1
|
Yahyapour R, Amini P, Rezapour S, Cheki M, Rezaeyan A, Farhood B, Shabeeb D, Musa AE, Fallah H, Najafi M. Radiation-induced inflammation and autoimmune diseases. Mil Med Res 2018; 5:9. [PMID: 29554942 PMCID: PMC5859747 DOI: 10.1186/s40779-018-0156-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/02/2018] [Indexed: 12/22/2022] Open
Abstract
Currently, ionizing radiation (IR) plays a key role in the agricultural and medical industry, while accidental exposure resulting from leakage of radioactive sources or radiological terrorism is a serious concern. Exposure to IR has various detrimental effects on normal tissues. Although an increased risk of carcinogenesis is the best-known long-term consequence of IR, evidence has shown that other diseases, particularly diseases related to inflammation, are common disorders among irradiated people. Autoimmune disorders are among the various types of immune diseases that have been investigated among exposed people. Thyroid diseases and diabetes are two autoimmune diseases potentially induced by IR. However, the precise mechanisms of IR-induced thyroid diseases and diabetes remain to be elucidated, and several studies have shown that chronic increased levels of inflammatory cytokines after exposure play a pivotal role. Thus, cytokines, including interleukin-1(IL-1), tumor necrosis factor (TNF-α) and interferon gamma (IFN-γ), play a key role in chronic oxidative damage following exposure to IR. Additionally, these cytokines change the secretion of insulin and thyroid-stimulating hormone(TSH). It is likely that the management of inflammation and oxidative damage is one of the best strategies for the amelioration of these diseases after a radiological or nuclear disaster. In the present study, we reviewed the evidence of radiation-induced diabetes and thyroid diseases, as well as the potential roles of inflammatory responses. In addition, we proposed that the mitigation of inflammatory and oxidative damage markers after exposure to IR may reduce the incidence of these diseases among individuals exposed to radiation.
Collapse
|
Review |
7 |
73 |
2
|
Haak E, Usadel KH, Kusterer K, Amini P, Frommeyer R, Tritschler HJ, Haak T. Effects of alpha-lipoic acid on microcirculation in patients with peripheral diabetic neuropathy. Exp Clin Endocrinol Diabetes 2001; 108:168-74. [PMID: 10926311 DOI: 10.1055/s-2000-7739] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Diabetic polyneuropathy is a serious complication in patients with diabetes mellitus. In addition to the maintenance of a sufficient metabolic control, alpha-lipoic acid (ALA) (Thioctacid, Asta Medica) is known to have beneficial effects on diabetic polyneuropathy although the exact mechanism by which ALA exerts its effect is unknown. In order to study the effect of ALA on microcirculation in patients with diabetes mellitus and peripheral neuropathy one group of patients (4 female, 4 male, age 60+/-3 years, diabetes duration 19+/-4 years, BMI 24.8+/-1.3 kg/m2) received 1200 mg ALA orally per day over 6 weeks (trial 1). A second group of patients (5 female, 4 male, age 65+/-3 years, diabetes duration 14+/-4 years, BMI 23.6+/-0.7 kg/m2) was studied before and after they had received 600 mg ALA or placebo intravenously over 15 minutes in order to investigate whether ALA has an acute effect on microcirculation (trial 2). Patients were investigated by nailfold video-capillaroscopy. Capillary blood cell velocity was examined at rest and during postreactive hyperemia (occlusion of the wrist for 2 minutes, 200 mmHg) which is a parameter of the perfusion reserve on demand. The oral therapy with ALA resulted in a significant decrease in the time to peak capillary blood cell velocity (tpCBV) during postocclusive hyperemia (trial 1: 12.6+/-3.1 vs 35.4+/-10.9 s, p<0.05). The infusion of ALA also decreased the tpCBV in patients with diabetic neuropathy (trial 2: before: 20.8+/-4,5, ALA: 11.74+/-4.4, placebo: 21.9-5.0 s, p<0.05 ALA vs both placebo and before infusions) indicating that ALA has an acute effect on microcirculation. Capillary blood cell velocity at rest (rCBV), hemodynamic parameters, hemoglobinA1c and local skin temperature remained unchanged in both studies. These results demonstrate that in patients with diabetic polyneuropathy ALA improves microcirculation as indicated by an increased perfusion reserve on demand. The observed effects are apparently acute effects. With the restriction of the pilot character of this investigation the findings support the assumption that ALA might exert its beneficial effects at least partially by improving microcirculation which is likely to occur also at the level of the vasa nervorum.
Collapse
|
Clinical Trial |
24 |
60 |
3
|
Yousefi S, Morshed M, Amini P, Stojkov D, Simon D, von Gunten S, Kaufmann T, Simon HU. Basophils exhibit antibacterial activity through extracellular trap formation. Allergy 2015; 70:1184-8. [PMID: 26043360 DOI: 10.1111/all.12662] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2015] [Indexed: 01/21/2023]
Abstract
Basophils are primarily associated with immunomodulatory functions in allergic diseases and parasitic infections. Recently, it has been demonstrated that both activated human and mouse basophils can form extracellular DNA traps (BETs) containing mitochondrial DNA and granule proteins. In this report, we provide evidence that, in spite of an apparent lack of phagocytic activity, basophils can kill bacteria through BET formation.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
58 |
4
|
Yahyapour R, Shabeeb D, Cheki M, Musa AE, Farhood B, Rezaeyan A, Amini P, Fallah H, Najafi M. Radiation Protection and Mitigation by Natural Antioxidants and Flavonoids: Implications to Radiotherapy and Radiation Disasters. Curr Mol Pharmacol 2018; 11:285-304. [DOI: 10.2174/1874467211666180619125653] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 11/22/2022]
|
|
7 |
57 |
5
|
Cheki M, Yahyapour R, Farhood B, Rezaeyan A, Shabeeb D, Amini P, Rezapoor S, Najafi M. COX-2 in Radiotherapy: A Potential Target for Radioprotection and Radiosensitization. Curr Mol Pharmacol 2018; 11:173-183. [DOI: 10.2174/1874467211666180219102520] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 11/22/2022]
|
|
7 |
53 |
6
|
Yahyapour R, Amini P, Rezapoor S, Rezaeyan A, Farhood B, Cheki M, Fallah H, Najafi M. Targeting of Inflammation for Radiation Protection and Mitigation. Curr Mol Pharmacol 2018; 11:203-210. [PMID: 29119941 DOI: 10.2174/1874467210666171108165641] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Inflammation is the response of the immune system that guards the body against several harmful stimuli in normal conditions. However, in response to ionizing radiation that leads to a massive cell death and DNA aberrations, this phenomenon causes various side effects in normal tissues. Inflammation is involved in various side effects such as gastrointestinal toxicity, mucositis, skin reactions, nervous system damage, pneumonitis, fibrosis and so on. DISCUSSION Observations have proposed that inflammatory mediators are involved in the toxic effect of ionizing radiation on non-irradiated cells via a phenomenon named bystander effect. Inflammation in both irradiated and non-irradiated cells can trigger genomic instability, leading to increased risk of carcinogenesis. Targeting the inflammatory mediators has been an interesting idea for improving the therapeutic ratio throughout the reduction of normal tissue injury as well as an increase in tumor response to radiotherapy. CONCLUSION So far, various targets have been proposed for the amelioration of radiation toxicity in radiotherapy. Of different targets, NF-κB, COX-2, some of NADPH Oxidase subfamilies, TGF-β, p38 and the renin-angiotensin system have shown promising results. Interestingly, inhibition of these targets can help sensitize the tumor cells to the radiation treatment with some mechanisms such as suppression of angiogenesis and tumor growth as well as induction of apoptosis. In this review, we focus on recent advances on promising studies for targeting the inflammatory mediators in radiotherapy.
Collapse
|
Review |
7 |
52 |
7
|
Khodamoradi E, Hoseini-Ghahfarokhi M, Amini P, Motevaseli E, Shabeeb D, Musa AE, Najafi M, Farhood B. Targets for protection and mitigation of radiation injury. Cell Mol Life Sci 2020; 77:3129-3159. [PMID: 32072238 PMCID: PMC11104832 DOI: 10.1007/s00018-020-03479-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
Protection of normal tissues against toxic effects of ionizing radiation is a critical issue in clinical and environmental radiobiology. Investigations in recent decades have suggested potential targets that are involved in the protection against radiation-induced damages to normal tissues and can be proposed for mitigation of radiation injury. Emerging evidences have been shown to be in contrast to an old dogma in radiation biology; a major amount of reactive oxygen species (ROS) production and cell toxicity occur during some hours to years after exposure to ionizing radiation. This can be attributed to upregulation of inflammatory and fibrosis mediators, epigenetic changes and disruption of the normal metabolism of oxygen. In the current review, we explain the cellular and molecular changes following exposure of normal tissues to ionizing radiation. Furthermore, we review potential targets that can be proposed for protection and mitigation of radiation toxicity.
Collapse
|
Review |
5 |
51 |
8
|
Mortezaee K, Goradel NH, Amini P, Shabeeb D, Musa AE, Najafi M, Farhood B. NADPH Oxidase as a Target for Modulation of Radiation Response; Implications to Carcinogenesis and Radiotherapy. Curr Mol Pharmacol 2019; 12:50-60. [DOI: 10.2174/1874467211666181010154709] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/17/2018] [Accepted: 09/25/2018] [Indexed: 01/17/2023]
Abstract
Background:Radiotherapy is a treatment modality for cancer. For better therapeutic efficiency, it could be used in combination with surgery, chemotherapy or immunotherapy. In addition to its beneficial therapeutic effects, exposure to radiation leads to several toxic effects on normal tissues. Also, it may induce some changes in genomic expression of tumor cells, thereby increasing the resistance of tumor cells. These changes lead to the appearance of some acute reactions in irradiated organs, increased risk of carcinogenesis, and reduction in the therapeutic effect of radiotherapy.Discussion:So far, several studies have proposed different targets such as cyclooxygenase-2 (COX-2), some toll-like receptors (TLRs), mitogen-activated protein kinases (MAPKs) etc., for the amelioration of radiation toxicity and enhancing tumor response. NADPH oxidase includes five NOX and two dual oxidases (DUOX1 and DUOX2) subfamilies that through the production of superoxide and hydrogen peroxide, play key roles in oxidative stress and several signaling pathways involved in early and late effects of ionizing radiation. Chronic ROS production by NOX enzymes can induce genomic instability, thereby increasing the risk of carcinogenesis. Also, these enzymes are able to induce cell death, especially through apoptosis and senescence that may affect tissue function. ROS-derived NADPH oxidase causes apoptosis in some organs such as intestine and tongue, which mediate inflammation. Furthermore, continuous ROS production stimulates fibrosis via stimulation of fibroblast differentiation and collagen deposition. Evidence has shown that in contrast to normal tissues, the NOX system induces tumor resistance to radiotherapy through some mechanisms such as induction of hypoxia, stimulation of proliferation, and activation of macrophages. However, there are some contradictory results. Inhibition of NADPH oxidase in experimental studies has shown promising results for both normal tissue protection and tumor sensitization to ionizing radiation.Conclusion:In this article, we aimed to review the role of different subfamilies of NADPH oxidase in radiation-induced early and late normal tissue toxicities in different organs.
Collapse
|
|
6 |
49 |
9
|
Azmoonfar R, Amini P, Saffar H, Rezapoor S, Motevaseli E, Cheki M, Yahyapour R, Farhood B, Nouruzi F, Khodamoradi E, Shabeeb D, Eleojo Musa A, Najafi M. Metformin Protects Against Radiation-Induced Pneumonitis and Fibrosis and Attenuates Upregulation of Dual Oxidase Genes Expression. Adv Pharm Bull 2018; 8:697-704. [PMID: 30607342 PMCID: PMC6311649 DOI: 10.15171/apb.2018.078] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/26/2018] [Accepted: 09/29/2018] [Indexed: 12/30/2022] Open
Abstract
Purpose: Lung tissue is one of the most sensitive organs to ionizing radiation (IR). Early and late side effects of exposure to IR can limit the radiation doses delivered to tumors that are within or adjacent to this organ. Pneumonitis and fibrosis are the main side effects of radiotherapy for this organ. IL-4 and IL-13 have a key role in the development of pneumonitis and fibrosis. Metformin is a potent anti-fibrosis and redox modulatory agent that has shown radioprotective effects. In this study, we aimed to evaluate possible upregulation of these cytokines and subsequent cascades such as IL4-R1, IL-13R1, Dual oxidase 1 (DUOX1) and DUOX2. In addition, we examined the potential protective effect of metformin in these cytokines and genes, as well as histopathological changes in rat’s lung tissues. Methods: 20 rats were divided into 4 groups: control; metformin treated; radiation + metformin; and radiation. Irradiation was performed with a 60Co source delivering 15 Gray (Gy) to the chest area. After 10 weeks, rats were sacrificed and their lung tissues were removed for histopathological, real-time PCR and ELISA assays. Results: Irradiation of lung was associated with an increase in IL-4 cytokine level, as well as the expression of IL-4 receptor-a1 (IL4ra1) and DUOX2 genes. However, there was no change in the level of IL-13 and its downstream gene including IL-13 receptor-a2 (IL13ra2). Moreover, histopathological evaluations showed significant infiltration of lymphocytes and macrophages, fibrosis, as well as vascular and alveolar damages. Treatment with metformin caused suppression of upregulated genes and IL-4 cytokine level, associated with amelioration of pathological changes. Conclusion: Results of this study showed remarkable pathological damages, an increase in the levels of IL-4, IL4Ra1 and Duox2, while that of IL-13 decreased. Treatment with metformin showed ability to attenuate upregulation of IL-4–DUOX2 pathway and other pathological damages to the lung after exposure to a high dose of IR.
Collapse
|
Journal Article |
7 |
27 |
10
|
Farhood B, Aliasgharzadeh A, Amini P, Rezaeyan A, Tavassoli A, Motevaseli E, Shabeeb D, Musa AE, Najafi M. Mitigation of Radiation-Induced Lung Pneumonitis and Fibrosis Using Metformin and Melatonin: A Histopathological Study. ACTA ACUST UNITED AC 2019; 55:medicina55080417. [PMID: 31366142 PMCID: PMC6722577 DOI: 10.3390/medicina55080417] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023]
Abstract
Background and objectives: Pneumonitis and fibrosis are the most common consequences of lung exposure to a high dose of ionizing radiation during an accidental radiological or nuclear event, and may lead to death, after some months to years. So far, some anti-inflammatory and antioxidant agents have been used for mitigation of lung injury. In the present study, we aimed to detect possible mitigatory effects of melatonin and metformin on radiation-induced pneumonitis and lung fibrosis. Materials and methods: 40 male mice were divided into 4 groups (10 mice in each). For control group, mice did not receive radiation or drugs. In group 2, mice were irradiated to chest area with 18 Gy gamma rays. In groups 3 and 4, mice were first irradiated similar to group 2. After 24 h, treatment with melatonin as well as metformin began. Mice were sacrificed after 100 days for determination of mitigation of lung pneumonitis and fibrosis by melatonin or metformin. Results: Results showed that both melatonin and metformin are able to mitigate pneumonitis and fibrosis markers such as infiltration of inflammatory cells, edema, vascular and alveolar thickening, as well as collagen deposition. Conclusion: Melatonin and metformin may have some interesting properties for mitigation of radiation pneumonitis and fibrosis after an accidental radiation event.
Collapse
|
Journal Article |
6 |
23 |
11
|
Kolivand S, Amini P, Saffar H, Rezapoor S, Motevaseli E, Najafi M, Nouruzi F, Shabeeb D, Musa AE. Evaluating the Radioprotective Effect of Curcumin on Rat’s Heart Tissues. Curr Radiopharm 2019; 12:23-28. [DOI: 10.2174/1874471011666180831101459] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 01/01/2023]
Abstract
Background: Heart injury is one of the most important concerns after exposure to a high
dose of radiation in chest cancer radiotherapy or whole body exposure to a radiation disaster. Studies
have proposed that increased level of inflammatory and pro-fibrotic cytokines following radiotherapy
or radiation events play a key role in the development of several side effects such as cardiovascular
disorders. In the current study, we aimed to evaluate the expression of IL-4 and IL-13 cytokines as well
as signaling pathways such as IL4Ra1, IL13Ra2, Duox1 and Duox2. In addition, we detected the
possible protective effect of curcumin on the expression of these factors and infiltration of inflammatory
cells.
Materials and Methods:
Twenty rats were divided into 4 groups including control; curcumin treated;
radiation; and radiation plus curcumin. After 10 weeks, rats were sacrificed for evaluation of mentioned
parameters.
Results:
Results showed an increase in the level of IL-4 and all evaluated genes, as well as increased
infiltration of lymphocytes and macrophages. Treatment with curcumin could attenuate these changes.
Conclusion:
Curcumin could reduce radiation-induced heart injury markers in rats.
Collapse
|
|
6 |
20 |
12
|
Azmoonfar R, Amini P, Yahyapour R, Rezaeyan A, Tavassoli A, Motevaseli E, Khodamoradi E, Shabeeb D, Musa AE, Najafi M. Mitigation of Radiation-induced Pneumonitis and Lung Fibrosis using Alpha-lipoic Acid and Resveratrol. Antiinflamm Antiallergy Agents Med Chem 2021; 19:149-157. [PMID: 30892165 PMCID: PMC7509749 DOI: 10.2174/1871523018666190319144020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Lung is a radiosensitive organ. Studies have shown that exposure of the lung to acute and high doses of radiation following inhalation of radioactive agents or an accidental radiological event may lead to pneumonitis and fibrosis, which are associated with a risk of death. So far, some agents have been studied for mitigation of pneumonitis and fibrosis following exposure of murine lung tissues to ionizing radiation. In this study, we aimed to detect the possible mitigatory effect of alpha-lipoic acid, resveratrol and their combination on mice pneumonitis and fibrosis markers following irradiation. METHODS 25 mice were divided into 5 groups: control, radiation; radiation plus alpha-lipoic acid; radiation plus resveratrol; and radiation plus both resveratrol and alpha-lipoic acid. Mice chest regions were irradiated with 18 Gy using a cobalt-60 gamma rays source. Treatments started 24 h after irradiation and continued for two weeks. After 100 days, all mice were sacrificed and their lung tissues removed for histopathological evaluation. RESULTS Pathological study showed that exposure to radiation led to severe pneumonitis and moderate fibrosis after 100 days. Both resveratrol and alpha-lipoic acid, as well as their combination could mitigate pneumonitis and fibrosis markers. Although, resveratrol could not mitigate infiltration of most inflammatory cells as well as inflammation and vascular damage, alpha-lipoic acid and its combination were able to mitigate most damaged markers. CONCLUSION Alpha-lipoic acid and its combination with resveratrol were able to mitigate fibrosis and pneumonitis markers in mice lung tissues following lung irradiation. Although resveratrol has a protective effect on some markers, it has a weaker effect on lung injury. In conclusion, our results suggest that the combination of resveratrol and alpha-lipoic acid has a potent mitigatory effect compared to the single forms of these agents.
Collapse
|
Journal Article |
4 |
19 |
13
|
Amini P, Kolivand S, Saffar H, Rezapoor S, Motevaseli E, Najafi M, Nouruzi F, Shabeeb D, Musa AE. Protective Effect of Selenium-L-methionine on Radiation-induced Acute Pneumonitis and Lung Fibrosis in Rat. ACTA ACUST UNITED AC 2020; 14:157-164. [PMID: 30556505 PMCID: PMC7040518 DOI: 10.2174/1574884714666181214101917] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND In this study, we aimed to detect the changes in the level of interleukin (IL)-4 and IL-13 cytokines and their downstream genes including interleukin-13 receptor subunit alpha-2 (IL13Ra2), interleukin-4 receptor subunit alpha-1 (IL4Ra1), dual oxidase 1 (DUOX1) and dual oxidase 2 (DUOX2). The protective effects of Selenium-L-methionine on radiation-induced histopathological damages and changes in the level of these cytokines and genes were detected. METHODS Four groups of 20 rats (5 rats in each) namely, control; Selenium-L-methionine, radiation and radiation plus Selenium-L-methionine were used in this study. 4 mg/kg of Selenium-Lmethionine was administered 1 day before irradiation and five consecutive days after irradiation. Irradiation was done using a dose of 15 Gy 60Co gamma rays at 109 cGy/min. All rats were sacrificed 10 weeks after irradiation for detecting changes in IL-4 and IL-13 cytokines, the expressions of IL13Ra2, IL4Ra1, Duox1 and Duox2 and histopathological changes. RESULTS The level of IL-4 but not IL-13 increased after irradiation. This was associated with increased expression of IL4Ra1, Duox1 and Duox2, in addition to changes in morphological properties. Selenium-L-methionine could attenuate all injury markers following lung irradiation. CONCLUSION Selenium-L-methionine can protect lung tissues against toxic effects of ionizing radiation. It is possible that the modulation of immune responses and redox interactions are involved in the radioprotective effect of this agent.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
19 |
14
|
Farhood B, Aliasgharzadeh A, Amini P, Saffar H, Motevaseli E, Rezapoor S, Nouruzi F, Shabeeb D, Musa AE, Ashabi G, Mohseni M, Moradi H, Najafi M. Radiation-Induced Dual Oxidase Upregulation in Rat Heart Tissues: Protective Effect of Melatonin. ACTA ACUST UNITED AC 2019; 55:medicina55070317. [PMID: 31252673 PMCID: PMC6680718 DOI: 10.3390/medicina55070317] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/22/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023]
Abstract
Background: Radiation-induced heart injury can lead to increased risk of heart failure, attack, and ischemia. Some studies proposed IL-4 and IL-13 as two important cytokines that are involved in late effects of ionizing radiation. On the other hand, these cytokines may, through upregulation of Duox1 and Duox2, induce chronic oxidative stress, inflammation, and fibrosis. In this study, we evaluated the upregulation of Duox1 and Duox2 pathways in hearts following chest irradiation in rats and then detected possible attenuation of them by melatonin. Materials and Methods: Twenty male Wistar rats were divided into four groups: (1) control; (2) melatonin treated (100 mg/kg); (3) radiation (15 Gy gamma rays); (4) melatonin treated before irradiation. All rats were sacrificed after 10 weeks and their heart tissues collected for real-time PCR (RT-PCR), ELISA detection of IL-4 and IL-13, as well as histopathological evaluation of macrophages and lymphocytes infiltration. Results: Results showed an upregulation of IL-4, IL4ra1, Duox1, and Duox2. The biggest changes were for IL4ra1 and Duox1. Treatment with melatonin before irradiation could attenuate the upregulation of all genes. Melatonin also caused a reduction in IL-4 as well as reverse infiltration of inflammatory cells. Conclusion: Duox1 and Duox2 may be involved in the late effects of radiation-induced heart injury. Also, via attenuation of these genes, melatonin can offer protection against the toxic effects of radiation on the heart.
Collapse
|
Journal Article |
6 |
18 |
15
|
Amini P, Nodooshan SJ, Ashrafizadeh M, Eftekhari SM, Aryafar T, Khalafi L, Musa AE, Mahdavi SR, Najafi M, Farhood B. Resveratrol Induces Apoptosis and Attenuates Proliferation of MCF-7 Cells in Combination with Radiation and Hyperthermia. Curr Mol Med 2021; 21:142-150. [PMID: 32436827 DOI: 10.2174/1566524020666200521080953] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 11/22/2022]
Abstract
AIM In the current in vitro study, we tried to examine the possible role of resveratrol as a sensitizer in combination with radiotherapy or hyperthermia. BACKGROUND Breast cancer is the most common malignancy for women and one of the most common worldwide. It has been suggested that using non-invasive radiotherapy alone cannot eliminate cancer cells. Hyperthermia, which is an adjuvant modality, induces cancer cell death mainly through apoptosis and necrosis. However, cancer cells can also develop resistance to this modality. OBJECTIVE The objective of this study was to determine possible potentiation of apoptosis when MCF-7 cells treated with resveratrol before hyperthermia or radiotherapy. METHODS MCF-7 cancer cells were treated with different doses of resveratrol to achieve IC50%. Afterwards, cells treated with the achieved concentration of resveratrol were exposed to radiation or hyperthermia. Proliferation, apoptosis and the expression of pro-apoptotic genes were evaluated using flow cytometry, MTT assay and real-time PCR. Results for each combination therapy were compared to radiotherapy or hyperthermia without resveratrol. RESULTS Both irradiation or hyperthermia could reduce the viability of MCF-7 cells. Furthermore, the regulation of Bax and caspase genes increased, while Bcl-2 gene expression reduced. Resveratrol potentiated the effects of radiation and hyperthermia on MCF-7 cells. CONCLUSION Results of this study suggest that resveratrol is able to induce the regulation of pro-apoptotic genes and attenuate the viability of MCF-7 cells. This may indicate the sensitizing effect of resveratrol in combination with both radiotherapy and hyperthermia.
Collapse
|
Research Support, Non-U.S. Gov't |
4 |
18 |
16
|
Amini P, Moazamiyanfar R, Dakkali MS, Khani A, Jafarzadeh E, Mouludi K, Khodamoradi E, Johari R, Taeb S, Najafi M. Resveratrol in cancer therapy; from stimulation of genomic stability to adjuvant cancer therapy; A comprehensive review. Curr Top Med Chem 2022; 23:629-648. [PMID: 36239730 DOI: 10.2174/1568026623666221014152759] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/03/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022]
Abstract
Cancer therapy through anticancer drugs and radiotherapy is associated with several side effects as well as tumor resistance to therapy. The genotoxic effects of chemotherapy and radiotherapy may lead to genomic instability and increased risk of second cancers. Furthermore, some responses in the tumor may induce the exhaustion of antitumor immunity and increase the resistance of cancer cells to therapy. Administration of low-toxicity adjuvants to protect normal tissues and improve therapy efficacy is an intriguing strategy. Several studies have focused on natural-derived agents for improving the antitumor efficiency of radiotherapy, chemotherapy, and novel anticancer drugs such as immunotherapy and targeted cancer therapy. Resveratrol is a naturally occurring substance with intriguing antioxidant, cardioprotective, anti-diabetes, and antitumor properties. Resveratrol has been demonstrated to modulate tumor resistance and mitigate normal tissue toxicity following exposure to various drugs and ionizing radiation. Compelling data suggest that resveratrol may be an appealing adjuvant in combination with various anticancer modalities. Although the natural form of resveratrol has some limitations, such as low absorption in the intestine and low bioavailability, several experiments have demonstrated that using certain carriers, such as nanoparticles, can increase the therapeutic efficacy of resveratrol in preclinical studies. This review highlights various effects of resveratrol that may be useful for cancer therapy. Consequently, we describe how resveratrol can protect normal tissue from genomic instability. In addition, the various mechanisms by which resveratrol exerts its antitumor effects are addressed. Moreover, the outcomes of combination therapy with resveratrol and other anticancer agents are reviewed.
Collapse
|
|
3 |
18 |
17
|
Najafi M, Shirazi A, Motevaseli E, Geraily G, Amini P, Tooli LF, Shabeeb D. Melatonin Modulates Regulation of NOX2 and NOX4 Following Irradiation in the Lung. ACTA ACUST UNITED AC 2019; 14:224-231. [DOI: 10.2174/1574884714666190502151733] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022]
Abstract
Background:
Exposure to ionizing radiation may lead to chronic upregulation of inflammatory
mediators and pro-oxidant enzymes, which give rise to continuous production of reactive
oxygen species (ROS). NADPH oxidases are among the most important ROS producing enzymes.
Their upregulation is associated with DNA damage and genomic instability. In the present
study, we sought to determine the expressions of NADPH oxidases; NOX2 and NOX4, in rat’s lung
following whole body or pelvis irradiation. In addition, we evaluated the protective effect of melatonin
on the expressions of NOX2 and NOX4, as well as oxidative DNA injury.
Materials and Methods:
35 male rats were divided into 7 groups, G1: control; G2: melatonin (100 mg/kg) treatment;
G3: whole body irradiation (2 Gy); G4: melatonin plus whole body irradiation; G5: local
irradiation to pelvis area; G6: melatonin treatment plus 2 Gy gamma rays to pelvis area; G7: scatter
group. All the rats were sacrificed after 24 h. afterwards, the expressions of TGFβR1, Smad2, NF-
κB, NOX2 and NOX4 were detected using real-time PCR. Also, the level of 8-OHdG was detected
by ELISA, and NOX2 and NOX4 protein levels were detected by western blot.
Results:
Whole body irradiation led to the upregulation of all genes, while local pelvis irradiation
caused upregulation of TGFβR1, NF-κB, NOX2 and NOX4, as well as protein levels of NOX2 and
NOX4. Treatment with melatonin reduced the expressions of these genes and also alleviated oxidative
injury in both targeted and non-targeted lung tissues. Results also showed no significant reduction
for NOX2 and NOX4 in bystander tissues following melatonin treatment.
Conclusion:
It is possible that upregulation of NOX2 and NOX4 is involved in radiation-induced
targeted and non-targeted lung injury. Melatonin may reduce oxidative stress following upregulation
of these enzymes in directly irradiated lung tissues but not for bystander.
Collapse
|
|
6 |
16 |
18
|
Amini P, Ashrafizadeh M, Motevaseli E, Najafi M, Shirazi A. Mitigation of radiation-induced hematopoietic system injury by melatonin. ENVIRONMENTAL TOXICOLOGY 2020; 35:815-821. [PMID: 32125094 DOI: 10.1002/tox.22917] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/05/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Increased risks of exposure to accidental radiation events are a concern in today's world. Radiation terror, nuclear explosion, as well as accidental exposure to radioactive sources in some industries pose a threat to the life of exposed persons. Studies have been conducted using some low-toxic agents to mitigate radiation toxicity and increase survival probability for exposed people. In the current study, we aimed to show the mitigation of radiation-induced mortality and bone marrow toxicity using postirradiation treatment with melatonin. METHOD Mice whole bodies were exposed to 4 or 7 Gy radiation followed by treatment with melatonin after 24 hours. Survival of mice with or without melatonin, the levels of peripheral cells, transforming growth factor (TGF)-β and 8-hydroxy-2' -deoxyguanosine (8-OHdG) in the bone marrow, as well as the expression of NADPH oxidase (NOX)2 and NOX4 in bone marrow cells were evaluated. RESULTS Whole body irradiation led to mortality 30 days after irradiation. However, melatonin treatment reduced mortality. Irradiation also showed severe reduction of lymphocytes, platelets, and red blood cells. The expressions of NOX2 and NOX4, in addition to TGF-β level, were increased after exposure to radiation. Melatonin ameliorated the increased levels of these factors and improved the number of blood cells. CONCLUSIONS Melatonin showed ability to mitigate radiation-induced hematopoietic system toxicity and also increased survival rate. These results suggest that melatonin could be a potential mitigator for accidental radiation events.
Collapse
|
|
5 |
15 |
19
|
Amini P, Mirtavoos-Mahyari H, Motevaseli E, Shabeeb D, Musa AE, Cheki M, Farhood B, Yahyapour R, Shirazi A, Goushbolagh NA, Najafi M. Mechanisms for Radioprotection by Melatonin; Can it be Used as a Radiation Countermeasure? Curr Mol Pharmacol 2019; 12:2-11. [PMID: 30073934 DOI: 10.2174/1874467211666180802164449] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/06/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Melatonin is a natural body product that has shown potent antioxidant property against various toxic agents. For more than two decades, the abilities of melatonin as a potent radioprotector against toxic effects of ionizing radiation (IR) have been proved. However, in the recent years, several studies have been conducted to illustrate how melatonin protects normal cells against IR. Studies proposed that melatonin is able to directly neutralize free radicals produced by IR, leading to the production of some low toxic products. DISCUSSION Moreover, melatonin affects several signaling pathways, such as inflammatory responses, antioxidant defense, DNA repair response enzymes, pro-oxidant enzymes etc. Animal studies have confirmed that melatonin is able to alleviate radiation-induced cell death via inhibiting pro-apoptosis and upregulation of anti-apoptosis genes. These properties are very interesting for clinical radiotherapy applications, as well as mitigation of radiation injury in a possible radiation disaster. An interesting property of melatonin is mitochondrial ROS targeting that has been proposed as a strategy for mitigating effects in radiosensitive organs, such as bone marrow, gastrointestinal system and lungs. However, there is a need to prove the mitigatory effects of melatonin in experimental studies. CONCLUSION In this review, we aim to clarify the molecular mechanisms of radioprotective effects of melatonin, as well as possible applications as a radiation countermeasure in accidental exposure or nuclear/radiological disasters.
Collapse
|
Review |
6 |
15 |
20
|
Najafi M, Cheki M, Hassanzadeh G, Amini P, Shabeeb D, Musa AE. Protection from Radiation-induced Damage in Rat's Ileum and Colon by Combined Regimens of Melatonin and Metformin: A Histopathological Study. Antiinflamm Antiallergy Agents Med Chem 2021; 19:180-189. [PMID: 31438832 PMCID: PMC7475942 DOI: 10.2174/1871523018666190718161928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 01/07/2023]
Abstract
Background: Radiation-induced enteritis and proctitis are common side effects of abdominopelvic cancers among patients that undergo radiotherapy for prostate, colorectal or urinary cancers. Exposure of these tissues to high doses of radiation leads to damage to villous, inflammation, pain, ulcer and bleeding, which may cause malabsorption and gastrointestinal disorders. To date, several procedures such as pharmaceutical treatment have been proposed for protection and mitigation of gastrointestinal toxicity following radiotherapy. Aims: In the current study, we aimed to investigate the possible radioprotection of ileum and colon in rats using a combination of melatonin and metformin. Methods: In this experimental study, 30 male Wistar rats were randomly assigned to six groups: control, melatonin (100 mg/kg) treatment, melatonin (100 mg/kg) plus metformin (100 mg/kg) treatment, radiation (10 Gy to whole body) group, radiation + melatonin (100 mg/kg) treatment, and radiation + melatonin (100 mg/kg) plus metformin (100 mg/kg) treatment. After 3.5 days, rats were sacrificed and their ileum and colon tissues carefully removed. Histopathological evaluations were conducted on these tissue samples. Results: Histological evaluations reported moderate to severe damages to ileum and colon following whole body irradiation. Melatonin administration was able to protect the ileum remarkably, while the combination of melatonin and metformin was less effective. Interestingly, for the colon, melatonin was less effective while its combination with metformin was able to protect against radiation toxicity completely. Conclusion: For the ileum, melatonin was a more effective radioprotector compared to its combination with metformin. However, the combination of melatonin and metformin can be proposed as an ideal radioprotector for the colon.
Collapse
|
Journal Article |
4 |
13 |
21
|
Aliasgharzadeh A, Farhood B, Amini P, Saffar H, Motevaseli E, Rezapoor S, Nouruzi F, Shabeeb DH, Eleojo Musa A, Mohseni M, Moradi H, Najafi M. Melatonin Attenuates Upregulation of Duox1 and Duox2 and Protects against Lung Injury following Chest Irradiation in Rats. CELL JOURNAL 2019; 21:236-242. [PMID: 31210428 PMCID: PMC6582421 DOI: 10.22074/cellj.2019.6207] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/15/2018] [Indexed: 01/07/2023]
Abstract
Objective The Lung is one of the most radiosensitive organs of the body. The infiltration of macrophages and lymphocytes
into the lung is mediated via the stimulation of T-helper 2 cytokines such as IL-4 and IL-13, which play a key role in the
development of fibrosis. It is likely that these cytokines induce chronic oxidative damage and inflammation through the
upregulation of Duox1, and Duox2, which can increase the risk of late effects of ionizing radiation (IR) such as fibrosis and
carcinogenesis. In the present study, we aimed to evaluate the possible increase of IL-4 and IL-13 levels, as well as their
downstream genes such as IL4ra1, IL13ra2, Duox1, and Duox2.
Materials and Methods In this experimental animal study, male rats were divided into 4 groups: i. Control, ii. Melatonin-
treated, iii. Radiation, and iv. Melatonin (100 mg/kg) plus radiation. Rats were irradiated with 15 Gy 60Co gamma rays and
then sacrificed after 67 days. The expressions of IL4ra1, IL13ra2, Duox1, and Duox2, as well as the levels of IL-4 and IL-13,
were evaluated. The histopathological changes such as the infiltration of inflammatory cells, edema, and fibrosis were also
examined. Moreover, the protective effect of melatonin on these parameters was also determined.
Results Results showed a 1.5-fold increase in the level of IL-4, a 5-fold increase in the expression of IL4ra1, and
a 3-fold increase in the expressions of Duox1, and Duox2. However, results showed no change for IL-13 and no
detectable expression of IL13ra2. This was associated with increased infiltration of macrophages, lymphocytes, and
mast cells. Melatonin treatment before irradiation completely reversed these changes.
Conclusion This study has shown the upregulation of IL-4-IL4ra1-Duox2 signaling pathway following lung irradiation. It
is possible that melatonin protects against IR-induced lung injury via the downregulation of this pathway and attenuation of
inflammatory cells infiltration.
Collapse
|
Journal Article |
6 |
13 |
22
|
Amini P, Moazamiyanfar R, Dakkali MS, Jafarzadeh E, Ganjizadeh M, Rastegar-Pouyani N, Moloudi K, Khodamoradi E, Taeb S, Najafi M. Induction of Cancer Cell Death by Apigenin: A Review on Different Cell Death Pathways. Mini Rev Med Chem 2023; 23:1461-1478. [PMID: 36658710 DOI: 10.2174/1389557523666230119110744] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/06/2022] [Accepted: 11/23/2022] [Indexed: 01/21/2023]
Abstract
Induction of cell death and inhibition of cell proliferation in cancer have been set as some of the main goals in anti-tumor therapy. Cancer cell resistance leads to less efficient cancer therapy, and consequently, to higher doses of anticancer drugs, which may eventually increase the risk of serious side effects in normal tissues. Apigenin, a nature-derived and herbal agent, which has shown anticancer properties in several types of cancer, can induce cell death directly and/or amplify the induction of cell death through other anti-tumor modalities. Although the main mechanism of apigenin in order to induce cell death is apoptosis, other cell death pathways, such as autophagic cell death, senescence, anoikis, necroptosis, and ferroptosis, have been reported to be induced by apigenin. It seems that apigenin enhances apoptosis by inducing anticancer immunity and tumor suppressor genes, like p53 and PTEN, and also by inhibiting STAT3 and NF-κB signaling pathways. Furthermore, it may induce autophagic cell death and ferroptosis by inducing endogenous ROS generation. Stimulation of ROS production and tumor suppressor genes, as well as downregulation of drug-resistance mediators, may induce other mechanisms of cell death, such as senescence, anoikis, and necroptosis. It seems that the induction of each type of cell death is highly dependent on the type of cancer. These modulatory actions of apigenin have been shown to enhance anticancer effects by other agents, such as ionizing radiation and chemotherapy drugs. This review explains how cancer cell death may be induced by apigenin at the cellular and molecular levels.
Collapse
|
Review |
2 |
12 |
23
|
Najafi M, Cheki M, Amini P, Javadi A, Shabeeb D, Eleojo Musa A. Evaluating the protective effect of resveratrol, Q10, and alpha-lipoic acid on radiation-induced mice spermatogenesis injury: A histopathological study. Int J Reprod Biomed 2019; 17:907-914. [PMID: 31970312 PMCID: PMC6943799 DOI: 10.18502/ijrm.v17i12.5791] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 07/06/2019] [Accepted: 07/20/2019] [Indexed: 12/12/2022] Open
Abstract
Background Testis is one of the most sensitive organs against the toxic effect of ionizing radiation. Exposure to even a low dose of radiation during radiotherapy, diagnostic radiology, or a radiological event could pose a threat to spermatogenesis. This may lead to temporary or permanent infertility or even transfer of genomic instability to the next generations. Objective In this study, we evaluated the protective effect of treatment with three natural antioxidants; resveratrol, alpha lipoic acid, and coenzyme Q10 on radiation-induced spermatogenesis injury. Materials and Methods 30 NMRI mice (6-8 wk, 30 ± 5 gr) were randomly divided into six groups (n = 5/each) as 1) control; 2) radiation; 3) radiation + resveratrol; 4) radiation + alpha lipoic acid; 5) radiation + resveratrol + alpha lipoic acid; and 6) radiation+ Q10. Mice were treated with 100 mg/kg resveratrol or 200 mg/kg alpha lipoic acid or a combination of these drugs. Also, Q10 was administered at 200 mg/kg. All treatments were performed daily from two days before to 30 min before irradiation. Afterward, mice were exposed to 2 Gy 60 Co gamma rays; 37 days after irradiation, the testicular samples were collected and evaluated for histopathological parameters. Results Results showed that these agents are able to alleviate some toxicological parameters such as basal lamina and epididymis decreased sperm density. Also, all agents were able to increase Johnsen score. However, they could not protect against radiation-induced edema, atrophy of seminiferous tubules, and hyperplasia in Leydig cells. Conclusion This study indicates that resveratrol, alpha-lipoic acid, and Q10 have the potential to reduce some of the side effects of radiation on mice spermatogenesis. However, they cannot protect Leydig cells as a source of testosterone and seminiferous tubules as the location of sperm maturation.
Collapse
|
Journal Article |
6 |
9 |
24
|
Yahyapour R, Amini P, Saffar H, Rezapoor S, Motevaseli E, Cheki M, Farhood B, Nouruzi F, Shabeeb D, Eleojo Musa A, Najafi M. Metformin Protects Against Radiation-Induced Heart Injury and Attenuates the Upregulation of Dual Oxidase Genes Following Rat's Chest Irradiation. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2018; 7:193-202. [PMID: 31565651 PMCID: PMC6744616 DOI: 10.22088/ijmcm.bums.7.3.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 10/05/2018] [Indexed: 01/11/2023]
Abstract
Radiation-induced heart toxicity is one of the serious side effects after a radiation disaster or radiotherapy for patients with chest cancers, leading to a reduction in the quality of life of the patients. Evidence has shown that infiltration of inflammatory cells plays a key role in the development of functional damages to the heart via chronic upregulation of some pro-fibrotic and pro-inflammatory cytokines. These changes are associated with continuous free radical production and increased stiffness of heart muscle. IL-4 and IL-13 are two important pro-fibrotic cytokines which contribute to the side effects of ionizing radiation exposure. Recent studies have proposed that IL-4 through upregulation of DUOX2, and IL-13 via stimulation of DUOX1 gene expression, are involved in the development of radiation late effects. In the present study, we aimed to detect changes in the expression of these pathways following irradiation of rat’s heart. Furthermore, we evaluated the possible protective effect of metformin on the development of these abnormal changes. 20 male rats were divided into 4 groups (control, radiation, metformin treated, metformin + radiation). These rats were irradiated with 15 Gy 60Co gamma rays, and sacrificed after 10 weeks for evaluation of the changes in the expression of IL4R1, IL-13R2a, DUOX1 and DUOX2. In addition, the levels of IL-4 and IL-13 cytokines, as well as infiltration of macrophages and lymphocytes were detected. Results showed an upregulation of both DUOX1 and DUOX2 pathways in the presence of metformin, while the level of IL-13 did not show any significant change. This was associated with infiltration of macrophages and lymphocytes. Also, treatment with metformin could significantly attenuate accumulation of inflammatory cells, and upregulate these pathways. Therefore, suppression of dual oxidase genes by metformin may be a contributory factor to its protective effect.
Collapse
|
Journal Article |
7 |
9 |
25
|
Nodooshan SJ, Amini P, Ashrafizadeh M, Tavakoli S, Aryafar T, Khalafi L, Musa AE, Mahdavi SR, Najafi M, Ahmadi A, Farhood B. Suberosin Attenuates the Proliferation of MCF-7 Breast Cancer Cells in Combination with Radiotherapy or Hyperthermia. Curr Drug Res Rev 2021; 13:148-153. [PMID: 33371865 DOI: 10.2174/2589977512666201228104528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/08/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
AIM The aim of this study was to determine the proliferation of MCF-7 following irradiation or hyperthermia as alone or pre-treatment with suberosin. BACKGROUND Radiotherapy is a major therapeutic modality for the control of breast cancer. However, hyperthermia can be prescribed for relief of pain or enhancing cancer cell death. Some studies have attempted its use as an adjuvant to improve therapeutic efficiency. Suberosin is a cumarin- derived natural agent that has shown anti-inflammatory properties. OBJECTIVE In this in vitro study, possible sensitization effect of suberosin in combination with radiation or hyperthermia was evaluated. METHODS MCF-7 breast cancer cells were irradiated or received hyperthermia with or without treatment with suberosin. The incidence of apoptosis as well as viability of MCF-7 cells were observed. Furthermore, the expressions of pro-apoptotic genes such as Bax, Bcl-2, and some caspases were evaluated using real-time PCR. RESULTS Both radiotherapy or hyperthermia reduced the proliferation of MCF-7 cells. Suberosin amplified the effects of radiotherapy or hyperthermia for induction of pro-apoptotic genes and reducing cell viability. CONCLUSION Suberosin has a potent anti-cancer effect when combined with radiotherapy or hyperthermia. It could be a potential candidate for killing breast cancer cells as well as increasing the therapeutic efficiency of radiotherapy or hyperthermia.
Collapse
|
|
4 |
8 |