1
|
Brennecke P, Anders S, Kim JK, Kołodziejczyk AA, Zhang X, Proserpio V, Baying B, Benes V, Teichmann SA, Marioni JC, Heisler MG. Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods 2013; 10:1093-5. [PMID: 24056876 DOI: 10.1038/nmeth.2645] [Citation(s) in RCA: 675] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 08/08/2013] [Indexed: 02/07/2023]
Abstract
Single-cell RNA-seq can yield valuable insights about the variability within a population of seemingly homogeneous cells. We developed a quantitative statistical method to distinguish true biological variability from the high levels of technical noise in single-cell experiments. Our approach quantifies the statistical significance of observed cell-to-cell variability in expression strength on a gene-by-gene basis. We validate our approach using two independent data sets from Arabidopsis thaliana and Mus musculus.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
675 |
2
|
Reynolds N, Latos P, Hynes-Allen A, Loos R, Leaford D, O'Shaughnessy A, Mosaku O, Signolet J, Brennecke P, Kalkan T, Costello I, Humphreys P, Mansfield W, Nakagawa K, Strouboulis J, Behrens A, Bertone P, Hendrich B. NuRD suppresses pluripotency gene expression to promote transcriptional heterogeneity and lineage commitment. Cell Stem Cell 2012; 10:583-94. [PMID: 22560079 PMCID: PMC3402183 DOI: 10.1016/j.stem.2012.02.020] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 12/14/2011] [Accepted: 02/23/2012] [Indexed: 12/17/2022]
Abstract
Transcriptional heterogeneity within embryonic stem cell (ESC) populations has been suggested as a mechanism by which a seemingly homogeneous cell population can initiate differentiation into an array of different cell types. Chromatin remodeling proteins have been shown to control transcriptional variability in yeast and to be important for mammalian ESC lineage commitment. Here we show that the Nucleosome Remodeling and Deacetylation (NuRD) complex, which is required for ESC lineage commitment, modulates both transcriptional heterogeneity and the dynamic range of a set of pluripotency genes in ESCs. In self-renewing conditions, the influence of NuRD at these genes is balanced by the opposing action of self-renewal factors. Upon loss of self-renewal factors, the action of NuRD is sufficient to silence transcription of these pluripotency genes, allowing cells to exit self-renewal. We propose that modulation of transcription levels by NuRD is key to maintaining the differentiation responsiveness of pluripotent cells.
Collapse
|
research-article |
13 |
175 |
3
|
Mall M, Kareta MS, Chanda S, Ahlenius H, Perotti N, Zhou B, Grieder SD, Ge X, Drake S, Ang CE, Walker BM, Vierbuchen T, Fuentes DR, Brennecke P, Nitta KR, Jolma A, Steinmetz LM, Taipale J, Südhof TC, Wernig M. Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates. Nature 2017; 544:245-249. [PMID: 28379941 PMCID: PMC11348803 DOI: 10.1038/nature21722] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 02/23/2017] [Indexed: 12/18/2022]
Abstract
Normal differentiation and induced reprogramming require the activation of target cell programs and silencing of donor cell programs. In reprogramming, the same factors are often used to reprogram many different donor cell types. As most developmental repressors, such as RE1-silencing transcription factor (REST) and Groucho (also known as TLE), are considered lineage-specific repressors, it remains unclear how identical combinations of transcription factors can silence so many different donor programs. Distinct lineage repressors would have to be induced in different donor cell types. Here, by studying the reprogramming of mouse fibroblasts to neurons, we found that the pan neuron-specific transcription factor Myt1-like (Myt1l) exerts its pro-neuronal function by direct repression of many different somatic lineage programs except the neuronal program. The repressive function of Myt1l is mediated via recruitment of a complex containing Sin3b by binding to a previously uncharacterized N-terminal domain. In agreement with its repressive function, the genomic binding sites of Myt1l are similar in neurons and fibroblasts and are preferentially in an open chromatin configuration. The Notch signalling pathway is repressed by Myt1l through silencing of several members, including Hes1. Acute knockdown of Myt1l in the developing mouse brain mimicked a Notch gain-of-function phenotype, suggesting that Myt1l allows newborn neurons to escape Notch activation during normal development. Depletion of Myt1l in primary postmitotic neurons de-repressed non-neuronal programs and impaired neuronal gene expression and function, indicating that many somatic lineage programs are actively and persistently repressed by Myt1l to maintain neuronal identity. It is now tempting to speculate that similar 'many-but-one' lineage repressors exist for other cell fates; such repressors, in combination with lineage-specific activators, would be prime candidates for use in reprogramming additional cell types.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
167 |
4
|
Brennecke P, Reyes A, Pinto S, Rattay K, Nguyen M, Küchler R, Huber W, Kyewski B, Steinmetz LM. Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells. Nat Immunol 2015; 16:933-41. [PMID: 26237553 PMCID: PMC4675844 DOI: 10.1038/ni.3246] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/08/2015] [Indexed: 12/30/2022]
Abstract
Expression of tissue-restricted self antigens (TRAs) in medullary thymic epithelial cells (mTECs) is essential for the induction of self-tolerance and prevents autoimmunity, with each TRA being expressed in only a few mTECs. How this process is regulated in single mTECs and is coordinated at the population level, such that the varied single-cell patterns add up to faithfully represent TRAs, is poorly understood. Here we used single-cell RNA sequencing and obtained evidence of numerous recurring TRA-co-expression patterns, each present in only a subset of mTECs. Co-expressed genes clustered in the genome and showed enhanced chromatin accessibility. Our findings characterize TRA expression in mTECs as a coordinated process that might involve local remodeling of chromatin and thus ensures a comprehensive representation of the immunological self.
Collapse
|
Research Support, N.I.H., Extramural |
10 |
108 |
5
|
Brennecke P, Rasina D, Aubi O, Herzog K, Landskron J, Cautain B, Vicente F, Quintana J, Mestres J, Stechmann B, Ellinger B, Brea J, Kolanowski JL, Pilarski R, Orzaez M, Pineda-Lucena A, Laraia L, Nami F, Zielenkiewicz P, Paruch K, Hansen E, von Kries JP, Neuenschwander M, Specker E, Bartunek P, Simova S, Leśnikowski Z, Krauss S, Lehtiö L, Bilitewski U, Brönstrup M, Taskén K, Jirgensons A, Lickert H, Clausen MH, Andersen JH, Vicent MJ, Genilloud O, Martinez A, Nazaré M, Fecke W, Gribbon P. EU-OPENSCREEN: A Novel Collaborative Approach to Facilitate Chemical Biology. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:398-413. [PMID: 30616481 PMCID: PMC6764006 DOI: 10.1177/2472555218816276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/11/2018] [Accepted: 11/08/2018] [Indexed: 12/27/2022]
Abstract
Compound screening in biological assays and subsequent optimization of hits is indispensable for the development of new molecular research tools and drug candidates. To facilitate such discoveries, the European Research Infrastructure EU-OPENSCREEN was founded recently with the support of its member countries and the European Commission. Its distributed character harnesses complementary knowledge, expertise, and instrumentation in the discipline of chemical biology from 20 European partners, and its open working model ensures that academia and industry can readily access EU-OPENSCREEN's compound collection, equipment, and generated data. To demonstrate the power of this collaborative approach, this perspective article highlights recent projects from EU-OPENSCREEN partner institutions. These studies yielded (1) 2-aminoquinazolin-4(3 H)-ones as potential lead structures for new antimalarial drugs, (2) a novel lipodepsipeptide specifically inducing apoptosis in cells deficient for the pVHL tumor suppressor, (3) small-molecule-based ROCK inhibitors that induce definitive endoderm formation and can potentially be used for regenerative medicine, (4) potential pharmacological chaperones for inborn errors of metabolism and a familiar form of acute myeloid leukemia (AML), and (5) novel tankyrase inhibitors that entered a lead-to-candidate program. Collectively, these findings highlight the benefits of small-molecule screening, the plethora of assay designs, and the close connection between screening and medicinal chemistry within EU-OPENSCREEN.
Collapse
|
research-article |
6 |
8 |
6
|
Lammers S, Barrera V, Brennecke P, Miller C, Yoon J, Balolong J, Anderson MS, Ho Sui S, Steinmetz LM, von Andrian UH, Rattay K. Ehf and Fezf2 regulate late medullary thymic epithelial cell and thymic tuft cell development. Front Immunol 2024; 14:1277365. [PMID: 38420512 PMCID: PMC10901246 DOI: 10.3389/fimmu.2023.1277365] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/29/2023] [Indexed: 03/02/2024] Open
Abstract
Thymic epithelial cells are indispensable for T cell maturation and selection and the induction of central immune tolerance. The self-peptide repertoire expressed by medullary thymic epithelial cells is in part regulated by the transcriptional regulator Aire (Autoimmune regulator) and the transcription factor Fezf2. Due to the high complexity of mTEC maturation stages (i.e., post-Aire, Krt10+ mTECs, and Dclk1+ Tuft mTECs) and the heterogeneity in their gene expression profiles (i.e., mosaic expression patterns), it has been challenging to identify the additional factors complementing the transcriptional regulation. We aimed to identify the transcriptional regulators involved in the regulation of mTEC development and self-peptide expression in an unbiased and genome-wide manner. We used ATAC footprinting analysis as an indirect approach to identify transcription factors involved in the gene expression regulation in mTECs, which we validated by ChIP sequencing. This study identifies Fezf2 as a regulator of the recently described thymic Tuft cells (i.e., Tuft mTECs). Furthermore, we identify that transcriptional regulators of the ELF, ESE, ERF, and PEA3 subfamily of the ETS transcription factor family and members of the Krüppel-like family of transcription factors play a role in the transcriptional regulation of genes involved in late mTEC development and promiscuous gene expression.
Collapse
|
Research Support, N.I.H., Extramural |
1 |
4 |
7
|
|
|
4 |
3 |
8
|
Berg HP, Brennecke P. Basic considerations on radioactive waste classification regarding the different waste management steps / Grundsätzliche Überlegungen zur Einteilung radioaktiver Abfälle unter Beachtung verschiedener Abfallmanagementschritte. KERNTECHNIK 2021. [DOI: 10.1515/kern-1993-580506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
|
4 |
1 |
9
|
Warnecke E, Brennecke P. Preliminary waste acceptance requirements for the planned Konrad repository / Vorläufige Endlagerungsbedingungen für das geplante Endlager Konrad. KERNTECHNIK 1987. [DOI: 10.1515/kern-1987-510210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
|
38 |
1 |
10
|
Rattay K, Meyer HV, Brennecke P, Reyes A, Pinto S, Brors B, Huber W, Steinmetz L, Kyewski B. Thymic expression of tissue-restricted self-antigens is a highly coordinated and evolutionary conserved process. THE JOURNAL OF IMMUNOLOGY 2016. [DOI: 10.4049/jimmunol.196.supp.186.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Promiscuous gene expression (pGE) of tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs) is essential for tolerance imposition in the thymus. PGE is characterized on the one hand by inclusion of a broad range of TRAs and on the other hand by its mosaic patterns, whereby each antigen is only expressed in 1–3% of mTECs at a given point in time. Yet, this mosaic pattern at the single cell level faithfully adds up to the full repertoire of self-antigens at the population level.
In order to analyze the regulatory mechanisms underlying this transcriptional heterogeneity among mTECs, we applied two complementing approaches, the isolation of minor mTEC subsets as defined by TRA-selected gene co-expression groups in conjunction with single cell mRNA sequencing.
Different TRA-selected mTEC subfractions, each expressing distinct sets of genes in a mutually overlapping fashion, mapped to distinct stages of mTEC development. These co-expression patterns were evolutionary conserved between mouse and human (Rattay et al., J. Autoimmunity 2015).
Applying an unbiased single cell mRNA sequencing approach, we extended these findings to the single cell level and showed that the mouse mTEC population essentially represents a composite of multiple co-expression groups (Brennecke et al., Nat. Immunology 2015).
These co-expression groups may represent only snapshots of a continuum of changing co-expression groups along the lifetime of an individual mTEC, as captured in the model of “sliding co-expression groups” (Pinto et al., PNAS 2013). Continuous genome scanning would potentially enlarge the overall diversity of self-antigens displayed by a single mTEC.
Collapse
|
|
9 |
|
11
|
Brennecke P, Rittscher D. Conditioning and disposal of decommissioning wastes / Konditionierung und Endlagerung von Stillegungsabfällen. KERNTECHNIK 2021. [DOI: 10.1515/kern-1991-560620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
|
4 |
|
12
|
Mall M, Kareta MS, Chanda S, Ahlenius H, Perotti N, Zhou B, Grieder SD, Ge X, Drake S, Ang CE, Walker BM, Vierbuchen T, Fuentes DR, Brennecke P, Nitta KR, Jolma A, Steinmetz LM, Taipale J, Südhof TC, Wernig M. Author Correction: Myt1l safeguards neuronal identity by actively repressing many non-neuronal fates. Nature 2024; 630:E11. [PMID: 38834754 DOI: 10.1038/s41586-024-07594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
|
Published Erratum |
1 |
|
13
|
Berg HP, Brennecke P, Illi H, Piefke F. Safety assessment of the thermal influence upon the host rock of the planned Konrad repository / Sicherheitsanalysen zur thermischen Beeinflussung des Wirtsgesteins beim geplanten Endlager Konrad. KERNTECHNIK 1995. [DOI: 10.1515/kern-1995-600120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
|
30 |
|