Dingjan I, Linders PTA, van den Bekerom L, Baranov MV, Halder P, Ter Beest M, van den Bogaart G. Oxidized phagosomal NOX2 complex is replenished from lysosomes.
J Cell Sci 2017;
130:1285-1298. [PMID:
28202687 PMCID:
PMC5399780 DOI:
10.1242/jcs.196931]
[Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/09/2017] [Indexed: 12/11/2022] Open
Abstract
In dendritic cells, the NADPH oxidase 2 complex (NOX2) is recruited to the phagosomal membrane during antigen uptake. NOX2 produces reactive oxygen species (ROS) in the lumen of the phagosome that kill ingested pathogens, delay antigen breakdown and alter the peptide repertoire for presentation to T cells. How the integral membrane component of NOX2, cytochrome b558 (which comprises CYBB and CYBA), traffics to phagosomes is incompletely understood. In this study, we show in dendritic cells derived from human blood-isolated monocytes that cytochrome b558 is initially recruited to the phagosome from the plasma membrane during phagosome formation. Cytochrome b558 also traffics from a lysosomal pool to phagosomes and this is required to replenish oxidatively damaged NOX2. We identified syntaxin-7, SNAP23 and VAMP8 as the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediating this process. Our data describe a key mechanism of how dendritic cells sustain ROS production after antigen uptake that is required to initiate T cell responses.
Highlighted Article: In human dendritic cells, the membrane component of the NADPH oxidase NOX2 complex is initially recruited to phagosomes from the plasma membrane, and oxidized NOX2 complex subunits are replenished from a lysosomal pool.
Collapse