Lim LL, Lim SS, Limenih MA, Linn S, Liu S, Liu Y, Lodha R, Logroscino G, Lonsdale C, Lorch SA, Lorkowski S, Lotufo PA, Lozano R, Lucas TCD, Lunevicius R, Lyons RA, Ma S, Mabika C, Macarayan ERK, Mackay MT, Maddison ER, Maddison R, Madotto F, Magdy Abd El Razek H, Magdy Abd El Razek M, Maghavani DP, Majdan M, Majdzadeh R, Majeed A, Malekzadeh R, Malik MA, Malta DC, Mamun AA, Manamo WA, Manda AL, Mansournia MA, Mantovani LG, Mapoma CC, Marami D, Maravilla JC, Marcenes W, Marina S, Martinez-Raga J, Martins SCO, Martins-Melo FR, März W, Marzan MB, Mashamba-Thompson TP, Masiye F, Massenburg BB, Maulik PK, Mazidi M, McGrath JJ, McKee M, Mehata S, Mehendale SM, Mehndiratta MM, Mehrotra R, Mehta KM, Mehta V, Mekonen T, Mekonnen TC, Meles HG, Meles KG, Melese A, Melku M, Memiah PTN, Memish ZA, Mendoza W, Mengistu DT, Mengistu G, Mensah GA, Mereta ST, Meretoja A, Meretoja TJ, Mestrovic T, Mezgebe HB, Miangotar Y, Miazgowski B, Miazgowski T, Miller TR, Mini GK, Mirica A, Mirrakhimov EM, Misganaw AT, Moazen B, Moges NA, Mohammad KA, Mohammadi M, Mohammadifard N, Mohammadi-Khanaposhtani M, Mohammadnia-Afrouzi M, Mohammed S, Mohammed MA, Mohan V, Mokdad AH, Molokhia M, Monasta L, Moradi G, Moradi M, Moradi-Lakeh M, Moradinazar M, Moraga P, Morawska L, Moreno Velásquez I, Morgado-da-Costa J, Morrison SD, Mosapour A, Moschos MM, Mousavi SM, Muche AA, Muchie KF, Mueller UO, Mukhopadhyay S, Mullany EC, Muller K, Murhekar M, Murphy TB, Murthy GVS, Murthy S, Musa J, Musa KI, Mustafa G, Muthupandian S, Nachega JB, Nagel G, Naghavi M, Naheed A, Nahvijou A, Naik G, Nair S, Najafi F, Nangia V, Nansseu JR, Nascimento BR, Nawaz H, Ncama BP, Neamati N, Negoi I, Negoi RI, Neupane S, Newton CRJ, Ngalesoni FN, Ngunjiri JW, Nguyen HT, Nguyen HT, Nguyen LH, Nguyen M, Nguyen TH, Ningrum DNA, Nirayo YL, Nisar MI, Nixon MR, Nolutshungu N, Nomura S, Norheim OF, Noroozi M, Norrving B, Noubiap JJ, Nouri HR, Nourollahpour Shiadeh M, Nowroozi MR, Nsoesie EO, Nyasulu PS, Ofori-Asenso R, Ogah OS, Ogbo FA, Oh IH, Okoro A, Oladimeji O, Olagunju AT, Olagunju TO, Olivares PR, Olusanya BO, Olusanya JO, Ong SK, Opio JN, Oren E, Ortiz JR, Ortiz A, Ota E, Otstavnov SS, Øverland S, Owolabi MO, Oyekale AS, P A M, Pacella R, Pakhale S, Pakhare AP, Pana A, Panda BK, Panda-Jonas S, Pandey AR, Pandian JD, Parisi A, Park EK, Parry CDH, Parsian H, Patel S, Patle A, Patten SB, Patton GC, Paudel D, Pearce N, Peprah EK, Pereira A, Pereira DM, Perez KM, Perico N, Pervaiz A, Pesudovs K, Petri WA, Petzold M, Phillips MR, Pigott DM, Pillay JD, Pirsaheb M, Pishgar F, Plass D, Polinder S, Pond CD, Popova S, Postma MJ, Pourmalek F, Pourshams A, Poustchi H, Prabhakaran D, Prakash V, Prakash S, Prasad N, Qorbani M, Quistberg DA, Radfar A, Rafay A, Rafiei A, Rahim F, Rahimi K, Rahimi-Movaghar A, Rahimi-Movaghar V, Rahman M, Rahman MHU, Rahman MA, Rahman SU, Rai RK, Rajati F, Rajsic S, Raju SB, Ram U, Ranabhat CL, Ranjan P, Ranta A, Rasella D, Rawaf DL, Rawaf S, Ray SE, Razo-García C, Rego MAS, Rehm J, Reiner RC, Reinig N, Reis C, Remuzzi G, Renzaho AMN, Resnikoff S, Rezaei S, Rezaeian S, Rezai MS, Riahi SM, Ribeiro ALP, Riojas H, Rios-Blancas MJ, Roba KT, Robinson SR, Roever L, Ronfani L, Roshandel G, Roshchin DO, Rostami A, Rothenbacher D, Rubagotti E, Ruhago GM, Saadat S, Sabde YD, Sachdev PS, Saddik B, Sadeghi E, Moghaddam SS, Safari H, Safari Y, Safari-Faramani R, Safdarian M, Safi S, Safiri S, Sagar R, Sahebkar A, Sahraian MA, Sajadi HS, Salahshoor MR, Salam N, Salama JS, Salamati P, Saldanha RDF, Salimi Y, Salimzadeh H, Salz I, Sambala EZ, Samy AM, Sanabria J, Sanchez-Niño MD, Santos IS, Santos JV, Santric Milicevic MM, Sao Jose BP, Sardana M, Sarker AR, Sarrafzadegan N, Sartorius B, Sarvi S, Sathian B, Satpathy M, Savic M, Sawant AR, Sawhney M, Saxena S, Sayyah M, Scaria V, Schaeffner E, Schelonka K, Schmidt MI, Schneider IJC, Schöttker B, Schutte AE, Schwebel DC, Schwendicke F, Scott JG, Sekerija M, Sepanlou SG, Serván-Mori E, Shabaninejad H, Shackelford KA, Shafieesabet A, Shaheen AA, Shaikh MA, Shakir RA, Shams-Beyranvand M, Shamsi M, Shamsizadeh M, Sharafi H, Sharafi K, Sharif M, Sharif-Alhoseini M, Sharma M, Sharma J, Sharma R, She J, Sheikh A, Sheth KN, Shi P, Shibuya K, Shifa GT, Shiferaw MS, Shigematsu M, Shiri R, Shirkoohi R, Shiue I, Shokraneh F, Shrime MG, Shukla SR, Si S, Siabani S, Siddiqi TJ, Sigfusdottir ID, Sigurvinsdottir R, Silpakit N, Silva DAS, Silva JP, Silveira DGA, Singam NSV, Singh JA, Singh V, Sinha AP, Sinha DN, Sitas F, Skirbekk V, Sliwa K, Soares Filho AM, Sobaih BH, Sobhani S, Soofi M, Soriano JB, Soyiri IN, Sposato LA, Sreeramareddy CT, Srinivasan V, Srivastava RK, Starodubov VI, Stathopoulou V, Steel N, Stein DJ, Steiner C, Stewart LG, Stokes MA, Sudaryanto A, Sufiyan MB, Sulo G, Sunguya BF, Sur PJ, Sutradhar I, Sykes BL, Sylaja PN, Sylte DO, Szoeke CEI, Tabarés-Seisdedos R, Tabuchi T, Tadakamadla SK, Takahashi K, Tandon N, Tassew AA, Tassew SG, Tavakkoli M, Taveira N, Tawye NY, Tehrani-Banihashemi A, Tekalign TG, Tekle MG, Temesgen H, Temsah MH, Temsah O, Terkawi AS, Teshale MY, Tessema B, Teweldemedhin M, Thakur JS, Thankappan KR, Thirunavukkarasu S, Thomas LA, Thomas N, Thrift AG, Tilahun B, To QG, Tobe-Gai R, Tonelli M, Topor-Madry R, Topouzis F, Torre AE, Tortajada-Girbés M, Tovani-Palone MR, Towbin JA, Tran BX, Tran KB, Tripathi S, Tripathy SP, Truelsen TC, Truong NT, Tsadik AG, Tsilimparis N, Tudor Car L, Tuzcu EM, Tyrovolas S, Ukwaja KN, Ullah I, Usman MS, Uthman OA, Uzun SB, Vaduganathan M, Vaezi A, Vaidya G, Valdez PR, Varavikova E, Varughese S, Vasankari TJ, Vasconcelos AMN, Venketasubramanian N, Vidavalur R, Villafaina S, Violante FS, Vladimirov SK, Vlassov V, Vollset SE, Vos T, Vosoughi K, Vujcic IS, Wagner GR, Wagnew FWS, Waheed Y, Wang Y, Wang YP, Wassie MM, Weiderpass E, Weintraub RG, Weiss DJ, Weiss J, Weldegebreal F, Weldegwergs KG, Werdecker A, Westerman R, Whiteford HA, Widecka J, Widecka K, Wijeratne T, Winkler AS, Wiysonge CS, Wolfe CDA, Wondemagegn SA, Wu S, Wyper GMA, Xu G, Yadav R, Yakob B, Yamada T, Yan LL, Yano Y, Yaseri M, Yasin YJ, Ye P, Yearwood JA, Yentür GK, Yeshaneh A, Yimer EM, Yip P, Yisma E, Yonemoto N, Yoon SJ, York HW, Yotebieng M, Younis MZ, Yousefifard M, Yu C, Zachariah G, Zadnik V, Zafar S, Zaidi Z, Zaman SB, Zamani M, Zare Z, Zeeb H, Zeleke MM, Zenebe ZM, Zerfu TA, Zhang K, Zhang X, Zhou M, Zhu J, Zodpey S, Zucker I, Zuhlke LJJ, Lopez AD, Gakidou E, Murray CJL. Global, regional, and national age-sex-specific mortality and life expectancy, 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392:1684-1735. [PMID: 30496102 PMCID: PMC6227504 DOI: 10.1016/s0140-6736(18)31891-9] [Citation(s) in RCA: 575] [Impact Index Per Article: 82.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/14/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. METHODS The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. FINDINGS Globally, 18·7% (95% uncertainty interval 18·4-19·0) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 58·8% (58·2-59·3) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 48·1 years (46·5-49·6) to 70·5 years (70·1-70·8) for men and from 52·9 years (51·7-54·0) to 75·6 years (75·3-75·9) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 49·1 years (46·5-51·7) for men in the Central African Republic to 87·6 years (86·9-88·1) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 216·0 deaths (196·3-238·1) per 1000 livebirths in 1950 to 38·9 deaths (35·6-42·83) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 5·4 million (5·2-5·6) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. INTERPRETATION This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing. FUNDING Bill & Melinda Gates Foundation.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
575 |
6
|
Lozano R, Fullman N, Abate D, Abay SM, Abbafati C, Abbasi N, Abbastabar H, Abd-Allah F, Abdela J, Abdelalim A, Abdel-Rahman O, Abdi A, Abdollahpour I, Abdulkader RS, Abebe ND, Abebe Z, Abejie AN, Abera SF, Abil OZ, Aboyans V, Abraha HN, Abrham AR, Abu-Raddad LJ, Abu-Rmeileh NM, Abyu GY, Accrombessi MMK, Acharya D, Acharya P, Adamu AA, Adebayo OM, Adedeji IA, Adedoyin RA, Adekanmbi V, Adetokunboh OO, Adhena BM, Adhikari TB, Adib MG, Adou AK, Adsuar JC, Afarideh M, Afshari M, Afshin A, Agarwal G, Aghayan SA, Agius D, Agrawal A, Agrawal S, Ahmadi A, Ahmadi M, Ahmadieh H, Ahmed MB, Ahmed S, Akalu TY, Akanda AS, Akbari ME, Akibu M, Akinyemi RO, Akinyemiju T, Akseer N, Alahdab F, Al-Aly Z, Alam K, Alam T, Albujeer A, Alebel A, Alene KA, Al-Eyadhy A, Alhabib S, Ali R, Alijanzadeh M, Alizadeh-Navaei R, Aljunid SM, Alkerwi A, Alla F, Allebeck P, Allen CA, Almasi A, Al-Maskari F, Al-Mekhlafi HM, Alonso J, Al-Raddadi RM, Alsharif U, Altirkawi K, Alvis-Guzman N, Amare AT, Amenu K, Amini E, Ammar W, Anber NH, Anderson JA, Andrei CL, Androudi S, Animut MD, Anjomshoa M, Ansari H, Ansariadi A, Ansha MG, Antonio CAT, Anwari P, Appiah LT, Aremu O, Areri HA, Ärnlöv J, Arora M, Aryal KK, Asayesh H, Asfaw ET, Asgedom SW, Asghar RJ, Assadi R, Ataro Z, Atique S, Atre SR, Atteraya MS, Ausloos M, Avila-Burgos L, Avokpaho EFGA, Awasthi A, Ayala Quintanilla BP, Ayele HT, Ayele Y, Ayer R, Azarpazhooh MR, Azzopardi PS, Azzopardi-Muscat N, Babalola TK, Babazadeh A, Badali H, Badawi A, Balakrishnan K, Bali AG, Banach M, Banerjee A, Banoub JAM, Banstola A, Barac A, Barboza MA, Barker-Collo SL, Bärnighausen TW, Barrero LH, Barthelemy CM, Bassat Q, Basu A, Basu S, Battista RJ, Baune BT, Baynes HW, Bazargan-Hejazi S, Bedi N, Beghi E, Behzadifar M, Behzadifar M, Béjot Y, Bekele BB, Belachew AB, Belay AG, Belay SA, Belay YA, Bell ML, Bello AK, Bennett DA, Bensenor IM, Benzian H, Berhane A, Berhe AK, Berman AE, Bernabe E, Bernstein RS, Bertolacci GJ, Beuran M, Beyranvand T, Bhala N, Bhalla A, Bhansali A, Bhattarai S, Bhaumik S, Bhutta ZA, Biadgo B, Biehl MH, Bijani A, Bikbov B, Bililign N, Bin Sayeed MS, Birlik SM, Birungi C, Bisanzio D, Biswas T, Bitew H, Bizuneh H, Bjertness E, Bobasa EM, Boufous S, Bourne R, Bozorgmehr K, Bragazzi NL, Brainin M, Brant LC, Brauer M, Brazinova A, Breitborde NJK, Briant PS, Britton G, Brugha T, Bukhman G, Busse R, Butt ZA, Cahuana-Hurtado L, Callender CSKH, Campos-Nonato IR, Campuzano Rincon JC, Cano J, Car J, Car M, Cárdenas R, Carrero JJ, Carter A, Carvalho F, Castañeda-Orjuela CA, Castillo Rivas J, Castro F, Causey K, Çavlin A, Cercy KM, Cerin E, Chaiah Y, Chalek J, Chang HY, Chang JC, Chattopadhyay A, Chattu VK, Chaturvedi P, Chiang PPC, Chin KL, Chisumpa VH, Chitheer A, Choi JYJ, Chowdhury R, Christensen H, Christopher DJ, Chung SC, Cicuttini FM, Ciobanu LG, Cirillo M, Claro RM, Claßen TKD, Cohen AJ, Collado-Mateo D, Cooper C, Cooper LT, Cornaby L, Cortinovis M, Costa M, Cousin E, Cromwell EA, Crowe CS, Cunningham M, Daba AK, Dadi AF, Dandona L, Dandona R, Dang AK, Dargan PI, Daryani A, Das SK, Das Gupta R, das Neves J, Dasa TT, Dash AP, Davis AC, Davitoiu DV, Davletov K, Dayama A, de Courten B, De Leo D, De Neve JW, De Steur H, Degefa MG, Degenhardt L, Degfie TT, Deiparine S, Dellavalle RP, Demoz GT, Demtsu B, Denova-Gutiérrez E, Deribe K, Dervenis N, Dessie GA, Dey S, Dharmaratne SD, Dhimal M, Dicker D, Dinberu MT, Ding EL, Djalalinia S, Do HP, Dokova K, Doku DT, Douwes-Schultz D, Driscoll TR, Duan L, Dubey M, Dubljanin E, Duken EE, Duncan BB, Duraes AR, Ebrahimpour S, Edvardsson D, El Bcheraoui C, Eldrenkamp E, El-Khatib Z, Elyazar IRF, Enayati A, Endries AY, Eshrati B, Eskandarieh S, Esteghamati A, Esteghamati S, Estep K, Fakhar M, Fakhim H, Fanzo J, Faramarzi M, Fareed M, Farhadi F, Farid TA, Farinha CSES, Farioli A, Faro A, Farvid MS, Farzadfar F, Farzaei MH, Farzam H, Fazaeli AA, Fazeli MS, Feigin VL, Feigl AB, Fekadu W, Feldman R, Fentahun N, Fereshtehnejad SM, Fernandes E, Fernandes JC, Feyissa GT, Fijabi DO, Filip I, Finegold S, Finger JD, Fischer F, Fitzmaurice C, Flor LS, Foigt NA, Foreman KJ, Frank TD, Franklin RC, Fukumoto T, Fukutaki K, Fuller JE, Fürst T, Furtado JM, Gakidou E, Gallus S, Gankpe FG, Gansevoort RT, Garcia AC, Garcia-Basteiro AL, Garcia-Gordillo MA, Gardner WM, Gebre AK, Gebre T, Gebregergs GB, Gebrehiwot TT, Gebremedhin AT, Gebremichael B, Gebremichael TG, Gelano TF, Geleijnse JM, Geramo YCD, Getachew S, Gething PW, Gezae KE, Ghadami MR, Ghadimi R, Ghadiri K, Ghasemi-Kasman M, Ghiasvand H, Ghimire M, Ghoshal AG, Giampaoli S, Gill PS, Gill TK, Giussani G, Gnedovskaya EV, Goldberg EM, Goli S, Gona PN, Goodridge A, Gopalani SV, Gorman TM, Goto A, Goulart AC, Goulart BNG, Grada A, Griswold MG, Grosso G, Gugnani HCC, Guillemin F, Guimaraes ALS, Guo Y, Gupta PC, Gupta R, Gupta R, Gupta T, Ha GH, Haagsma JA, Hachinski V, Hafezi-Nejad N, Haghparast Bidgoli H, Hagos TB, Haile MT, Hailegiyorgis TT, Hailu GB, Haj-Mirzaian A, Haj-Mirzaian A, Hamadeh RR, Hamidi S, Hankey GJ, Harb HL, Harikrishnan S, Haririan H, Haro JM, Hasan M, Hassankhani H, Hassen HY, Havmoeller R, Hawley CN, Hay SI, He Y, Hedayatizadeh-Omran A, Hegazy MI, Heibati B, Heidari B, Heidari M, Hendrie D, Henok A, Heredia-Pi I, Herteliu C, Heydarpour B, Heydarpour F, Heydarpour S, Hibstu DT, Híjar M, Hoek HW, Hoffman DJ, Hole MK, Homaie Rad E, Hoogar P, Horita N, Hosgood HD, Hosseini SM, Hosseinzadeh M, Hostiuc M, Hostiuc S, Hotez PJ, Hoy DG, Hsairi M, Hsiao T, Hu G, Huang JJ, Hughes C, Huynh CK, Igumbor EU, Ikeda CT, Ilesanmi OS, Iqbal U, Irvani SSN, Irvine CMS, Islam SMS, Islami F, Ivers RQ, Izadi N, Jacobsen KH, Jahangiry L, Jahanmehr N, Jain SK, Jakovljevic M, Jalu MT, Jamal AA, James SL, Jassal SK, Javanbakht M, Jayatilleke AU, Jeemon P, Jha RP, Jha V, Ji JS, Johnson CO, Johnson SC, Jonas JB, Jonnagaddala J, Jorjoran Shushtari Z, Joshi A, Jozwiak JJ, Jungari SB, Jürisson M, K M, Kabir Z, Kadel R, Kahsay A, Kahssay M, Kalani R, Kapil U, Karami M, Karami Matin B, Karanikolos M, Karimi N, Karimi SM, Karimi-Sari H, Kasaeian A, Kassa DH, Kassa GM, Kassa TD, Kassa ZY, Kassebaum NJ, Katikireddi SV, Kaul A, Kawakami N, Kazemi Z, Karyani AK, Kazi DS, KC P, Kebede S, Keiyoro PN, Kemmer L, Kemp GR, Kengne AP, Keren A, Kesavachandran CN, Khader YS, Khafaei B, Khafaie MA, Khajavi A, Khalid N, Khalil IA, Khan EA, Khan MS, Khan MA, Khang YH, Khanna T, Khater MM, Khatony A, Khazaeipour Z, Khazaie H, Khoja AT, Khosravi A, Khosravi MH, Khubchandani J, Kiadaliri AA, Kiarie HW, Kibret GD, Kiirithio DN, Kim D, Kim JY, Kim YE, Kim YJ, Kimokoti RW, Kinfu Y, Kinra S, Kisa A, Kissimova-Skarbek K, Kissoon N, Kivimäki M, Kocarnik JM, Kochhar S, Kokubo Y, Kolola T, Kopec JA, Kosek MN, Kosen S, Koul PA, Koyanagi A, Kravchenko MA, Krishan K, Krohn KJ, Kuate Defo B, Kucuk Bicer B, Kudom AA, Kulikoff XR, Kumar GA, Kumar M, Kumar P, Kutz MJ, Kyu HH, Lachat C, Lad DP, Lad SD, Lafranconi A, Lagat AK, Lal DK, Lalloo R, Lam H, Lami FH, Lamichhane P, Lan Q, Lang JJ, Lansingh VC, Lansky S, Larson HJ, Larsson AO, Laryea DO, Lassi ZS, Latifi A, Lau KMM, Laxmaiah A, Lazarus JV, Leasher JL, Lebedev G, Ledesma JR, Lee JB, Lee PH, Leever AT, Leigh J, Leinsalu M, Leshargie CT, Leung J, Lewycka S, Li S, Li X, Li Y, Liang J, Liang X, Liben ML, Lim LL, Limenih MA, Linn S, Liu S, Liu Y, Lodha R, Logroscino G, Lopez AD, Lorkowski S, Lotufo PA, Lucchesi LR, Lyons RA, Macarayan ERK, Mackay MT, Maddison ER, Madotto F, Maghavani DP, Magis-Rodriguez C, Mahotra NB, Majdan M, Majdzadeh R, Majeed A, Malekzadeh R, Malta DC, Mamun AA, Manda AL, Mandarano-Filho LG, Mangalam S, Manguerra H, Mansournia MA, Mapoma CC, Maravilla JC, Marcenes W, Marks A, Martin RV, Martins SCO, Martins-Melo FR, Martopullo I, Mashamba-Thompson TP, Massenburg BB, Mathur MR, Maulik PK, Mazidi M, McAlinden C, McGrath JJ, McKee M, McMahon BJ, Mehata S, Mehndiratta MM, Mehrotra R, Mehta KM, Mehta V, Mejia-Rodriguez F, Mekonen T, Mekonnen TCC, Meles HG, Melese A, Melku M, Memiah PTN, Memish ZA, Mendoza W, Mengistu DT, Mengistu G, Mensah GA, Mensink GBM, Mereta ST, Meretoja A, Meretoja TJ, Mestrovic T, Mezgebe HB, Miazgowski B, Miazgowski T, Millear AI, Miller TR, Miller-Petrie MK, Milne GJ, Mini GK, Minnig SP, Mirabi P, Mirarefin M, Mirrakhimov EM, Misganaw AT, Mitchell PB, Moazen B, Moghadamnia AA, Mohajer B, Mohammad KA, Mohammadi M, Mohammadifard N, Mohammadnia-Afrouzi M, Mohammed MA, Mohammed S, Mohan MBV, Mohan V, Mohebi F, Moitra M, Mokdad AH, Molokhia M, Monasta L, Montañez JC, Moosazadeh M, Moradi G, Moradi M, Moradi-Lakeh M, Moradinazar M, Moraga P, Morawska L, Morgado-da-Costa J, Morisaki N, Morrison SD, Mosapour A, Moschos MM, Mountjoy-Venning WC, Mouodi S, Mousavi SM, Muche AA, Muchie KF, Mueller UO, Muhammed OSS, Mukhopadhyay S, Mullany EC, Muller K, Mumford JE, Murhekar M, Murthy GVS, Murthy S, Musa J, Musa KI, Mustafa G, Muthupandian S, Nabhan AF, Nachega JB, Nagarajan AJ, Nagel G, Naghavi M, Naheed A, Nahvijou A, Naidoo K, Naik G, Naik N, Najafi F, Naldi L, Nam HS, Nangia V, Nansseu JR, Nascimento BR, Nawaz H, Neamati N, Negoi I, Negoi RI, Neupane S, Newton CRJ, Ngalesoni FN, Ngunjiri JW, Nguyen A, Nguyen G, Nguyen H, Nguyen HLT, Nguyen HT, Nguyen M, Nichols E, Nigatu SG, Ningrum DNA, Nirayo YL, Nisar MI, Nixon MR, Nolutshungu N, Nomura M, Norheim OF, Noroozi M, Norrving B, Noubiap JJ, Nouri HR, Nourollahpour Shiadeh M, Nowroozi MR, Nyasulu PS, Obermeyer CM, Ofori-Asenso R, Ogah OS, Ogbo FA, Oh IH, Okoro A, Oladimeji KE, Oladimeji O, Olagunju AT, Olagunju TO, Olivares PR, Olsen HE, Olusanya BO, Olusanya JO, Ong KL, Ong SK, Oommen AM, Opio JN, Oren E, Oros A, Ortega-Altamirano DDV, Ortiz A, Ortiz JR, Ortiz-Panozo E, Ota E, Otstavnov SS, Owolabi MO, P A M, Pakhale S, Pakhare AP, Pan WH, Pana A, Panda BK, Panda-Jonas S, Pandian JD, Papantoniou N, Park EK, Parry CDH, Parsian H, Patel S, Pati S, Patle A, Patton GC, Paturi VR, Paudel D, Paulson KR, Pearce N, Peprah EK, Pereira DM, Perico N, Pervaiz A, Pesudovs K, Petri WA, Petzold M, Phillips MR, Pigott DM, Pillay JD, Pirsaheb M, Pletcher M, Pond CD, Postma MJ, Pourshams A, Poustchi H, Prabhakaran D, Prakash S, Prasad N, Purcell CA, Pyakurel M, Qorbani M, Quansah R, Radfar A, Rafay A, Rafiei A, Rahim F, Rahimi K, Rahimi-Movaghar A, Rahimi-Movaghar V, Rahman M, Rahman MS, Rahman MHU, Rahman MA, Rahman SU, Rai RK, Rajati F, Rajsic S, Ram U, Rana SM, Ranabhat CL, Ranjan P, Rasella D, Rawaf DL, Rawaf S, Razo-García C, Reddy KS, Reiner RC, Reis C, Reitsma MB, Remuzzi G, Renzaho AMN, Resnikoff S, Reynales-Shigematsu LM, Rezaei S, Rezaeian S, Rezai MS, Riahi SM, Ribeiro ALP, Rios-Blancas MJ, Roba KT, Roberts NLS, Roever L, Ronfani L, Roshandel G, Rostami A, Roth GA, Roy A, Rubagotti E, Ruhago GM, Sabde YD, Sachdev PS, Saddik B, Sadeghi E, Safari H, Safari Y, Safari-Faramani R, Safdarian M, Safi S, Safiri S, Sagar R, Sahebkar A, Sahraian MA, Sajadi HS, Salam N, Salama JS, Salamati P, Saldanha RDF, Saleem Z, Salimi Y, Salimzadeh H, Salomon JA, Salvi SS, Salz I, Sambala EZ, Samy AM, Sanabria J, Sanchez-Niño MD, Santos IS, Santric Milicevic MM, Sao Jose BP, Sardana M, Sarker AR, Sarrafzadegan N, Sartorius B, Sarvi S, Sathian B, Satpathy M, Savic M, Sawant AR, Sawhney M, Saxena S, Saylan M, Sayyah M, Schaeffner E, Schmidt MI, Schneider IJC, Schöttker B, Schutte AE, Schwebel DC, Schwendicke F, Seedat S, Sekerija M, Sepanlou SG, Serván-Mori E, Seyedmousavi S, Shabaninejad H, Shackelford KA, Shafieesabet A, Shaheen AA, Shaikh MA, Shams-Beyranvand M, Shamsi MB, Shamsizadeh M, Sharafi H, Sharafi K, Sharif M, Sharif-Alhoseini M, Sharma J, Sharma R, Sharma SK, She J, Sheikh A, Shey MS, Shi P, Shibuya K, Shields C, Shifa GT, Shiferaw MS, Shigematsu M, Shiri R, Shirkoohi R, Shirude S, Shishani K, Shiue I, Shokraneh F, Shoman H, Shrime MG, Shukla SR, Si S, Siabani S, Sibai AM, Siddiqi TJ, Sigfusdottir ID, Silpakit N, Silva DAS, Silva JP, Silva NTD, Silveira DGA, Singh JA, Singh NP, Singh OP, Singh PK, Singh V, Sinha DN, Skiadaresi E, Sliwa K, Smith AE, Smith M, Soares Filho AM, Sobaih BH, Sobhani S, Soljak M, Soofi M, Soosaraei M, Sorensen RJD, Soriano JB, Soshnikov S, Soyiri IN, Spinelli A, Sposato LA, Sreeramareddy CT, Srinivasan RG, Srinivasan V, Stanaway JD, Starodubov VI, Stathopoulou V, Steckling N, Stein DJ, Stewart LG, Stockfelt L, Stokes MA, Straif K, Sudaryanto A, Sufiyan MB, Sunguya BF, Sur PJ, Sutradhar I, Sykes BL, Sylaja PN, Sylte DO, Szoeke CEI, Tabarés-Seisdedos R, Tabuchi T, Tadakamadla SK, Tamirat KS, Tandon N, Tanser FC, Tassew AA, Tassew SG, Tavakkoli M, Taveira N, Tawye NY, Tehrani-Banihashemi A, Tekalign TG, Tekle MG, Temesgen H, Temsah MH, Temsah O, Terkawi AS, Teshale MY, Teshome DF, Tessema B, Teweldemedhin M, Thakur JS, Thankappan KR, Theis A, Thirunavukkarasu S, Thomas LA, Thomas N, Thomson AJ, Thrift AG, Tilahun B, To QG, Tobe-Gai R, Tonelli M, Topor-Madry R, Torre AE, Tortajada-Girbés M, Tovani-Palone MR, Towbin JA, Tran BX, Tran KB, Tran TT, Tripathy SP, Troeger CE, Truelsen TC, Tsadik AG, Tudor Car L, Tuzcu EM, Tymeson HD, Ukwaja KN, Ullah I, Updike RL, Usman MS, Uthman OA, Vaduganathan M, Vaezi A, Vaidya G, Valdez PR, van Donkelaar A, Varavikova E, Vasankari TJ, Venketasubramanian N, Vidavalur R, Villafaina S, Violante FS, Vladimirov SK, Vlassov V, Vollmer S, Vollset SE, Vos T, Vosoughi K, Vujcic IS, Wagner GR, Wagnew FS, Waheed Y, Walson JL, Wang Y, Wang YP, Wassie MM, Weiderpass E, Weintraub RG, Weiss J, Weldegebreal F, Weldegwergs KG, Werdecker A, Werkneh AA, West TE, Westerman R, Whisnant JL, Whiteford HA, Widecka J, Widecka K, Wijeratne T, Wilner LB, Winkler AS, Wiyeh AB, Wiysonge CS, Wolde HF, Wolfe CDA, Wu S, Xavier D, Xu G, Xu R, Yadollahpour A, Yahyazadeh Jabbari SH, Yakob B, Yamada T, Yan LL, Yano Y, Yaseri M, Yasin YJ, Ye P, Yearwood JA, Yeshaneh A, Yimer EM, Yip P, Yirsaw BD, Yisma E, Yonemoto N, Yonga G, Yoon SJ, Yotebieng M, Younis MZ, Yousefifard M, Yu C, Zaman SB, Zamani M, Zare Z, Zavala-Arciniega L, Zegeye DT, Zegeye EA, Zeleke AJ, Zendehdel K, Zerfu TA, Zhang AL, Zhang X, Zhou M, Zhu J, Zimsen SRM, Zodpey S, Zoeckler L, Zucker I, Zuhlke LJJ, Lim SS, Murray CJL. Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392:2091-2138. [PMID: 30496107 PMCID: PMC6227911 DOI: 10.1016/s0140-6736(18)32281-5] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of "leaving no one behind", it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990-2017, projected indicators to 2030, and analysed global attainment. METHODS We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0-100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. FINDINGS The global median health-related SDG index in 2017 was 59·4 (IQR 35·4-67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6-14·0) to a high of 84·9 (83·1-86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. INTERPRETATION The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains-curative interventions in the case of NCDs-towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions-or inaction-today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030. FUNDING Bill & Melinda Gates Foundation.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
264 |
7
|
Murray CJL, Callender CSKH, Kulikoff XR, Srinivasan V, Abate D, Abate KH, Abay SM, Abbasi N, Abbastabar H, Abdela J, Abdelalim A, Abdel-Rahman O, Abdi A, Abdoli N, Abdollahpour I, Abdulkader RS, Abebe HT, Abebe M, Abebe Z, Abebo TA, Abejie AN, Aboyans V, Abraha HN, Abreu DMX, Abrham AR, Abu-Raddad LJ, Abu-Rmeileh NME, Accrombessi MMK, Acharya P, Adamu AA, Adebayo OM, Adedeji IA, Adekanmbi V, Adetokunboh OO, Adhena BM, Adhikari TB, Adib MG, Adou AK, Adsuar JC, Afarideh M, Afshin A, Agarwal G, Agesa KM, Aghayan SA, Agrawal S, Ahmadi A, Ahmadi M, Ahmed MB, Ahmed S, Aichour AN, Aichour I, Aichour MTE, Akanda AS, Akbari ME, Akibu M, Akinyemi RO, Akinyemiju T, Akseer N, Alahdab F, Al-Aly Z, Alam K, Alebel A, Aleman AV, Alene KA, Al-Eyadhy A, Ali R, Alijanzadeh M, Alizadeh-Navaei R, Aljunid SM, Alkerwi A, Alla F, Allebeck P, Almasi A, Alonso J, Al-Raddadi RM, Alsharif U, Altirkawi K, Alvis-Guzman N, Amare AT, Ammar W, Anber NH, Andrei CL, Androudi S, Animut MD, Ansari H, Ansha MG, Antonio CAT, Appiah SCY, Aremu O, Areri HA, Arian N, Ärnlöv J, Artaman A, Aryal KK, Asayesh H, Asfaw ET, Asgedom SW, Assadi R, Atey TMM, Atique S, Atteraya MS, Ausloos M, Avokpaho EFGA, Awasthi A, Ayala Quintanilla BP, Ayele Y, Ayer R, Ayuk TB, Azzopardi PS, Babalola TK, Babazadeh A, Badali H, Badawi A, Bali AG, Banach M, Barker-Collo SL, Bärnighausen TW, Barrero LH, Basaleem H, Bassat Q, Basu A, Baune BT, Baynes HW, Beghi E, Behzadifar M, Behzadifar M, Bekele BB, Belachew AB, Belay AG, Belay E, Belay SA, Belay YA, Bell ML, Bello AK, Bennett DA, Bensenor IM, Bergeron G, Berhane A, Berman AE, Bernabe E, Bernstein RS, Bertolacci GJ, Beuran M, Bhattarai S, Bhaumik S, Bhutta ZA, Biadgo B, Bijani A, Bikbov B, Bililign N, Bin Sayeed MS, Birlik SM, Birungi C, Biswas T, Bizuneh H, Bleyer A, Basara BB, Bosetti C, Boufous S, Brady OJ, Bragazzi NL, Brainin M, Brazinova A, Breitborde NJK, Brenner H, Brewer JD, Briant PS, Britton G, Burstein R, Busse R, Butt ZA, Cahuana-Hurtado L, Campos-Nonato IR, Campuzano Rincon JC, Cano J, Car M, Cárdenas R, Carrero JJ, Carvalho F, Castañeda-Orjuela CA, Castillo Rivas J, Castro F, Catalá-López F, Çavlin A, Cerin E, Chalek J, Chang HY, Chang JC, Chattopadhyay A, Chaturvedi P, Chiang PPC, Chin KL, Chisumpa VH, Chitheer A, Choi JYJ, Chowdhury R, Christopher DJ, Cicuttini FM, Ciobanu LG, Cirillo M, Claro RM, Collado-Mateo D, Comfort H, Constantin MM, Conti S, Cooper C, Cooper LT, Cornaby L, Cortesi PA, Cortinovis M, Costa M, Cromwell E, Crowe CS, Cukelj P, Cunningham M, Daba AK, Dachew BA, Dandona L, Dandona R, Dargan PI, Daryani A, Das Gupta R, Das Neves J, Dasa TT, Dash AP, Weaver ND, Davitoiu DV, Davletov K, De Leo D, De Neve JW, Degefa MG, Degenhardt L, Degfie TT, Deiparine S, Demoz GT, Demtsu B, Denova-Gutiérrez E, Deribe K, Dervenis N, Des Jarlais DC, Dessie GA, Dharmaratne SD, Dhimal M, Dicker D, Ding EL, Dinsa GD, Djalalinia S, Do HP, Dokova K, Doku DT, Dolan KA, Doyle KE, Driscoll TR, Dubey M, Dubljanin E, Duken EE, Duraes AR, Ebrahimpour S, Edvardsson D, El Bcheraoui C, El-Khatib Z, Elyazar IR, Enayati A, Endries AY, Ermakov SP, Eshrati B, Eskandarieh S, Esmaeili R, Esteghamati A, Esteghamati S, Estep K, Fakhim H, Farag T, Faramarzi M, Fareed M, Farinha CSES, Faro A, Farvid MS, Farzadfar F, Farzaei MH, Fay KA, Fazeli MS, Feigin VL, Feigl AB, Feizy F, Fenny AP, Fentahun N, Fereshtehnejad SM, Fernandes E, Feyissa GT, Filip I, Finegold S, Fischer F, Flor LS, Foigt NA, Foreman KJ, Fornari C, Fürst T, Fukumoto T, Fuller JE, Fullman N, Gakidou E, Gallus S, Gamkrelidze A, Ganji M, Gankpe FG, Garcia GM, Garcia-Gordillo MÁ, Gebre AK, Gebre T, Gebregergs GB, Gebrehiwot TT, Gebremedhin AT, Gelano TF, Gelaw YA, Geleijnse JM, Genova-Maleras R, Gething P, Gezae KE, Ghadami MR, Ghadimi R, Ghadiri K, Ghasemi Falavarjani K, Ghasemi-Kasman M, Ghiasvand H, Ghimire M, Ghoshal AG, Gill PS, Gill TK, Giussani G, Gnedovskaya EV, Goli S, Gomez RS, Gómez-Dantés H, Gona PN, Goodridge A, Gopalani SV, Goulart AC, Goulart BNG, Grada A, Grosso G, Gugnani HCC, Guo J, Guo Y, Gupta PC, Gupta R, Gupta R, Gupta T, Haagsma JA, Hachinski V, Hafezi-Nejad N, Hagos TB, Hailegiyorgis TT, Hailu GB, Haj-Mirzaian A, Haj-Mirzaian A, Hamadeh RR, Hamidi S, Handal AJ, Hankey GJ, Hao Y, Harb HL, Haririan H, Haro JM, Hasan M, Hassankhani H, Hassen HY, Havmoeller R, Hay SI, He Y, Hedayatizadeh-Omran A, Hegazy MI, Heibati B, Heidari B, Hendrie D, Henok A, Henry NJ, Herteliu C, Heydarpour F, Hibstu DT, Hole MK, Homaie Rad E, Hoogar P, Hosgood HD, Hosseini SM, Hosseini Chavoshi MM, Hosseinzadeh M, Hostiuc M, Hostiuc S, Hsairi M, Hsiao T, Hu G, Huang JJ, Iburg KM, Igumbor EU, Ikeda CT, Ilesanmi OS, Iqbal U, Irenso AA, Irvani SSN, Isehunwa OO, Islam SMS, Jahangiry L, Jahanmehr N, Jain SK, Jakovljevic M, Jalu MT, James SL, Jassal SK, Javanbakht M, Jayatilleke AU, Jeemon P, Jha RP, Jha V, Ji JS, Jonas JB, Jozwiak JJ, Jungari SB, Jürisson M, Kabir Z, Kadel R, Kahsay A, Kalani R, Kapil U, Karami M, Matin BK, Karch A, Karema C, Karimi SM, Kasaeian A, Kassa DH, Kassa GM, Kassa TD, Kassa ZY, Kassebaum NJ, Kastor A, Katikireddi SV, Kaul A, Kawakami N, Karyani AK, Kebede S, Keiyoro PN, Kemp GR, Kengne AP, Keren A, Kereselidze M, Khader YS, Khafaie MA, Khajavi A, Khalid N, Khalil IA, Khan EA, Khan MS, Khang YH, Khanna T, Khater MM, Khatony A, Khazaeipour Z, Khazaie H, Khoja AT, Khosravi A, Khosravi MH, Kibret GD, Kidanemariam ZT, Kiirithio DN, Kilgore PE, Kim D, Kim JY, Kim YE, Kim YJ, Kimokoti RW, Kinfu Y, Kinra S, Kisa A, Kivimäki M, Kochhar S, Kokubo Y, Kolola T, Kopec JA, Kosek MN, Kosen S, Koul PA, Koyanagi A, Krishan K, Krishnaswami S, Krohn KJ, Defo BK, Bicer BK, Kumar GA, Kumar M, Kumar P, Kumsa FA, Kutz MJ, Lad SD, Lafranconi A, Lal DK, Lalloo R, Lam H, Lami FH, Lang JJ, Lanksy S, Lansingh VC, Laryea DO, Lassi ZS, Latifi A, Laxmaiah A, Lazarus JV, Lee JB, Lee PH, Leigh J, Leshargie CT, Leta S, Levi M, Li S, Li X, Li Y, Liang J, Liang X, Liben ML, Lim LL, Limenih MA, Linn S, Liu S, Lorkowski S, Lotufo PA, Lozano R, Lunevicius R, Mabika CM, Macarayan ERK, Mackay MT, Madotto F, Mahmood TAE, Mahotra NB, Majdan M, Majdzadeh R, Majeed A, Malekzadeh R, Malik MA, Mamun AA, Manamo WA, Manda AL, Mangalam S, Mansournia MA, Mantovani LG, Mapoma CC, Marami D, Maravilla JC, Marcenes W, Marina S, Martins-Melo FR, März W, Marzan MB, Mashamba-Thompson TP, Masiye F, Mason-Jones AJ, Massenburg BB, Mathur MR, Maulik PK, Mazidi M, McGrath JJ, Mehata S, Mehendale SM, Mehndiratta MM, Mehrotra R, Mehrzadi S, Mehta KM, Mehta V, Mekonnen TC, Meles HG, Meles KG, Melese A, Melku M, Memiah PTN, Memish ZA, Mendoza W, Mengesha MM, Mengistu DT, Mengistu G, Mensah GA, Mereta ST, Meretoja A, Meretoja TJ, Mestrovic T, Mezgebe HB, Miangotar Y, Miazgowski B, Miazgowski T, Miller TR, Miller-Petrie MK, Mini GK, Mirabi P, Mirica A, Mirrakhimov EM, Misganaw AT, Moazen B, Mohammad KA, Mohammadi M, Mohammadifard N, Mohammadi-Khanaposhtani M, Mohammed MA, Mohammed S, Mokdad AH, Mola GD, Molokhia M, Monasta L, Montañez JC, Moradi G, Moradi M, Moradi-Lakeh M, Moradinazar M, Moraga P, Morgado-Da-Costa J, Mori R, Morrison SD, Mosapour A, Moschos MM, Mousavi SM, Muche AA, Muchie KF, Mueller UO, Mukhopadhyay S, Muller K, Murphy TB, Murthy GVS, Musa J, Musa KI, Mustafa G, Muthupandian S, Nachega JB, Nagel G, Naghavi M, Naheed A, Nahvijou A, Naik G, Naik P, Najafi F, Naldi L, Nangia V, Nansseu JR, Nascimento BR, Nawaz H, Ncama BP, Neamati N, Negoi I, Negoi RI, Neupane S, Newton CRJ, Ngalesoni FN, Ngunjiri JW, Nguyen G, Nguyen LH, Nguyen TH, Ningrum DNA, Nirayo YL, Nisar MI, Nixon MR, Nomura S, Noroozi M, Noubiap JJ, Nouri HR, Shiadeh MN, Nowroozi MR, Nyandwi A, Nyasulu PS, Odell CM, Ofori-Asenso R, Ogah OS, Ogbo FA, Oh IH, Okoro A, Oladimeji O, Olagunju AT, Olagunju TO, Olivares PR, Olusanya BO, Olusanya JO, Ong SK, Ortiz A, Osgood-Zimmerman A, Ota E, Otieno BA, Otstavnov SS, Owolabi MO, Oyekale AS, P A M, Pakhale S, Pakhare AP, Pana A, Panda BK, Panda-Jonas S, Pandey AR, Park EK, Parsian H, Patel S, Patil ST, Patle A, Patton GC, Paturi VR, Paudel D, Pedroso MM, Peprah EK, Pereira DM, Perico N, Pesudovs K, Petri WA, Petzold M, Pierce M, Pigott DM, Pillay JD, Pirsaheb M, Polanczyk GV, Postma MJ, Pourmalek F, Pourshams A, Poustchi H, Prakash S, Prasad N, Purcell CA, Purwar MB, Qorbani M, Quansah R, Radfar A, Rafay A, Rafiei A, Rahim F, Rahimi-Movaghar A, Rahimi-Movaghar V, Rahman M, Rahman MS, Rahman MHU, Rahman MA, Rahman SU, Rai RK, Rajati F, Rajsic S, Ram U, Ranabhat CL, Ranjan P, Rawaf DL, Rawaf S, Ray SE, Razo-García C, Reiner RC, Reis C, Remuzzi G, Renzaho AMN, Resnikoff S, Rezaei S, Rezaeian S, Rezai MS, Riahi SM, Rios-Blancas MJ, Roba KT, Roberts NLS, Roever L, Ronfani L, Roshandel G, Rostami A, Rubagotti E, Ruhago GM, Sabde YD, Sachdev PS, Saddik B, Saeedi Moghaddam S, Safari H, Safari Y, Safari-Faramani R, Safdarian M, Safi S, Safiri S, Sagar R, Sahebkar A, Sahraian MA, Sajadi HS, Salahshoor MR, Salam N, Salama JS, Salamati P, Saldanha RDF, Saleem Z, Salimi Y, Salimzadeh H, Salomon JA, Salvi SS, Salz I, Sambala EZ, Samy AM, Sanabria J, Sanchez-Niño MD, Santos IS, Santric Milicevic MM, Sao Jose BP, Sardana M, Sarker AR, Sarmiento-Suárez R, Saroshe S, Sarrafzadegan N, Sartorius B, Sarvi S, Sathian B, Satpathy M, Sawant AR, Sawhney M, Saxena S, Schaeffner E, Schelonka K, Schneider IJC, Schwebel DC, Schwendicke F, Seedat S, Sekerija M, Sepanlou SG, Serván-Mori E, Shabaninejad H, Shackelford KA, Shafieesabet A, Shaheen AA, Shaikh MA, Shakir RA, Shams-Beyranvand M, Shamsi M, Shamsizadeh M, Sharafi H, Sharafi K, Sharif M, Sharif-Alhoseini M, Sharma J, Sharma R, She J, Sheikh A, Shi P, Shibuya K, Shigematsu M, Shiri R, Shirkoohi R, Shiue I, Shokraneh F, Shukla SR, Si S, Siabani S, Sibai AM, Siddiqi TJ, Sigfusdottir ID, Sigurvinsdottir R, Silpakit N, Silva DAS, Silva JP, Silveira DGA, Singam NSV, Singh JA, Singh NP, Singh V, Sinha DN, Sliwa K, Soares Filho AM, Sobaih BH, Sobhani S, Soofi M, Soriano JB, Soyiri IN, Sreeramareddy CT, Starodubov VI, Steiner C, Stewart LG, Stokes MA, Strong M, Subart ML, Sufiyan MB, Sulo G, Sunguya BF, Sur PJ, Sutradhar I, Sykes BL, Sylaja PN, Sylte DO, Szoeke CEI, Tabarés-Seisdedos R, Tabb KM, Tadakamadla SK, Tandon N, Tassew AA, Tassew SG, Taveira N, Tawye NY, Tehrani-Banihashemi A, Tekalign TG, Tekle MG, Temsah MH, Terkawi AS, Teshale MY, Tessema B, Teweldemedhin M, Thakur JS, Thankappan KR, Thirunavukkarasu S, Thomas N, Thomson AJ, Tilahun B, To QG, Tonelli M, Topor-Madry R, Torre AE, Tortajada-Girbés M, Tovani-Palone MR, Toyoshima H, Tran BX, Tran KB, Tripathy SP, Truelsen TC, Truong NT, Tsadik AG, Tsegay A, Tsilimparis N, Tudor Car L, Ukwaja KN, Ullah I, Usman MS, Uthman OA, Uzun SB, Vaduganathan M, Vaezi A, Vaidya G, Valdez PR, Varavikova E, Varughese S, Vasankari TJ, Vasconcelos AMN, Venketasubramanian N, Villafaina S, Violante FS, Vladimirov SK, Vlassov V, Vollset SE, Vos T, Vosoughi K, Vujcic IS, Wagnew FS, Waheed Y, Walson JL, Wang Y, Wang YP, Weiderpass E, Weintraub RG, Weldegwergs KG, Werdecker A, Westerman R, Whiteford H, Widecka J, Widecka K, Wijeratne T, Winkler AS, Wiysonge CS, Wolfe CDA, Wu S, Wyper GMA, Xu G, Yamada T, Yano Y, Yaseri M, Yasin YJ, Ye P, Yentür GK, Yeshaneh A, Yimer EM, Yip P, Yisma E, Yonemoto N, Yoon SJ, Yotebieng M, Younis MZ, Yousefifard M, Yu C, Zadnik V, Zaidi Z, Zaman SB, Zamani M, Zare Z, Zeleke MM, Zenebe ZM, Zerfu TA, Zhang X, Zhao XJ, Zhou M, Zhu J, Zimsen SRM, Zodpey S, Zoeckler L, Lopez AD, Lim SS. Population and fertility by age and sex for 195 countries and territories, 1950-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392:1995-2051. [PMID: 30496106 PMCID: PMC6227915 DOI: 10.1016/s0140-6736(18)32278-5] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. METHODS We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10-54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10-14 years and 50-54 years was estimated from data on fertility in women aged 15-19 years and 45-49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. FINDINGS From 1950 to 2017, TFRs decreased by 49·4% (95% uncertainty interval [UI] 46·4-52·0). The TFR decreased from 4·7 livebirths (4·5-4·9) to 2·4 livebirths (2·2-2·5), and the ASFR of mothers aged 10-19 years decreased from 37 livebirths (34-40) to 22 livebirths (19-24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83·8 million people per year since 1985. The global population increased by 197·2% (193·3-200·8) since 1950, from 2·6 billion (2·5-2·6) to 7·6 billion (7·4-7·9) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2·0%; this rate then remained nearly constant until 1970 and then decreased to 1·1% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2·5% in 1963 to 0·7% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2·7%. The global average age increased from 26·6 years in 1950 to 32·1 years in 2017, and the proportion of the population that is of working age (age 15-64 years) increased from 59·9% to 65·3%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1·0 livebirths (95% UI 0·9-1·2) in Cyprus to a high of 7·1 livebirths (6·8-7·4) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0·08 livebirths (0·07-0·09) in South Korea to 2·4 livebirths (2·2-2·6) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0·3 livebirths (0·3-0·4) in Puerto Rico to a high of 3·1 livebirths (3·0-3·2) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2·0% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. INTERPRETATION Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. FUNDING Bill & Melinda Gates Foundation.
Collapse
|
Research Support, N.I.H., Extramural |
7 |
243 |
8
|
Petersen E, Ntoumi F, Hui DS, Abubakar A, Kramer LD, Obiero C, Tambyah PA, Blumberg L, Yapi R, Al-Abri S, Pinto TDCA, Yeboah-Manu D, Haider N, Asogun D, Velavan TP, Kapata N, Bates M, Ansumana R, Montaldo C, Mucheleng'anga L, Tembo J, Mwaba P, Himwaze CM, Hamid MMA, Mfinanga S, Mboera L, Raj T, Aklillu E, Veas F, Edwards S, Kaleebu P, McHugh TD, Chakaya J, Nyirenda T, Bockarie M, Nyasulu PS, Wejse C, Muyembe-Tamfum JJ, Azhar EI, Maeurer M, Nachega JB, Kock R, Ippolito G, Zumla A. Emergence of new SARS-CoV-2 Variant of Concern Omicron (B.1.1.529) - highlights Africa's research capabilities, but exposes major knowledge gaps, inequities of vaccine distribution, inadequacies in global COVID-19 response and control efforts. Int J Infect Dis 2022; 114:268-272. [PMID: 34863925 PMCID: PMC8634699 DOI: 10.1016/j.ijid.2021.11.040] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023] Open
|
Editorial |
3 |
112 |
9
|
James SL, Castle CD, Dingels ZV, Fox JT, Hamilton EB, Liu Z, S Roberts NL, Sylte DO, Henry NJ, LeGrand KE, Abdelalim A, Abdoli A, Abdollahpour I, Abdulkader RS, Abedi A, Abosetugn AE, Abushouk AI, Adebayo OM, Agudelo-Botero M, Ahmad T, Ahmed R, Ahmed MB, Eddine Aichour MT, Alahdab F, Alamene GM, Alanezi FM, Alebel A, Alema NM, Alghnam SA, Al-Hajj S, Ali BA, Ali S, Alikhani M, Alinia C, Alipour V, Aljunid SM, Almasi-Hashiani A, Almasri NA, Altirkawi K, Abdeldayem Amer YS, Amini S, Loreche Amit AM, Andrei CL, Ansari-Moghaddam A, T Antonio CA, Yaw Appiah SC, Arabloo J, Arab-Zozani M, Arefi Z, Aremu O, Ariani F, Arora A, Asaad M, Asghari B, Awoke N, Ayala Quintanilla BP, Ayano G, Ayanore MA, Azari S, Azarian G, Badawi A, Badiye AD, Bagli E, Baig AA, Bairwa M, Bakhtiari A, Balachandran A, Banach M, Banerjee SK, Banik PC, Banstola A, Barker-Collo SL, Bärnighausen TW, Barrero LH, Barzegar A, Bayati M, Baye BA, Bedi N, Behzadifar M, Bekuma TT, Belete H, Benjet C, Bennett DA, Bensenor IM, Berhe K, Bhardwaj P, Bhat AG, Bhattacharyya K, Bibi S, Bijani A, Bin Sayeed MS, Borges G, Borzì AM, Boufous S, Brazinova A, Briko NI, Budhathoki SS, Car J, Cárdenas R, Carvalho F, Castaldelli-Maia JM, Castañeda-Orjuela CA, Castelpietra G, Catalá-López F, Cerin E, Chandan JS, Chanie WF, Chattu SK, Chattu VK, Chatziralli I, Chaudhary N, Cho DY, Kabir Chowdhury MA, Chu DT, Colquhoun SM, Constantin MM, Costa VM, Damiani G, Daryani A, Dávila-Cervantes CA, Demeke FM, Demis AB, Demoz GT, Demsie DG, Derakhshani A, Deribe K, Desai R, Nasab MD, da Silva DD, Dibaji Forooshani ZS, Doyle KE, Driscoll TR, Dubljanin E, Adema BD, Eagan AW, Eftekhari A, Ehsani-Chimeh E, Sayed Zaki ME, Elemineh DA, El-Jaafary SI, El-Khatib Z, Ellingsen CL, Emamian MH, Endalew DA, Eskandarieh S, Faris PS, Faro A, Farzadfar F, Fatahi Y, Fekadu W, Ferede TY, Fereshtehnejad SM, Fernandes E, Ferrara P, Feyissa GT, Filip I, Fischer F, Folayan MO, Foroutan M, Francis JM, Franklin RC, Fukumoto T, Geberemariyam BS, Gebre AK, Gebremedhin KB, Gebremeskel GG, Gebremichael B, Gedefaw GA, Geta B, Ghafourifard M, Ghamari F, Ghashghaee A, Gholamian A, Gill TK, Goulart AC, Grada A, Grivna M, Mohialdeen Gubari MI, Guimarães RA, Guo Y, Gupta G, Haagsma JA, Hafezi-Nejad N, Bidgoli HH, Hall BJ, Hamadeh RR, Hamidi S, Haro JM, Hasan MM, Hasanzadeh A, Hassanipour S, Hassankhani H, Hassen HY, Havmoeller R, Hayat K, Hendrie D, Heydarpour F, Híjar M, Ho HC, Hoang CL, Hole MK, Holla R, Hossain N, Hosseinzadeh M, Hostiuc S, Hu G, Ibitoye SE, Ilesanmi OS, Ilic I, Ilic MD, Inbaraj LR, Indriasih E, Naghibi Irvani SS, Shariful Islam SM, Islam MM, Ivers RQ, Jacobsen KH, Jahani MA, Jahanmehr N, Jakovljevic M, Jalilian F, Jayaraman S, Jayatilleke AU, Jha RP, John-Akinola YO, Jonas JB, Joseph N, Joukar F, Jozwiak JJ, Jungari SB, Jürisson M, Kabir A, Kadel R, Kahsay A, Kalankesh LR, Kalhor R, Kamil TA, Kanchan T, Kapoor N, Karami M, Kasaeian A, Kassaye HG, Kavetskyy T, Kebede HK, Keiyoro PN, Kelbore AG, Kelkay B, Khader YS, Khafaie MA, Khalid N, Khalil IA, Khalilov R, Khammarnia M, Khan EA, Khan M, Khanna T, Khazaie H, Shadmani FK, Khundkar R, Kiirithio DN, Kim YE, Kim D, Kim YJ, Kisa A, Kisa S, Komaki H, M Kondlahalli SK, Korshunov VA, Koyanagi A, G Kraemer MU, Krishan K, Bicer BK, Kugbey N, Kumar V, Kumar N, Kumar GA, Kumar M, Kumaresh G, Kurmi OP, Kuti O, Vecchia CL, Lami FH, Lamichhane P, Lang JJ, Lansingh VC, Laryea DO, Lasrado S, Latifi A, Lauriola P, Leasher JL, Huey Lee SW, Lenjebo TL, Levi M, Li S, Linn S, Liu X, Lopez AD, Lotufo PA, Lunevicius R, Lyons RA, Madadin M, El Razek MMA, Mahotra NB, Majdan M, Majeed A, Malagon-Rojas JN, Maled V, Malekzadeh R, Malta DC, Manafi N, Manafi A, Manda AL, Manjunatha N, Mansour-Ghanaei F, Mansouri B, Mansournia MA, Maravilla JC, March LM, Mason-Jones AJ, Masoumi SZ, Massenburg BB, Maulik PK, Meles GG, Melese A, Melketsedik ZA, N Memiah PT, Mendoza W, Menezes RG, Mengesha MB, Mengesha MM, Meretoja TJ, Meretoja A, Merie HE, Mestrovic T, Miazgowski B, Miazgowski T, Miller TR, Mini GK, Mirica A, Mirrakhimov EM, Mirzaei-Alavijeh M, Mithra P, Moazen B, Moghadaszadeh M, Mohamadi E, Mohammad Y, Mohammad KA, Darwesh AM, Gholi Mezerji NM, Mohammadian-Hafshejani A, Mohammadoo-Khorasani M, Mohammadpourhodki R, Mohammed S, Mohammed JA, Mohebi F, Molokhia M, Monasta L, Moodley Y, Moosazadeh M, Moradi M, Moradi G, Moradi-Lakeh M, Moradpour F, Morawska L, Velásquez IM, Morisaki N, Morrison SD, Mossie TB, Muluneh AG, Murthy S, Musa KI, Mustafa G, Nabhan AF, Nagarajan AJ, Naik G, Naimzada MD, Najafi F, Nangia V, Nascimento BR, Naserbakht M, Nayak V, Ndwandwe DE, Negoi I, Ngunjiri JW, Nguyen CT, Thi Nguyen HL, Nikbakhsh R, Anggraini Ningrum DN, Nnaji CA, Nyasulu PS, Ogbo FA, Oghenetega OB, Oh IH, Okunga EW, Olagunju AT, Olagunju TO, Bali AO, Onwujekwe OE, Asante KO, Orpana HM, Ota E, Otstavnov N, Otstavnov SS, A MP, Padubidri JR, Pakhale S, Pakshir K, Panda-Jonas S, Park EK, Patel SK, Pathak A, Pati S, Patton GC, Paulos K, Peden AE, Filipino Pepito VC, Pereira J, Pham HQ, Phillips MR, Pinheiro M, Polibin RV, Polinder S, Poustchi H, Prakash S, Angga Pribadi DR, Puri P, Syed ZQ, Rabiee M, Rabiee N, Radfar A, Rafay A, Rafiee A, Rafiei A, Rahim F, Rahimi S, Rahimi-Movaghar V, Rahman MA, Rajabpour-Sanati A, Rajati F, Rakovac I, Ranganathan K, Rao SJ, Rashedi V, Rastogi P, Rathi P, Rawaf S, Rawal L, Rawassizadeh R, Renjith V, N Renzaho AM, Resnikoff S, Rezapour A, Ribeiro AI, Rickard J, Rios González CM, Ronfani L, Roshandel G, Saad AM, Sabde YD, Sabour S, Saddik B, Safari S, Safari-Faramani R, Safarpour H, Safdarian M, Sajadi SM, Salamati P, Salehi F, Zahabi SS, Rashad Salem MR, Salem H, Salman O, Salz I, Samy AM, Sanabria J, Riera LS, Santric Milicevic MM, Sarker AR, Sarveazad A, Sathian B, Sawhney M, Sawyer SM, Saxena S, Sayyah M, Schwebel DC, Seedat S, Senthilkumaran S, Sepanlou SG, Seyedmousavi S, Sha F, Shaahmadi F, Shahabi S, Shaikh MA, Shams-Beyranvand M, Shamsizadeh M, Sharif-Alhoseini M, Sharifi H, Sheikh A, Shigematsu M, Shin JI, Shiri R, Siabani S, Sigfusdottir ID, Singh PK, Singh JA, Sinha DN, Smarandache CG, R Smith EU, Soheili A, Soleymani B, Soltanian AR, Soriano JB, Sorrie MB, Soyiri IN, Stein DJ, Stokes MA, Sufiyan MB, Rasul Suleria HA, Sykes BL, Tabarés-Seisdedos R, Tabb KM, Taddele BW, Tadesse DB, Tamiru AT, Tarigan IU, Tefera YM, Tehrani-Banihashemi A, Tekle MG, Tekulu GH, Tesema AK, Tesfay BE, Thapar R, Tilahune AB, Tlaye KG, Tohidinik HR, Topor-Madry R, Tran BX, Tran KB, Tripathy JP, Tsai AC, Car LT, Ullah S, Ullah I, Umar M, Unnikrishnan B, Upadhyay E, Uthman OA, Valdez PR, Vasankari TJ, Venketasubramanian N, Violante FS, Vlassov V, Waheed Y, Weldesamuel GT, Werdecker A, Wiangkham T, Wolde HF, Woldeyes DH, Wondafrash DZ, Wondmeneh TG, Wondmieneh AB, Wu AM, Yadav R, Yadollahpour A, Yano Y, Yaya S, Yazdi-Feyzabadi V, Yip P, Yisma E, Yonemoto N, Yoon SJ, Youm Y, Younis MZ, Yousefi Z, Yu Y, Yu C, Yusefzadeh H, Moghadam TZ, Zaidi Z, Zaman SB, Zamani M, Zamanian M, Zandian H, Zarei A, Zare F, Zhang ZJ, Zhang Y, Zodpey S, Dandona L, Dandona R, Degenhardt L, Dharmaratne SD, Hay SI, Mokdad AH, Reiner RC, Sartorius B, Vos T. Global injury morbidity and mortality from 1990 to 2017: results from the Global Burden of Disease Study 2017. Inj Prev 2020; 26:i96-i114. [PMID: 32332142 PMCID: PMC7571366 DOI: 10.1136/injuryprev-2019-043494] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Past research in population health trends has shown that injuries form a substantial burden of population health loss. Regular updates to injury burden assessments are critical. We report Global Burden of Disease (GBD) 2017 Study estimates on morbidity and mortality for all injuries. METHODS We reviewed results for injuries from the GBD 2017 study. GBD 2017 measured injury-specific mortality and years of life lost (YLLs) using the Cause of Death Ensemble model. To measure non-fatal injuries, GBD 2017 modelled injury-specific incidence and converted this to prevalence and years lived with disability (YLDs). YLLs and YLDs were summed to calculate disability-adjusted life years (DALYs). FINDINGS In 1990, there were 4 260 493 (4 085 700 to 4 396 138) injury deaths, which increased to 4 484 722 (4 332 010 to 4 585 554) deaths in 2017, while age-standardised mortality decreased from 1079 (1073 to 1086) to 738 (730 to 745) per 100 000. In 1990, there were 354 064 302 (95% uncertainty interval: 338 174 876 to 371 610 802) new cases of injury globally, which increased to 520 710 288 (493 430 247 to 547 988 635) new cases in 2017. During this time, age-standardised incidence decreased non-significantly from 6824 (6534 to 7147) to 6763 (6412 to 7118) per 100 000. Between 1990 and 2017, age-standardised DALYs decreased from 4947 (4655 to 5233) per 100 000 to 3267 (3058 to 3505). INTERPRETATION Injuries are an important cause of health loss globally, though mortality has declined between 1990 and 2017. Future research in injury burden should focus on prevention in high-burden populations, improving data collection and ensuring access to medical care.
Collapse
|
Research Support, N.I.H., Extramural |
5 |
92 |
10
|
James SL, Lucchesi LR, Bisignano C, Castle CD, Dingels ZV, Fox JT, Hamilton EB, Liu Z, McCracken D, Nixon MR, Sylte DO, Roberts NLS, Adebayo OM, Aghamolaei T, Alghnam SA, Aljunid SM, Almasi-Hashiani A, Badawi A, Behzadifar M, Behzadifar M, Bekru ET, Bennett DA, Chapman JR, Deribe K, Duko Adema B, Fatahi Y, Gelaw BK, Getahun EA, Hendrie D, Henok A, Hidru HD, Hosseinzadeh M, Hu G, Jahani MA, Jakovljevic M, Jalilian F, Joseph N, Karami M, Kelbore AG, Khan MN, Kim YJ, Koul PA, La Vecchia C, Linn S, Majdzadeh R, Mehndiratta MM, Memiah PTN, Mengesha MM, Merie HE, R Miller T, Mirzaei-Alavijeh M, Mohammad Darwesh A, Mohammad Gholi Mezerji N, Mohammadibakhsh R, Moodley Y, Moradi-Lakeh M, Musa KI, Nascimento BR, Nikbakhsh R, Nyasulu PS, Omar Bali A, Onwujekwe OE, Pati S, Pourmirza Kalhori R, Salehi F, Shahabi S, Shallo SA, Shamsizadeh M, Sharafi Z, Shukla SR, Sobhiyeh MR, Soriano JB, Sykes BL, Tabarés-Seisdedos R, Tadesse DBB, Tefera YM, Tehrani-Banihashemi A, Tlou B, Topor-Madry R, Wiangkham T, Yaseri M, Yaya S, Yenesew MA, Younis MZ, Ziapour A, Zodpey S, Pigott DM, Reiner RC, Hay SI, Lopez AD, Mokdad AH. Morbidity and mortality from road injuries: results from the Global Burden of Disease Study 2017. Inj Prev 2020; 26:i46-i56. [PMID: 31915274 PMCID: PMC7571357 DOI: 10.1136/injuryprev-2019-043302] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND The global burden of road injuries is known to follow complex geographical, temporal and demographic patterns. While health loss from road injuries is a major topic of global importance, there has been no recent comprehensive assessment that includes estimates for every age group, sex and country over recent years. METHODS We used results from the Global Burden of Disease (GBD) 2017 study to report incidence, prevalence, years lived with disability, deaths, years of life lost and disability-adjusted life years for all locations in the GBD 2017 hierarchy from 1990 to 2017 for road injuries. Second, we measured mortality-to-incidence ratios by location. Third, we assessed the distribution of the natures of injury (eg, traumatic brain injury) that result from each road injury. RESULTS Globally, 1 243 068 (95% uncertainty interval 1 191 889 to 1 276 940) people died from road injuries in 2017 out of 54 192 330 (47 381 583 to 61 645 891) new cases of road injuries. Age-standardised incidence rates of road injuries increased between 1990 and 2017, while mortality rates decreased. Regionally, age-standardised mortality rates decreased in all but two regions, South Asia and Southern Latin America, where rates did not change significantly. Nine of 21 GBD regions experienced significant increases in age-standardised incidence rates, while 10 experienced significant decreases and two experienced no significant change. CONCLUSIONS While road injury mortality has improved in recent decades, there are worsening rates of incidence and significant geographical heterogeneity. These findings indicate that more research is needed to better understand how road injuries can be prevented.
Collapse
|
research-article |
5 |
77 |
11
|
Tamuzi JL, Ayele BT, Shumba CS, Adetokunboh OO, Uwimana-Nicol J, Haile ZT, Inugu J, Nyasulu PS. Implications of COVID-19 in high burden countries for HIV/TB: A systematic review of evidence. BMC Infect Dis 2020; 20:744. [PMID: 33036570 PMCID: PMC7545798 DOI: 10.1186/s12879-020-05450-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The triple burden of COVID-19, tuberculosis and human immunodeficiency virus is one of the major global health challenges of the twenty-first century. In high burden HIV/TB countries, the spread of COVID-19 among people living with HIV is a well-founded concern. A thorough understanding of HIV/TB and COVID-19 pandemics is important as the three diseases interact. This may clarify HIV/TB/COVID-19 as a newly related field. However, several gaps remain in the knowledge of the burden of COVID-19 on patients with TB and HIV. This study was conducted to review different studies on SARS-CoV, MERS-CoV or COVID-19 associated with HIV/TB co-infection or only TB, to understand the interactions between HIV, TB and COVID-19 and its implications on the burden of the COVID-19 among HIV/TB co-infected or TB patients, screening algorithm and clinical management. METHODS We conducted an electronic search of potentially eligible studies published in English in the Cochrane Controlled Register of Trials, PubMed, Medrxiv, Google scholar and Clinical Trials Registry databases. We included case studies, case series and observational studies published between January, 2002 and July, 2020 in which SARS-CoV, MERS-CoV and COVID-19 co-infected to HIV/TB or TB in adults. We screened titles, abstracts and full articles for eligibility. Descriptive and meta-analysis were done and results have been presented in graphs and tables. RESULTS After removing 95 duplicates, 58 out of 437 articles were assessed for eligibility, of which 14 studies were included for descriptive analysis and seven studies were included in the meta-analysis. Compared to the descriptive analysis, the meta-analysis showed strong evidence that current TB exposure was high-risk COVID-19 group (OR 1.67, 95% CI 1.06-2.65, P = 0.03). The pooled of COVID-19/TB severity rate increased from OR 4.50 (95% CI 1.12-18.10, P = 0.03), the recovery rate was high among COVID-19 compared to COVID-19/TB irrespective of HIV status (OR 2.23, 95% CI 1.83-2.74, P < 0.001) and the mortality was reduced among non-TB group (P < 0.001). CONCLUSION In summary, TB was a risk factor for COVID-19 both in terms of severity and mortality irrespective of HIV status. Structured diagnostic algorithms and clinical management are suggested to improve COVID-19/HIV/TB or COVID-19/TB co-infections outcomes.
Collapse
|
Systematic Review |
5 |
62 |
12
|
Chimoyi L, Tshuma N, Muloongo K, Setswe G, Sarfo B, Nyasulu PS. HIV-related knowledge, perceptions, attitudes, and utilisation of HIV counselling and testing: a venue-based intercept commuter population survey in the inner city of Johannesburg, South Africa. Glob Health Action 2015; 8:26950. [PMID: 25925192 PMCID: PMC4414782 DOI: 10.3402/gha.v8.26950] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/22/2015] [Accepted: 03/20/2015] [Indexed: 12/29/2022] Open
Abstract
Background HIV counselling and testing (HCT) and knowledge about HIV have been key strategies utilised in the prevention and control of HIV/AIDS worldwide. HIV knowledge and uptake of HCT services in sub-Saharan Africa are still low. This study was conducted to determine factors associated with HCT and HIV/AIDS knowledge levels among a commuter population in Johannesburg, South Africa. Objective To identify the factors associated with HCT uptake among the commuter population. Design A simple random sampling method was used to select participants in a venue-based intercept survey at a taxi rank in the Johannesburg Central Business District. Data were collected using an electronic questionnaire. Logistic regression analysis assessed factors associated with HIV testing stratified by gender. Results 1,146 respondents were interviewed, the maority (n=579, 50.5%) were females and (n=780, 68.1%) were over 25 years of age. Overall HCT knowledge was high (n=951, 83%) with more females utilising HCT facilities. There was a significant difference in HIV testing for respondents living closer to and further away from health facilities. Slightly more than half of the respondents indicated stigma as one of the barriers for testing (n=594, 52%, p-value=0.001). For males, living with a partner (aOR: 1.68, 95% CI: 1.02–2.78, p-value: 0.041) and possessing a post-primary education were positively associated with testing (aOR: 2.00, 95% CI: 1.15–3.47, p-value: 0.014), whereas stigma and discrimination reduced the likelihood of testing (aOR: 0.40, 95% CI: 0.31–0.62, p-value: <0.001). For females, having one sexual partner (aOR: 2.65, 95% CI: 1.19–5.90, p-value: 0.017) and a low perceived benefit for HIV testing (aOR: 0.54, 95% CI: 0.30–0.96, p-value: 0.035) were associated with HIV testing. Conclusion The overall HIV/AIDS knowledge was generally high. Gender-specific health education and HIV intervention programmes are needed for improved access to HCT services. One favourable intervention would be the use of home-based HCT programmes.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
34 |
13
|
Machisa M, Wichmann J, Nyasulu PS. Biomass fuel use for household cooking in Swaziland: is there an association with anaemia and stunting in children aged 6-36 months? Trans R Soc Trop Med Hyg 2013; 107:535-44. [PMID: 23900119 DOI: 10.1093/trstmh/trt055] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND This study is the second to investigate the association between the use of biomass fuels (BMF) for household cooking and anaemia and stunting in children. Such fuels include coal, charcoal, wood, dung and crop residues. METHODS Data from the 2006-2007 Swaziland Demographic and Health Survey (a cross-sectional study design) were analysed. Childhood stunting was ascertained through age and height, and anaemia through haemoglobin measurement. The association between BMF use and health outcomes was determined in multinomial logistic regression analyses. Various confounders were considered in the analyses. RESULTS A total of 1150 children aged 6-36 months were included in the statistical analyses, of these 596 (51.8%) and 317 (27.6%) were anaemic and stunted, respectively. BMF use was not significantly associated with childhood anaemia in univariate analysis. Independent risk factors for childhood anaemia were child's age, history of childhood diarrhoea and mother's anaemia status. No statistically significant association was observed between BMF use and childhood stunting, after adjusting for child's gender, age, birth weight and preceding birth interval. CONCLUSION This study identified the need to prioritize childhood anaemia and stunting as health outcomes and the introduction of public health interventions in Swaziland. Further research is needed globally on the potential effects of BMF use on childhood anaemia and stunting.
Collapse
|
Journal Article |
12 |
32 |
14
|
Umanah T, Ncayiyana J, Padanilam X, Nyasulu PS. Treatment outcomes in multidrug resistant tuberculosis-human immunodeficiency virus Co-infected patients on anti-retroviral therapy at Sizwe Tropical Disease Hospital Johannesburg, South Africa. BMC Infect Dis 2015; 15:478. [PMID: 26511616 PMCID: PMC4625623 DOI: 10.1186/s12879-015-1214-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 10/14/2015] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Multidrug resistant-tuberculosis (MDR-TB) is a threat to global tuberculosis control which is worsened by human immune-deficiency virus (HIV) co-infection. There is however paucity of data on the effects of antiretroviral treatment (ART) before or after starting MDR-TB treatment. This study determined predictors of mortality and treatment failure among HIV co-infected MDR-TB patients on ART. METHODS A retrospective medical record review of 1200 HIV co-infected MDR-TB patients admitted at Sizwe Tropical Disease Hospital, Johannesburg from 2007 to 2010 was performed. Chi-square test was used to determine treatment outcomes in HIV co-infected MDR-TB patients on ART. Multivariable logistic regression and Poisson models were used to determine predictors of mortality and treatment failure respectively. RESULTS Mortality was higher (21.8% vs. 15.4%) among patients who started ART before initiating MDR-TB treatment compared with patients initiated on ART after commencing MDR-TB treatment (p = 0.013). Factors significantly associated with mortality included: the use of ART before starting MDR-TB treatment (OR 1.65, 95% CI 1.02-2.73), severely-underweight (OR 3.71, 95% CI 1.89-7.29) and underweight (OR 2.35, 95% CI 1.30-4.26), cavities on chest x-rays at baseline (OR 1.76, 95% CI 1.08-2.94), presence of other opportunistic infections (OR 1.80, 95% CI 1.10-2.94) and presence of other co-morbidities (OR 2.26, 95% CI 1.20-4.21). Factors predicting failure were severe anaemia (IRR (OR 4.72, 95% CI 1.47-15), other co-morbidities (OR 2.39, 95% CI 1.05-5.43) and modified individualised regimen at baseline (OR 2.15, 95% CI 0.98-4.71). CONCLUSIONS High mortality among patients already on ART before initiating MDR-TB treatment is a worrisome development. Management of adverse-events, opportunistic infections and co-morbidities in these patients is important if the protective benefits of being on ART are to be maximized. There is the need to intensify intervention programmes targeted at early identification of MDR-TB, treatment initiation, drug monitoring and increasing adherence among HIV co-infected MDR-TB patients.
Collapse
|
research-article |
10 |
27 |
15
|
Nwaiwu AU, Musekiwa A, Tamuzi JL, Sambala EZ, Nyasulu PS. The incidence and mortality of yellow fever in Africa: a systematic review and meta-analysis. BMC Infect Dis 2021; 21:1089. [PMID: 34688249 PMCID: PMC8536483 DOI: 10.1186/s12879-021-06728-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/01/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Understanding the occurrence of yellow fever epidemics is critical for targeted interventions and control efforts to reduce the burden of disease. We assessed data on the yellow fever incidence and mortality rates in Africa. METHODS We searched the Cochrane Library, SCOPUS, MEDLINE, CINAHL, PubMed, Embase, Africa-wide and Web of science databases from 1 January 1975 to 30th October 2020. Two authors extracted data from included studies independently and conducted a meta-analysis. RESULTS Of 840 studies identified, 12 studies were deemed eligible for inclusion. The incidence of yellow fever per 100,000 population ranged from < 1 case in Nigeria, < 3 cases in Uganda, 13 cases in Democratic Republic of the Congo, 27 cases in Kenya, 40 cases in Ethiopia, 46 cases in Gambia, 1267 cases in Senegal, and 10,350 cases in Ghana. Case fatality rate associated with yellow fever outbreaks ranged from 10% in Ghana to 86% in Nigeria. The mortality rate ranged from 0.1/100,000 in Nigeria to 2200/100,000 in Ghana. CONCLUSION The yellow fever incidence rate is quite constant; in contrast, the fatality rates vary widely across African countries over the study period. Standardized demographic health surveys and surveillance as well as accurate diagnostic measures are essential for early recognition, treatment and control.
Collapse
|
Meta-Analysis |
4 |
26 |
16
|
Geerts JM, Kinnair D, Taheri P, Abraham A, Ahn J, Atun R, Barberia L, Best NJ, Dandona R, Dhahri AA, Emilsson L, Free JR, Gardam M, Geerts WH, Ihekweazu C, Johnson S, Kooijman A, Lafontaine AT, Leshem E, Lidstone-Jones C, Loh E, Lyons O, Neel KAF, Nyasulu PS, Razum O, Sabourin H, Schleifer Taylor J, Sharifi H, Stergiopoulos V, Sutton B, Wu Z, Bilodeau M. Guidance for Health Care Leaders During the Recovery Stage of the COVID-19 Pandemic: A Consensus Statement. JAMA Netw Open 2021; 4:e2120295. [PMID: 34236416 DOI: 10.1001/jamanetworkopen.2021.20295] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
IMPORTANCE The COVID-19 pandemic is the greatest global test of health leadership of our generation. There is an urgent need to provide guidance for leaders at all levels during the unprecedented preresolution recovery stage. OBJECTIVE To create an evidence- and expertise-informed framework of leadership imperatives to serve as a resource to guide health and public health leaders during the postemergency stage of the pandemic. EVIDENCE REVIEW A literature search in PubMed, MEDLINE, and Embase revealed 10 910 articles published between 2000 and 2021 that included the terms leadership and variations of emergency, crisis, disaster, pandemic, COVID-19, or public health. Using the Standards for Quality Improvement Reporting Excellence reporting guideline for consensus statement development, this assessment adopted a 6-round modified Delphi approach involving 32 expert coauthors from 17 countries who participated in creating and validating a framework outlining essential leadership imperatives. FINDINGS The 10 imperatives in the framework are: (1) acknowledge staff and celebrate successes; (2) provide support for staff well-being; (3) develop a clear understanding of the current local and global context, along with informed projections; (4) prepare for future emergencies (personnel, resources, protocols, contingency plans, coalitions, and training); (5) reassess priorities explicitly and regularly and provide purpose, meaning, and direction; (6) maximize team, organizational, and system performance and discuss enhancements; (7) manage the backlog of paused services and consider improvements while avoiding burnout and moral distress; (8) sustain learning, innovations, and collaborations, and imagine future possibilities; (9) provide regular communication and engender trust; and (10) in consultation with public health and fellow leaders, provide safety information and recommendations to government, other organizations, staff, and the community to improve equitable and integrated care and emergency preparedness systemwide. CONCLUSIONS AND RELEVANCE Leaders who most effectively implement these imperatives are ideally positioned to address urgent needs and inequalities in health systems and to cocreate with their organizations a future that best serves stakeholders and communities.
Collapse
|
|
4 |
26 |
17
|
Bourinbaiar AS, Mezentseva MV, Butov DA, Nyasulu PS, Efremenko YV, Jirathitikal V, Mishchenko VV, Kutsyna GA. Immune approaches in tuberculosis therapy: a brief overview. Expert Rev Anti Infect Ther 2014; 10:381-9. [DOI: 10.1586/eri.12.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
|
11 |
15 |
18
|
Tshuma N, Mosikare O, Yun JA, Alaba OA, Maheedhariah MS, Muloongo K, Nyasulu PS. Acceptability of community-based adherence clubs among health facility staff in South Africa: a qualitative study. Patient Prefer Adherence 2017; 11:1523-1531. [PMID: 28979100 PMCID: PMC5602677 DOI: 10.2147/ppa.s116826] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Patient retention in care for HIV/AIDS is a critical challenge for antiretroviral treatment programs. Community-based adherence programs (CBAPs) as compared to health care facility-based adherence programs have been considered as one of the options to provide treatment maintenance support for groups of patients on antiretroviral therapy. Such an approach provides a way of enhancing self-management of the patient's condition. In addition, CBAPs have been implemented to support antiretroviral treatment expansion in resource-limited settings. CBAPs involve 30 patients that are allocated to a group and meet at either a facility or a community venue for less than an hour every 2 or 3 months depending on the supply of medication. Our study aimed to establish perceived challenges in moving adherence clubs from health facilities to communities. METHODS A qualitative study was conducted in 39 clinics in Mpumalanga and Gauteng Provinces in South Africa between December 2015 and January 2016. Purposive sampling method was used to identify nurses, club managers, data capturers, pharmacists and pharmacy assistants who had been involved in facility-based treatment adherence clubs. Key-informant interviews were conducted. Also, semi-structured interviews were used and thematic content analysis was done. RESULTS A total of 53 health care workers, 12 (22.6%) males and 41 (77.4%) females, participated in the study. Most of them 49 (92.5%) indicated that participating in community adherence clubs were a good idea. Reduction in waiting time at the health facilities, in defaulter rate, improvement in adherence to treatment as well as reduction in stigma were some of the perceived benefits. However, security of medication, storage conditions and transportation of the prepacked medication to the distribution sites were the areas of concern. CONCLUSION Health care workers were agreeable to idea of the moving adherence clubs from health facilities to communities. Although some challenges were identified, these could be addressed by the key stakeholders. However, government and nongovernmental organizations need to exercise caution when transitioning to community-based adherence clubs.
Collapse
|
research-article |
8 |
15 |
19
|
Nachega JB, Sam-Agudu NA, Machekano RN, Rosenthal PJ, Schell S, de Waard L, Bekker A, Gachuno OW, Kinuthia J, Mwongeli N, Budhram S, Vannevel V, Somapillay P, Prozesky HW, Taljaard J, Parker A, Agyare E, Opoku AB, Makarfi AU, Abdullahi AM, Adirieje C, Ishoso DK, Pipo MT, Tshilanda MB, Bongo-Pasi Nswe C, Ditekemena J, Sigwadhi LN, Nyasulu PS, Hermans MP, Sekikubo M, Musoke P, Nsereko C, Agbeno EK, Yeboah MY, Umar LW, Ntakwinja M, Mukwege DM, Birindwa EK, Mushamuka SZ, Smith ER, Mills EJ, Otshudiema JO, Mbala-Kingebeni P, Tamfum JJM, Zumla A, Tsegaye A, Mteta A, Sewankambo NK, Suleman F, Adejumo P, Anderson JR, Noormahomed EV, Deckelbaum RJ, Stringer JSA, Mukalay A, Taha TE, Fowler MG, Wasserheit JN, Masekela R, Mellors JW, Siedner MJ, Myer L, Kengne AP, Yotebieng M, Mofenson LM, Langenegger E. Severe Acute Respiratory Syndrome Coronavirus 2 Infection and Pregnancy in Sub-Saharan Africa: A 6-Country Retrospective Cohort Analysis. Clin Infect Dis 2022; 75:1950-1961. [PMID: 36130257 PMCID: PMC9214158 DOI: 10.1093/cid/ciac294] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Few data are available on COVID-19 outcomes among pregnant women in sub-Saharan Africa (SSA), where high-risk comorbidities are prevalent. We investigated the impact of pregnancy on SARS-CoV-2 infection and of SARS-CoV-2 infection on pregnancy to generate evidence for health policy and clinical practice. METHODS We conducted a 6-country retrospective cohort study among hospitalized women of childbearing age between 1 March 2020 and 31 March 2021. Exposures were (1) pregnancy and (2) a positive SARS-CoV-2 RT-PCR test. The primary outcome for both analyses was intensive care unit (ICU) admission. Secondary outcomes included supplemental oxygen requirement, mechanical ventilation, adverse birth outcomes, and in-hospital mortality. We used log-binomial regression to estimate the effect between pregnancy and SARS-CoV-2 infection. Factors associated with mortality were evaluated using competing-risk proportional subdistribution hazards models. RESULTS Our analyses included 1315 hospitalized women: 510 pregnant women with SARS-CoV-2, 403 nonpregnant women with SARS-CoV-2, and 402 pregnant women without SARS-CoV-2 infection. Among women with SARS-CoV-2 infection, pregnancy was associated with increased risk for ICU admission (adjusted risk ratio [aRR]: 2.38; 95% CI: 1.42-4.01), oxygen supplementation (aRR: 1.86; 95% CI: 1.44-2.42), and hazard of in-hospital death (adjusted sub-hazard ratio [aSHR]: 2.00; 95% CI: 1.08-3.70). Among pregnant women, SARS-CoV-2 infection increased the risk of ICU admission (aRR: 2.0; 95% CI: 1.20-3.35), oxygen supplementation (aRR: 1.57; 95% CI: 1.17-2.11), and hazard of in-hospital death (aSHR: 5.03; 95% CI: 1.79-14.13). CONCLUSIONS Among hospitalized women in SSA, both SARS-CoV-2 infection and pregnancy independently increased risks of ICU admission, oxygen supplementation, and death. These data support international recommendations to prioritize COVID-19 vaccination among pregnant women.
Collapse
|
Research Support, N.I.H., Extramural |
3 |
15 |
20
|
Tshuma N, Muloongo K, Nkwei ES, Alaba OA, Meera MS, Mokgobi MG, Nyasulu PS. The mediating role of self-efficacy in the relationship between premotivational cognitions and engagement in multiple health behaviors: a theory-based cross-sectional study among township residents in South Africa. J Multidiscip Healthc 2017; 10:29-39. [PMID: 28176923 PMCID: PMC5266094 DOI: 10.2147/jmdh.s112841] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Noncommunicable diseases (NCDs) are one of the major global health challenges in developed countries and are rapidly increasing globally. Perception of self-efficacy is important for complex activities and long-term changes in health behavior. This study aimed to determine whether self-efficacy mediates the effect of individual beliefs (perceived severity, susceptibility, benefits and barriers) among informal settlement residents' health behavior in relation to the prevention and management of NCDs. METHODS A cross-sectional survey was conducted using a closed-ended questionnaire among informal settlement residents in Diepsloot, Johannesburg. The proposed model was tested using structural equation modeling (AMOS software). RESULTS A total of 2,277 participants were interviewed during this survey, consisting of 1,236 (54.3%) females, with the majority of them aged between 20 and 29 years. All constructs in the questionnaire had a good reliability with a Cronbach's alpha of >0.7. Perceived benefits and perceived barriers were the strongest predictors of self-efficacy, with the highest beta values of 0.14 and 0.15, respectively. Once associated with perceived self-efficacy, the direct effect of perceived susceptibility and perceived benefits on health behavior was statistically nonsignificant (P=0.0894 and P=0.2839, respectively). Perceived benefits and perceived susceptibility were totally mediated by self-efficacy. The indirect effects of perceived severity and perceived barriers (through self-efficacy) on health behavior were significant. Thus, perceived severity and perceived barriers were partially mediated by self-efficacy. CONCLUSION Perceived susceptibility and perceived benefits did not affect health behavior unless associated with self-efficacy. In contrast, individual perception of the seriousness of NCDs and perceived barriers might still have a direct influence on health behavior even if the person does not feel able to prevent NCDs. However, this influence would be more significant when perceived severity and perceived barriers of NCDs are associated with self-efficacy.
Collapse
|
research-article |
8 |
13 |
21
|
Parker A, Boloko L, Moolla MS, Ebrahim N, Ayele BT, Broadhurst AGB, Mashigo B, Titus G, de Wet T, Boliter N, Rosslee MJ, Papavarnavas N, Abrahams R, Mendelson M, Dlamini S, Taljaard JJ, Prozesky HW, Mowlana A, Viljoen AJ, Schrueder N, Allwood BW, Lalla U, Dave JA, Calligaro G, Levin D, Maughan D, Ntusi NAB, Nyasulu PS, Meintjes G, Koegelenberg CFN, Mnguni AT, Wasserman S. Clinical features and outcomes of COVID-19 admissions in a population with a high prevalence of HIV and tuberculosis: a multicentre cohort study. BMC Infect Dis 2022; 22:559. [PMID: 35725387 PMCID: PMC9207843 DOI: 10.1186/s12879-022-07519-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/01/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND There is still a paucity of evidence on the outcomes of coronavirus disease 2019 (COVID-19) among people living with human immunodeficiency virus (PWH) and those co-infected with tuberculosis (TB), particularly in areas where these conditions are common. We describe the clinical features, laboratory findings and outcome of hospitalised PWH and human immunodeficiency virus (HIV)-uninfected COVID-19 patients as well as those co-infected with tuberculosis (TB). METHODS We conducted a multicentre cohort study across three hospitals in Cape Town, South Africa. All adults requiring hospitalisation with confirmed COVID-19 pneumonia from March to July 2020 were analysed. RESULTS PWH comprised 270 (19%) of 1434 admissions. There were 47 patients with active tuberculosis (3.3%), of whom 29 (62%) were PWH. Three-hundred and seventy-three patients (26%) died. The mortality in PWH (n = 71, 26%) and HIV-uninfected patients (n = 296, 25%) was comparable. In patients with TB, PWH had a higher mortality than HIV-uninfected patients (n = 11, 38% vs n = 3, 20%; p = 0.001). In multivariable survival analysis a higher risk of death was associated with older age (Adjusted Hazard Ratio (AHR) 1.03 95%CI 1.02-1.03, p < 0.001), male sex (AHR1.38 (95%CI 1.12-1.72, p = 0.003) and being "overweight or obese" (AHR 1.30 95%CI 1.03-1.61 p = 0.024). HIV (AHR 1.28 95%CI 0.95-1.72, p 0.11) and active TB (AHR 1.50 95%CI 0.84-2.67, p = 0.17) were not independently associated with increased risk of COVID-19 death. Risk factors for inpatient mortality in PWH included CD4 cell count < 200 cells/mm3, higher admission oxygen requirements, absolute white cell counts, neutrophil/lymphocyte ratios, C-reactive protein, and creatinine levels. CONCLUSION In a population with high prevalence of HIV and TB, being overweight/obese was associated with increased risk of mortality in COVID-19 hospital admissions, emphasising the need for public health interventions in this patient population.
Collapse
|
Multicenter Study |
3 |
11 |
22
|
Umanah TA, Ncayiyana JR, Nyasulu PS. Predictors of cure among HIV co-infected multidrug-resistant TB patients at Sizwe Tropical Disease Hospital Johannesburg, South Africa. Trans R Soc Trop Med Hyg 2015; 109:340-8. [PMID: 25787727 DOI: 10.1093/trstmh/trv025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/24/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The global incidence of multidrug-resistant tuberculosis (MDR-TB) is rising, especially among HIV infected patients, despite intervention programs. Limited data are available on outcomes of MDR-TB treatment, specifically in a cohort of HIV co-infected patients in sub-Saharan Africa. The objective of this study was to determine the predictors of cure among MDR-TB HIV co-infected patients. METHODS A retrospective review of 1200 medical records of HIV co-infected MDR-TB patients was performed at Sizwe Tropical Disease Hospital, Johannesburg covering the period 2007 to 2010. Logistic regression analysis was done to identify predictors of cure. RESULTS Of 1137 patients included in the analysis, 29.8% (339/1137) were cured, 16.5% (188/1137) completed treatment, 22.3% (254/1137) defaulted treatment, 2.9% (33/1137) failed treatment and 22.7% (258/1137) died while on treatment. The remaining 5.7% (65/1137) were transferred-out or still-on-treatment. There was a significant interaction between sex and timing of antiretroviral treatment (ART) initiation (p=0.008). Factors predicting cure were male patients on ART prior to commencing MDR-TB treatment (OR 1.87, [1.11-3.13]), CD4(+) cell counts between 201-349 (OR 2.06, [1.10-3.84]) and ≥ 350 cells/mm³ (OR 1.98, [0.98-3.97]). Negative predictors of cure included the presence of cavitary lesions on chest x-rays (OR 0.55, [0.38-0.78]) and modified individualised regimen at baseline (OR 0.62, [0.42-0.92]). CONCLUSIONS Cure was higher in males on ART prior to initiating MDR-TB treatment compared with males on ART after initiating MDR-TB treatment. The inverse was the case among females. Therefore, future research should explore the biological and behavioural mechanisms that may possibly be responsible for this observed trend. This will help improve MDR-TB treatment outcomes in HIV co-infected patients on ART.
Collapse
|
Review |
10 |
10 |
23
|
Zemlin AE, Sigwadhi LN, Wiese OJ, Jalavu TP, Chapanduka ZC, Allwood BW, Tamuzi JL, Koegelenberg CF, Irusen EM, Lalla U, Ngah VD, Yalew A, Erasmus RT, Matsha TE, Zumla A, Nyasulu PS. The association between acid-base status and clinical outcome in critically ill COVID-19 patients admitted to intensive care unit with an emphasis on high anion gap metabolic acidosis. Ann Clin Biochem 2023; 60:86-91. [PMID: 36220779 PMCID: PMC9643107 DOI: 10.1177/00045632221134687] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The aim of this study was to identify arterial blood gas (ABG) abnormalities, with a focus on a high anion gap (AG) metabolic acidosis and evaluate outcomes in coronavirus disease 2019 (COVID-19) patients admitted to the ICU. METHODS A retrospective, observational study was conducted in a tertiary hospital in Cape Town during the first and second COVID-19 waves. Age, gender, sodium (Na), potassium (K), chloride (Cl), bicarbonate (HCO3std), pH, partial pressure of carbon dioxide (pCO2), creatinine, estimated glomerular filtration rate (eGFR), lactate levels and ABG results were obtained. The Pearson χ2 test or Fisher exact test and the Wilcoxon rank-sum test were used to compare mortality and survival. To identify factors associated with non-survival, a multivariable model was developed. RESULTS This study included 465 patients, 226 (48%) of whom were female. The sample population's median (IQR) age was 54.2 (46.1-61.3) years, and 63% of the patients died. ABG analyses found that 283 (61%) of the 465 patients had alkalosis (pH ≥ 7.45), 65 (14%) had acidosis (pH ≤ 7.35) and 117 (25%) had normal pH (7.35-7.45). In the group with alkalosis, 199 (70.3%) had a metabolic alkalosis and in the group with acidosis, 42 (64%) had a metabolic acidosis with an increased AG of more than 17. Non-survivors were older than survivors (56.4 years versus 50.3 years, p < .001). CONCLUSION Most of the COVID-19 patients admitted to the ICU had an alkalosis, and those with acidosis had a much worse prognosis. Higher AG metabolic acidosis was not associated with patients' characteristics.
Collapse
|
Observational Study |
2 |
10 |
24
|
Tshuma N, Muloongo K, Setswe G, Chimoyi L, Sarfo B, Burger D, Nyasulu PS. Potential barriers to rapid testing for human immunodeficiency virus among a commuter population in Johannesburg, South Africa. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2014; 7:11-9. [PMID: 25565898 PMCID: PMC4284027 DOI: 10.2147/hiv.s71920] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background This study aimed to determine barriers to accessing human immunodeficiency virus (HIV) counseling and testing (HCT) services among a commuter population. Methods A cross-sectional, venue-based intercept survey was conducted. Participants were recruited during a 2-day community campaign at the Noord Street taxi rank in Johannesburg, South Africa. Data were collected using a self-administered questionnaire loaded onto an electronic data collection system and analyzed using Stata software. Factors contributing to barriers for HCT were modeled using multivariate logistic regression. Results A total of 1,146 (567 male and 579 female) individuals were interviewed; of these, 51.4% were females. The majority (59.5%) were aged 25–35 years. Significant factors were age group (15–19 years), marital status (married), educational level (high school), distance to the nearest clinic (>30 km), area of employment/residence (outside inner city), and number of sexual partners (more than one). Participants aged 15–19 years were more likely to report low-risk perception of HIV as a barrier to HCT (odds ratio [OR] 1.62; 95% confidence interval [CI] 1.01–2.59), the married were more likely to report low-risk perception of HIV as a barrier to HCT (OR 1.49; 95% CI 1.13–1.96), and those living outside the inner city were more likely to report lack of partner support as a potential barrier (OR 1.94; 95% CI 1.34–2.80), while those with a high school education were more likely to report poor health worker attitude as a potential barrier to HIV testing (OR 2.17; 95% CI 1.36–3.45). Conclusion Age, marital status, occupation, educational level, area of employment and residence, distance to the nearest clinic, and number of sexual partners were factors significantly associated with barriers to HIV testing in the study population. Future HIV intervention targeting this population need to be reinforced in order to enhance HIV testing while taking cognizance of these factors.
Collapse
|
Journal Article |
11 |
9 |
25
|
Sam-Agudu NA, Rabie H, Pipo MT, Byamungu LN, Masekela R, van der Zalm MM, Redfern A, Dramowski A, Mukalay A, Gachuno OW, Mongweli N, Kinuthia J, Ishoso DK, Amoako E, Agyare E, Agbeno EK, Jibril AM, Abdullahi AM, Amadi O, Umar UM, Ayele BT, Machekano RN, Nyasulu PS, Hermans MP, Otshudiema JO, Bongo-Pasi Nswe C, Kayembe JMN, Mbala-Kingebeni P, Muyembe-Tamfum JJ, Aanyu HT, Musoke P, Fowler MG, Sewankambo N, Suleman F, Adejumo P, Tsegaye A, Mteta A, Noormahomed EV, Deckelbaum RJ, Zumla A, Mavungu Landu DJ, Tshilolo L, Zigabe S, Goga A, Mills EJ, Umar LW, Kruger M, Mofenson LM, Nachega JB. The Critical Need for Pooled Data on Coronavirus Disease 2019 in African Children: An AFREhealth Call for Action Through Multicountry Research Collaboration. Clin Infect Dis 2021; 73:1913-1919. [PMID: 33580256 PMCID: PMC7929059 DOI: 10.1093/cid/ciab142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/10/2021] [Indexed: 01/01/2023] Open
Abstract
Globally, there are prevailing knowledge gaps in the epidemiology, clinical manifestations, and outcomes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among children and adolescents; and these gaps are especially wide in African countries. The availability of robust age-disaggregated data is a critical first step in improving knowledge on disease burden and manifestations of coronavirus disease 2019 (COVID-19) among children. Furthermore, it is essential to improve understanding of SARS-CoV-2 interactions with comorbidities and coinfections such as human immunodeficiency virus (HIV), tuberculosis, malaria, sickle cell disease, and malnutrition, which are highly prevalent among children in sub-Saharan Africa. The African Forum for Research and Education in Health (AFREhealth) COVID-19 Research Collaboration on Children and Adolescents is conducting studies across Western, Central, Eastern, and Southern Africa to address existing knowledge gaps. This consortium is expected to generate key evidence to inform clinical practice and public health policy-making for COVID-19 while concurrently addressing other major diseases affecting children in African countries.
Collapse
|
review-article |
4 |
9 |