1
|
Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JWC, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA. Mutations of the BRAF gene in human cancer. Nature 2002; 417:949-54. [PMID: 12068308 DOI: 10.1038/nature00766] [Citation(s) in RCA: 7607] [Impact Index Per Article: 330.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancers arise owing to the accumulation of mutations in critical genes that alter normal programmes of cell proliferation, differentiation and death. As the first stage of a systematic genome-wide screen for these genes, we have prioritized for analysis signalling pathways in which at least one gene is mutated in human cancer. The RAS RAF MEK ERK MAP kinase pathway mediates cellular responses to growth signals. RAS is mutated to an oncogenic form in about 15% of human cancer. The three RAF genes code for cytoplasmic serine/threonine kinases that are regulated by binding RAS. Here we report BRAF somatic missense mutations in 66% of malignant melanomas and at lower frequency in a wide range of human cancers. All mutations are within the kinase domain, with a single substitution (V599E) accounting for 80%. Mutated BRAF proteins have elevated kinase activity and are transforming in NIH3T3 cells. Furthermore, RAS function is not required for the growth of cancer cell lines with the V599E mutation. As BRAF is a serine/threonine kinase that is commonly activated by somatic point mutation in human cancer, it may provide new therapeutic opportunities in malignant melanoma.
Collapse
|
|
23 |
7607 |
2
|
Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O'Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR. Patterns of somatic mutation in human cancer genomes. Nature 2007; 446:153-8. [PMID: 17344846 PMCID: PMC2712719 DOI: 10.1038/nature05610] [Citation(s) in RCA: 2290] [Impact Index Per Article: 127.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 01/18/2007] [Indexed: 11/09/2022]
Abstract
Cancers arise owing to mutations in a subset of genes that confer growth advantage. The availability of the human genome sequence led us to propose that systematic resequencing of cancer genomes for mutations would lead to the discovery of many additional cancer genes. Here we report more than 1,000 somatic mutations found in 274 megabases (Mb) of DNA corresponding to the coding exons of 518 protein kinase genes in 210 diverse human cancers. There was substantial variation in the number and pattern of mutations in individual cancers reflecting different exposures, DNA repair defects and cellular origins. Most somatic mutations are likely to be 'passengers' that do not contribute to oncogenesis. However, there was evidence for 'driver' mutations contributing to the development of the cancers studied in approximately 120 genes. Systematic sequencing of cancer genomes therefore reveals the evolutionary diversity of cancers and implicates a larger repertoire of cancer genes than previously anticipated.
Collapse
|
Research Support, N.I.H., Extramural |
18 |
2290 |
3
|
Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, Pleasance ED, Lau KW, Beare D, Stebbings LA, McLaren S, Lin ML, McBride DJ, Varela I, Nik-Zainal S, Leroy C, Jia M, Menzies A, Butler AP, Teague JW, Quail MA, Burton J, Swerdlow H, Carter NP, Morsberger LA, Iacobuzio-Donahue C, Follows GA, Green AR, Flanagan AM, Stratton MR, Futreal PA, Campbell PJ. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011; 144:27-40. [PMID: 21215367 PMCID: PMC3065307 DOI: 10.1016/j.cell.2010.11.055] [Citation(s) in RCA: 1771] [Impact Index Per Article: 126.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/03/2010] [Accepted: 11/24/2010] [Indexed: 12/13/2022]
Abstract
Cancer is driven by somatically acquired point mutations and chromosomal rearrangements, conventionally thought to accumulate gradually over time. Using next-generation sequencing, we characterize a phenomenon, which we term chromothripsis, whereby tens to hundreds of genomic rearrangements occur in a one-off cellular crisis. Rearrangements involving one or a few chromosomes crisscross back and forth across involved regions, generating frequent oscillations between two copy number states. These genomic hallmarks are highly improbable if rearrangements accumulate over time and instead imply that nearly all occur during a single cellular catastrophe. The stamp of chromothripsis can be seen in at least 2%-3% of all cancers, across many subtypes, and is present in ∼25% of bone cancers. We find that one, or indeed more than one, cancer-causing lesion can emerge out of the genomic crisis. This phenomenon has important implications for the origins of genomic remodeling and temporal emergence of cancer.
Collapse
|
research-article |
14 |
1771 |
4
|
Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J, Schnall-Levin M, White J, Sanford EM, An P, Sun J, Juhn F, Brennan K, Iwanik K, Maillet A, Buell J, White E, Zhao M, Balasubramanian S, Terzic S, Richards T, Banning V, Garcia L, Mahoney K, Zwirko Z, Donahue A, Beltran H, Mosquera JM, Rubin MA, Dogan S, Hedvat CV, Berger MF, Pusztai L, Lechner M, Boshoff C, Jarosz M, Vietz C, Parker A, Miller VA, Ross JS, Curran J, Cronin MT, Stephens PJ, Lipson D, Yelensky R. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 2013; 31:1023-31. [PMID: 24142049 PMCID: PMC5710001 DOI: 10.1038/nbt.2696] [Citation(s) in RCA: 1728] [Impact Index Per Article: 144.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/19/2013] [Indexed: 02/07/2023]
Abstract
As more clinically relevant cancer genes are identified, comprehensive diagnostic approaches are needed to match patients to therapies, raising the challenge of optimization and analytical validation of assays that interrogate millions of bases of cancer genomes altered by multiple mechanisms. Here we describe a test based on massively parallel DNA sequencing to characterize base substitutions, short insertions and deletions (indels), copy number alterations and selected fusions across 287 cancer-related genes from routine formalin-fixed and paraffin-embedded (FFPE) clinical specimens. We implemented a practical validation strategy with reference samples of pooled cell lines that model key determinants of accuracy, including mutant allele frequency, indel length and amplitude of copy change. Test sensitivity achieved was 95-99% across alteration types, with high specificity (positive predictive value >99%). We confirmed accuracy using 249 FFPE cancer specimens characterized by established assays. Application of the test to 2,221 clinical cases revealed clinically actionable alterations in 76% of tumors, three times the number of actionable alterations detected by current diagnostic tests.
Collapse
|
research-article |
12 |
1728 |
5
|
Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, Stephens PJ, Daniels GA, Kurzrock R. Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers. Mol Cancer Ther 2017; 16:2598-2608. [PMID: 28835386 DOI: 10.1158/1535-7163.mct-17-0386] [Citation(s) in RCA: 1689] [Impact Index Per Article: 211.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/24/2017] [Accepted: 08/10/2017] [Indexed: 02/06/2023]
Abstract
Immunotherapy induces durable responses in a subset of patients with cancer. High tumor mutational burden (TMB) may be a response biomarker for PD-1/PD-L1 blockade in tumors such as melanoma and non-small cell lung cancer (NSCLC). Our aim was to examine the relationship between TMB and outcome in diverse cancers treated with various immunotherapies. We reviewed data on 1,638 patients who had undergone comprehensive genomic profiling and had TMB assessment. Immunotherapy-treated patients (N = 151) were analyzed for response rate (RR), progression-free survival (PFS), and overall survival (OS). Higher TMB was independently associated with better outcome parameters (multivariable analysis). The RR for patients with high (≥20 mutations/mb) versus low to intermediate TMB was 22/38 (58%) versus 23/113 (20%; P = 0.0001); median PFS, 12.8 months vs. 3.3 months (P ≤ 0.0001); median OS, not reached versus 16.3 months (P = 0.0036). Results were similar when anti-PD-1/PD-L1 monotherapy was analyzed (N = 102 patients), with a linear correlation between higher TMB and favorable outcome parameters; the median TMB for responders versus nonresponders treated with anti-PD-1/PD-L1 monotherapy was 18.0 versus 5.0 mutations/mb (P < 0.0001). Interestingly, anti-CTLA4/anti-PD-1/PD-L1 combinations versus anti-PD-1/PD-L1 monotherapy was selected as a factor independent of TMB for predicting better RR (77% vs. 21%; P = 0.004) and PFS (P = 0.024). Higher TMB predicts favorable outcome to PD-1/PD-L1 blockade across diverse tumors. Benefit from dual checkpoint blockade did not show a similarly strong dependence on TMB. Mol Cancer Ther; 16(11); 2598-608. ©2017 AACR.
Collapse
|
Research Support, N.I.H., Extramural |
8 |
1689 |
6
|
Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K, Jones D, Hinton J, Marshall J, Stebbings LA, Menzies A, Martin S, Leung K, Chen L, Leroy C, Ramakrishna M, Rance R, Lau KW, Mudie LJ, Varela I, McBride DJ, Bignell GR, Cooke SL, Shlien A, Gamble J, Whitmore I, Maddison M, Tarpey PS, Davies HR, Papaemmanuil E, Stephens PJ, McLaren S, Butler AP, Teague JW, Jönsson G, Garber JE, Silver D, Miron P, Fatima A, Boyault S, Langerød A, Tutt A, Martens JWM, Aparicio SAJR, Borg Å, Salomon AV, Thomas G, Børresen-Dale AL, Richardson AL, Neuberger MS, Futreal PA, Campbell PJ, Stratton MR. Mutational processes molding the genomes of 21 breast cancers. Cell 2012; 149:979-93. [PMID: 22608084 PMCID: PMC3414841 DOI: 10.1016/j.cell.2012.04.024] [Citation(s) in RCA: 1459] [Impact Index Per Article: 112.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/12/2012] [Accepted: 04/30/2012] [Indexed: 12/14/2022]
Abstract
All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed “kataegis,” was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed. PaperClip
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
1459 |
7
|
Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR, Yates LR, Papaemmanuil E, Beare D, Butler A, Cheverton A, Gamble J, Hinton J, Jia M, Jayakumar A, Jones D, Latimer C, Lau KW, McLaren S, McBride DJ, Menzies A, Mudie L, Raine K, Rad R, Chapman MS, Teague J, Easton D, Langerød A, Lee MTM, Shen CY, Tee BTK, Huimin BW, Broeks A, Vargas AC, Turashvili G, Martens J, Fatima A, Miron P, Chin SF, Thomas G, Boyault S, Mariani O, Lakhani SR, van de Vijver M, van 't Veer L, Foekens J, Desmedt C, Sotiriou C, Tutt A, Caldas C, Reis-Filho JS, Aparicio SAJR, Salomon AV, Børresen-Dale AL, Richardson AL, Campbell PJ, Futreal PA, Stratton MR. The landscape of cancer genes and mutational processes in breast cancer. Nature 2012; 486:400-4. [PMID: 22722201 PMCID: PMC3428862 DOI: 10.1038/nature11017] [Citation(s) in RCA: 1321] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 03/06/2012] [Indexed: 12/17/2022]
Abstract
All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
1321 |
8
|
Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin ML, Ordóñez GR, Bignell GR, Ye K, Alipaz J, Bauer MJ, Beare D, Butler A, Carter RJ, Chen L, Cox AJ, Edkins S, Kokko-Gonzales PI, Gormley NA, Grocock RJ, Haudenschild CD, Hims MM, James T, Jia M, Kingsbury Z, Leroy C, Marshall J, Menzies A, Mudie LJ, Ning Z, Royce T, Schulz-Trieglaff OB, Spiridou A, Stebbings LA, Szajkowski L, Teague J, Williamson D, Chin L, Ross MT, Campbell PJ, Bentley DR, Futreal PA, Stratton MR. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 2010; 463:191-6. [PMID: 20016485 PMCID: PMC3145108 DOI: 10.1038/nature08658] [Citation(s) in RCA: 1248] [Impact Index Per Article: 83.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 11/04/2009] [Indexed: 02/07/2023]
Abstract
All cancers carry somatic mutations. A subset of these somatic alterations, termed driver mutations, confer selective growth advantage and are implicated in cancer development, whereas the remainder are passengers. Here we have sequenced the genomes of a malignant melanoma and a lymphoblastoid cell line from the same person, providing the first comprehensive catalogue of somatic mutations from an individual cancer. The catalogue provides remarkable insights into the forces that have shaped this cancer genome. The dominant mutational signature reflects DNA damage due to ultraviolet light exposure, a known risk factor for malignant melanoma, whereas the uneven distribution of mutations across the genome, with a lower prevalence in gene footprints, indicates that DNA repair has been preferentially deployed towards transcribed regions. The results illustrate the power of a cancer genome sequence to reveal traces of the DNA damage, repair, mutation and selection processes that were operative years before the cancer became symptomatic.
Collapse
|
research-article |
15 |
1248 |
9
|
Skoulidis F, Goldberg ME, Greenawalt DM, Hellmann MD, Awad MM, Gainor JF, Schrock AB, Hartmaier RJ, Trabucco SE, Gay L, Ali SM, Elvin JA, Singal G, Ross JS, Fabrizio D, Szabo PM, Chang H, Sasson A, Srinivasan S, Kirov S, Szustakowski J, Vitazka P, Edwards R, Bufill JA, Sharma N, Ou SHI, Peled N, Spigel DR, Rizvi H, Aguilar EJ, Carter BW, Erasmus J, Halpenny DF, Plodkowski AJ, Long NM, Nishino M, Denning WL, Galan-Cobo A, Hamdi H, Hirz T, Tong P, Wang J, Rodriguez-Canales J, Villalobos PA, Parra ER, Kalhor N, Sholl LM, Sauter JL, Jungbluth AA, Mino-Kenudson M, Azimi R, Elamin YY, Zhang J, Leonardi GC, Jiang F, Wong KK, Lee JJ, Papadimitrakopoulou VA, Wistuba II, Miller VA, Frampton GM, Wolchok JD, Shaw AT, Jänne PA, Stephens PJ, Rudin CM, Geese WJ, Albacker LA, Heymach JV. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. Cancer Discov 2018; 8:822-835. [PMID: 29773717 DOI: 10.1158/2159-8290.cd-18-0099] [Citation(s) in RCA: 1155] [Impact Index Per Article: 165.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/29/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022]
Abstract
KRAS is the most common oncogenic driver in lung adenocarcinoma (LUAC). We previously reported that STK11/LKB1 (KL) or TP53 (KP) comutations define distinct subgroups of KRAS-mutant LUAC. Here, we examine the efficacy of PD-1 inhibitors in these subgroups. Objective response rates to PD-1 blockade differed significantly among KL (7.4%), KP (35.7%), and K-only (28.6%) subgroups (P < 0.001) in the Stand Up To Cancer (SU2C) cohort (174 patients) with KRAS-mutant LUAC and in patients treated with nivolumab in the CheckMate-057 phase III trial (0% vs. 57.1% vs. 18.2%; P = 0.047). In the SU2C cohort, KL LUAC exhibited shorter progression-free (P < 0.001) and overall (P = 0.0015) survival compared with KRASMUT;STK11/LKB1WT LUAC. Among 924 LUACs, STK11/LKB1 alterations were the only marker significantly associated with PD-L1 negativity in TMBIntermediate/High LUAC. The impact of STK11/LKB1 alterations on clinical outcomes with PD-1/PD-L1 inhibitors extended to PD-L1-positive non-small cell lung cancer. In Kras-mutant murine LUAC models, Stk11/Lkb1 loss promoted PD-1/PD-L1 inhibitor resistance, suggesting a causal role. Our results identify STK11/LKB1 alterations as a major driver of primary resistance to PD-1 blockade in KRAS-mutant LUAC.Significance: This work identifies STK11/LKB1 alterations as the most prevalent genomic driver of primary resistance to PD-1 axis inhibitors in KRAS-mutant lung adenocarcinoma. Genomic profiling may enhance the predictive utility of PD-L1 expression and tumor mutation burden and facilitate establishment of personalized combination immunotherapy approaches for genomically defined LUAC subsets. Cancer Discov; 8(7); 822-35. ©2018 AACR.See related commentary by Etxeberria et al., p. 794This article is highlighted in the In This Issue feature, p. 781.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
7 |
1155 |
10
|
Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, Lau KW, Raine K, Jones D, Marshall J, Ramakrishna M, Shlien A, Cooke SL, Hinton J, Menzies A, Stebbings LA, Leroy C, Jia M, Rance R, Mudie LJ, Gamble SJ, Stephens PJ, McLaren S, Tarpey PS, Papaemmanuil E, Davies HR, Varela I, McBride DJ, Bignell GR, Leung K, Butler AP, Teague JW, Martin S, Jönsson G, Mariani O, Boyault S, Miron P, Fatima A, Langerød A, Aparicio SAJR, Tutt A, Sieuwerts AM, Borg Å, Thomas G, Salomon AV, Richardson AL, Børresen-Dale AL, Futreal PA, Stratton MR, Campbell PJ. The life history of 21 breast cancers. Cell 2012; 149:994-1007. [PMID: 22608083 PMCID: PMC3428864 DOI: 10.1016/j.cell.2012.04.023] [Citation(s) in RCA: 1049] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/13/2012] [Accepted: 04/29/2012] [Indexed: 01/06/2023]
Abstract
Cancer evolves dynamically as clonal expansions supersede one another driven by shifting selective pressures, mutational processes, and disrupted cancer genes. These processes mark the genome, such that a cancer's life history is encrypted in the somatic mutations present. We developed algorithms to decipher this narrative and applied them to 21 breast cancers. Mutational processes evolve across a cancer's lifespan, with many emerging late but contributing extensive genetic variation. Subclonal diversification is prominent, and most mutations are found in just a fraction of tumor cells. Every tumor has a dominant subclonal lineage, representing more than 50% of tumor cells. Minimal expansion of these subclones occurs until many hundreds to thousands of mutations have accumulated, implying the existence of long-lived, quiescent cell lineages capable of substantial proliferation upon acquisition of enabling genomic changes. Expansion of the dominant subclone to an appreciable mass may therefore represent the final rate-limiting step in a breast cancer's development, triggering diagnosis. PaperClip
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
1049 |
11
|
Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, Morsberger LA, Latimer C, McLaren S, Lin ML, McBride DJ, Varela I, Nik-Zainal SA, Leroy C, Jia M, Menzies A, Butler AP, Teague JW, Griffin CA, Burton J, Swerdlow H, Quail MA, Stratton MR, Iacobuzio-Donahue C, Futreal PA. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 2010; 467:1109-13. [PMID: 20981101 PMCID: PMC3137369 DOI: 10.1038/nature09460] [Citation(s) in RCA: 1022] [Impact Index Per Article: 68.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 08/24/2010] [Indexed: 11/09/2022]
Abstract
Pancreatic cancer is an aggressive malignancy with a five-year mortality of 97-98%, usually due to widespread metastatic disease. Previous studies indicate that this disease has a complex genomic landscape, with frequent copy number changes and point mutations, but genomic rearrangements have not been characterized in detail. Despite the clinical importance of metastasis, there remain fundamental questions about the clonal structures of metastatic tumours, including phylogenetic relationships among metastases, the scale of ongoing parallel evolution in metastatic and primary sites, and how the tumour disseminates. Here we harness advances in DNA sequencing to annotate genomic rearrangements in 13 patients with pancreatic cancer and explore clonal relationships among metastases. We find that pancreatic cancer acquires rearrangements indicative of telomere dysfunction and abnormal cell-cycle control, namely dysregulated G1-to-S-phase transition with intact G2-M checkpoint. These initiate amplification of cancer genes and occur predominantly in early cancer development rather than the later stages of the disease. Genomic instability frequently persists after cancer dissemination, resulting in ongoing, parallel and even convergent evolution among different metastases. We find evidence that there is genetic heterogeneity among metastasis-initiating cells, that seeding metastasis may require driver mutations beyond those required for primary tumours, and that phylogenetic trees across metastases show organ-specific branches. These data attest to the richness of genetic variation in cancer, brought about by the tandem forces of genomic instability and evolutionary selection.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
1022 |
12
|
Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, Davies H, Jones D, Lin ML, Teague J, Bignell G, Butler A, Cho J, Dalgliesh GL, Galappaththige D, Greenman C, Hardy C, Jia M, Latimer C, Lau KW, Marshall J, McLaren S, Menzies A, Mudie L, Stebbings L, Largaespada DA, Wessels LFA, Richard S, Kahnoski RJ, Anema J, Tuveson DA, Perez-Mancera PA, Mustonen V, Fischer A, Adams DJ, Rust A, Chan-on W, Subimerb C, Dykema K, Furge K, Campbell PJ, Teh BT, Stratton MR, Futreal PA. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 2011; 469:539-42. [PMID: 21248752 PMCID: PMC3030920 DOI: 10.1038/nature09639] [Citation(s) in RCA: 1000] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 11/02/2010] [Indexed: 11/24/2022]
Abstract
The genetics of renal cancer is dominated by inactivation of the VHL tumour suppressor gene in clear cell carcinoma (ccRCC), the commonest histological subtype. A recent large-scale screen of ∼3,500 genes by PCR-based exon re-sequencing identified several new cancer genes in ccRCC including UTX (also known as KDM6A), JARID1C (also known as KDM5C) and SETD2 (ref. 2). These genes encode enzymes that demethylate (UTX, JARID1C) or methylate (SETD2) key lysine residues of histone H3. Modification of the methylation state of these lysine residues of histone H3 regulates chromatin structure and is implicated in transcriptional control. However, together these mutations are present in fewer than 15% of ccRCC, suggesting the existence of additional, currently unidentified cancer genes. Here, we have sequenced the protein coding exome in a series of primary ccRCC and report the identification of the SWI/SNF chromatin remodelling complex gene PBRM1 (ref. 4) as a second major ccRCC cancer gene, with truncating mutations in 41% (92/227) of cases. These data further elucidate the somatic genetic architecture of ccRCC and emphasize the marked contribution of aberrant chromatin biology.
Collapse
|
research-article |
14 |
1000 |
13
|
Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, Pellagatti A, Wainscoat JS, Hellstrom-Lindberg E, Gambacorti-Passerini C, Godfrey AL, Rapado I, Cvejic A, Rance R, McGee C, Ellis P, Mudie LJ, Stephens PJ, McLaren S, Massie CE, Tarpey PS, Varela I, Nik-Zainal S, Davies HR, Shlien A, Jones D, Raine K, Hinton J, Butler AP, Teague JW, Baxter EJ, Score J, Galli A, Della Porta MG, Travaglino E, Groves M, Tauro S, Munshi NC, Anderson KC, El-Naggar A, Fischer A, Mustonen V, Warren AJ, Cross NCP, Green AR, Futreal PA, Stratton MR, Campbell PJ. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 2011; 365:1384-95. [PMID: 21995386 PMCID: PMC3322589 DOI: 10.1056/nejmoa1103283] [Citation(s) in RCA: 999] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Myelodysplastic syndromes are a diverse and common group of chronic hematologic cancers. The identification of new genetic lesions could facilitate new diagnostic and therapeutic strategies. METHODS We used massively parallel sequencing technology to identify somatically acquired point mutations across all protein-coding exons in the genome in 9 patients with low-grade myelodysplasia. Targeted resequencing of the gene encoding RNA splicing factor 3B, subunit 1 (SF3B1), was also performed in a cohort of 2087 patients with myeloid or other cancers. RESULTS We identified 64 point mutations in the 9 patients. Recurrent somatically acquired mutations were identified in SF3B1. Follow-up revealed SF3B1 mutations in 72 of 354 patients (20%) with myelodysplastic syndromes, with particularly high frequency among patients whose disease was characterized by ring sideroblasts (53 of 82 [65%]). The gene was also mutated in 1 to 5% of patients with a variety of other tumor types. The observed mutations were less deleterious than was expected on the basis of chance, suggesting that the mutated protein retains structural integrity with altered function. SF3B1 mutations were associated with down-regulation of key gene networks, including core mitochondrial pathways. Clinically, patients with SF3B1 mutations had fewer cytopenias and longer event-free survival than patients without SF3B1 mutations. CONCLUSIONS Mutations in SF3B1 implicate abnormalities of messenger RNA splicing in the pathogenesis of myelodysplastic syndromes. (Funded by the Wellcome Trust and others.).
Collapse
|
Research Support, N.I.H., Extramural |
14 |
999 |
14
|
Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, Davies H, Edkins S, Hardy C, Latimer C, Teague J, Andrews J, Barthorpe S, Beare D, Buck G, Campbell PJ, Forbes S, Jia M, Jones D, Knott H, Kok CY, Lau KW, Leroy C, Lin ML, McBride DJ, Maddison M, Maguire S, McLay K, Menzies A, Mironenko T, Mulderrig L, Mudie L, O'Meara S, Pleasance E, Rajasingham A, Shepherd R, Smith R, Stebbings L, Stephens P, Tang G, Tarpey PS, Turrell K, Dykema KJ, Khoo SK, Petillo D, Wondergem B, Anema J, Kahnoski RJ, Teh BT, Stratton MR, Futreal PA. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 2010; 463:360-3. [PMID: 20054297 PMCID: PMC2820242 DOI: 10.1038/nature08672] [Citation(s) in RCA: 935] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 11/11/2009] [Indexed: 12/19/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common form of adult kidney cancer, characterized by the presence of inactivating mutations in the VHL gene in most cases, and by infrequent somatic mutations in known cancer genes. To determine further the genetics of ccRCC, we have sequenced 101 cases through 3,544 protein-coding genes. Here we report the identification of inactivating mutations in two genes encoding enzymes involved in histone modification-SETD2, a histone H3 lysine 36 methyltransferase, and JARID1C (also known as KDM5C), a histone H3 lysine 4 demethylase-as well as mutations in the histone H3 lysine 27 demethylase, UTX (KMD6A), that we recently reported. The results highlight the role of mutations in components of the chromatin modification machinery in human cancer. Furthermore, NF2 mutations were found in non-VHL mutated ccRCC, and several other probable cancer genes were identified. These results indicate that substantial genetic heterogeneity exists in a cancer type dominated by mutations in a single gene, and that systematic screens will be key to fully determining the somatic genetic architecture of cancer.
Collapse
|
research-article |
15 |
935 |
15
|
Pleasance ED, Stephens PJ, O'Meara S, McBride DJ, Meynert A, Jones D, Lin ML, Beare D, Lau KW, Greenman C, Varela I, Nik-Zainal S, Davies HR, Ordoñez GR, Mudie LJ, Latimer C, Edkins S, Stebbings L, Chen L, Jia M, Leroy C, Marshall J, Menzies A, Butler A, Teague JW, Mangion J, Sun YA, McLaughlin SF, Peckham HE, Tsung EF, Costa GL, Lee CC, Minna JD, Gazdar A, Birney E, Rhodes MD, McKernan KJ, Stratton MR, Futreal PA, Campbell PJ. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 2010; 463:184-90. [PMID: 20016488 PMCID: PMC2880489 DOI: 10.1038/nature08629] [Citation(s) in RCA: 826] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 10/30/2009] [Indexed: 01/22/2023]
Abstract
Cancer is driven by mutation. Worldwide, tobacco smoking is the principal lifestyle exposure that causes cancer, exerting carcinogenicity through >60 chemicals that bind and mutate DNA. Using massively parallel sequencing technology, we sequenced a small-cell lung cancer cell line, NCI-H209, to explore the mutational burden associated with tobacco smoking. A total of 22,910 somatic substitutions were identified, including 134 in coding exons. Multiple mutation signatures testify to the cocktail of carcinogens in tobacco smoke and their proclivities for particular bases and surrounding sequence context. Effects of transcription-coupled repair and a second, more general, expression-linked repair pathway were evident. We identified a tandem duplication that duplicates exons 3-8 of CHD7 in frame, and another two lines carrying PVT1-CHD7 fusion genes, indicating that CHD7 may be recurrently rearranged in this disease. These findings illustrate the potential for next-generation sequencing to provide unprecedented insights into mutational processes, cellular repair pathways and gene networks associated with cancer.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
826 |
16
|
Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, Curran JA, Balasubramanian S, Bloom T, Brennan KW, Donahue A, Downing SR, Frampton GM, Garcia L, Juhn F, Mitchell KC, White E, White J, Zwirko Z, Peretz T, Nechushtan H, Soussan-Gutman L, Kim J, Sasaki H, Kim HR, Park SI, Ercan D, Sheehan CE, Ross JS, Cronin MT, Jänne PA, Stephens PJ. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 2012; 18:382-4. [PMID: 22327622 PMCID: PMC3916180 DOI: 10.1038/nm.2673] [Citation(s) in RCA: 702] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 01/13/2012] [Indexed: 12/17/2022]
Abstract
Applying a next-generation sequencing assay targeting 145 cancer-relevant genes in 40 colorectal cancer and 24 non-small cell lung cancer formalin-fixed paraffin-embedded tissue specimens identified at least one clinically relevant genomic alteration in 59% of the samples and revealed two gene fusions, C2orf44-ALK in a colorectal cancer sample and KIF5B-RET in a lung adenocarcinoma. Further screening of 561 lung adenocarcinomas identified 11 additional tumors with KIF5B-RET gene fusions (2.0%; 95% CI 0.8-3.1%). Cells expressing oncogenic KIF5B-RET are sensitive to multi-kinase inhibitors that inhibit RET.
Collapse
|
Research Support, N.I.H., Extramural |
13 |
702 |
17
|
Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, Simpson JT, Stebbings LA, Leroy C, Edkins S, Mudie LJ, Greenman CD, Jia M, Latimer C, Teague JW, Lau KW, Burton J, Quail MA, Swerdlow H, Churcher C, Natrajan R, Sieuwerts AM, Martens JWM, Silver DP, Langerød A, Russnes HEG, Foekens JA, Reis-Filho JS, van 't Veer L, Richardson AL, Børresen-Dale AL, Campbell PJ, Futreal PA, Stratton MR. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 2009; 462:1005-10. [PMID: 20033038 PMCID: PMC3398135 DOI: 10.1038/nature08645] [Citation(s) in RCA: 659] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 11/05/2009] [Indexed: 12/17/2022]
Abstract
Multiple somatic rearrangements are often found in cancer genomes; however, the underlying processes of rearrangement and their contribution to cancer development are poorly characterized. Here we use a paired-end sequencing strategy to identify somatic rearrangements in breast cancer genomes. There are more rearrangements in some breast cancers than previously appreciated. Rearrangements are more frequent over gene footprints and most are intrachromosomal. Multiple rearrangement architectures are present, but tandem duplications are particularly common in some cancers, perhaps reflecting a specific defect in DNA maintenance. Short overlapping sequences at most rearrangement junctions indicate that these have been mediated by non-homologous end-joining DNA repair, although varying sequence patterns indicate that multiple processes of this type are operative. Several expressed in-frame fusion genes were identified but none was recurrent. The study provides a new perspective on cancer genomes, highlighting the diversity of somatic rearrangements and their potential contribution to cancer development.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
659 |
18
|
van Haaften G, Dalgliesh GL, Davies H, Chen L, Bignell G, Greenman C, Edkins S, Hardy C, O'Meara S, Teague J, Butler A, Hinton J, Latimer C, Andrews J, Barthorpe S, Beare D, Buck G, Campbell PJ, Cole J, Forbes S, Jia M, Jones D, Kok CY, Leroy C, Lin ML, McBride DJ, Maddison M, Maquire S, McLay K, Menzies A, Mironenko T, Mulderrig L, Mudie L, Pleasance E, Shepherd R, Smith R, Stebbings L, Stephens P, Tang G, Tarpey PS, Turner R, Turrell K, Varian J, West S, Widaa S, Wray P, Collins VP, Ichimura K, Law S, Wong J, Yuen ST, Leung SY, Tonon G, DePinho RA, Tai YT, Anderson KC, Kahnoski RJ, Massie A, Khoo SK, Teh BT, Stratton MR, Futreal PA. Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 2009; 41:521-3. [PMID: 19330029 PMCID: PMC2873835 DOI: 10.1038/ng.349] [Citation(s) in RCA: 619] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 02/06/2009] [Indexed: 12/13/2022]
Abstract
Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase gene UTX, pointing to histone H3 lysine methylation deregulation in multiple tumor types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene.
Collapse
|
research-article |
16 |
619 |
19
|
Campbell PJ, Stephens PJ, Pleasance ED, O'Meara S, Li H, Santarius T, Stebbings LA, Leroy C, Edkins S, Hardy C, Teague JW, Menzies A, Goodhead I, Turner DJ, Clee CM, Quail MA, Cox A, Brown C, Durbin R, Hurles ME, Edwards PAW, Bignell GR, Stratton MR, Futreal PA. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet 2008; 40:722-9. [PMID: 18438408 PMCID: PMC2705838 DOI: 10.1038/ng.128] [Citation(s) in RCA: 612] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 02/27/2008] [Indexed: 12/29/2022]
Abstract
Human cancers often carry many somatically acquired genomic rearrangements, some of which may be implicated in cancer development. However, conventional strategies for characterizing rearrangements are laborious and low-throughput and have low sensitivity or poor resolution. We used massively parallel sequencing to generate sequence reads from both ends of short DNA fragments derived from the genomes of two individuals with lung cancer. By investigating read pairs that did not align correctly with respect to each other on the reference human genome, we characterized 306 germline structural variants and 103 somatic rearrangements to the base-pair level of resolution. The patterns of germline and somatic rearrangement were markedly different. Many somatic rearrangements were from amplicons, although rearrangements outside these regions, notably including tandem duplications, were also observed. Some somatic rearrangements led to abnormal transcripts, including two from internal tandem duplications and two fusion transcripts created by interchromosomal rearrangements. Germline variants were predominantly mediated by retrotransposition, often involving AluY and LINE elements. The results demonstrate the feasibility of systematic, genome-wide characterization of rearrangements in complex human cancer genomes, raising the prospect of a new harvest of genes associated with cancer using this strategy.
Collapse
|
research-article |
17 |
612 |
20
|
Frampton GM, Ali SM, Rosenzweig M, Chmielecki J, Lu X, Bauer TM, Akimov M, Bufill JA, Lee C, Jentz D, Hoover R, Ou SHI, Salgia R, Brennan T, Chalmers ZR, Jaeger S, Huang A, Elvin JA, Erlich R, Fichtenholtz A, Gowen KA, Greenbowe J, Johnson A, Khaira D, McMahon C, Sanford EM, Roels S, White J, Greshock J, Schlegel R, Lipson D, Yelensky R, Morosini D, Ross JS, Collisson E, Peters M, Stephens PJ, Miller VA. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov 2015; 5:850-9. [PMID: 25971938 DOI: 10.1158/2159-8290.cd-15-0285] [Citation(s) in RCA: 600] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/11/2015] [Indexed: 12/20/2022]
Abstract
UNLABELLED Focal amplification and activating point mutation of the MET gene are well-characterized oncogenic drivers that confer susceptibility to targeted MET inhibitors. Recurrent somatic splice site alterations at MET exon 14 (METex14) that result in exon skipping and MET activation have been characterized, but their full diversity and prevalence across tumor types are unknown. Here, we report analysis of tumor genomic profiles from 38,028 patients to identify 221 cases with METex14 mutations (0.6%), including 126 distinct sequence variants. METex14 mutations are detected most frequently in lung adenocarcinoma (3%), but also frequently in other lung neoplasms (2.3%), brain glioma (0.4%), and tumors of unknown primary origin (0.4%). Further in vitro studies demonstrate sensitivity to MET inhibitors in cells harboring METex14 alterations. We also report three new patient cases with METex14 alterations in lung or histiocytic sarcoma tumors that showed durable response to two different MET-targeted therapies. The diversity of METex14 mutations indicates that diagnostic testing via comprehensive genomic profiling is necessary for detection in a clinical setting. SIGNIFICANCE Here we report the identification of diverse exon 14 splice site alterations in MET that result in constitutive activity of this receptor and oncogenic transformation in vitro. Patients whose tumors harbored these alterations derived meaningful clinical benefit from MET inhibitors. Collectively, these data support the role of METex14 alterations as drivers of tumorigenesis, and identify a unique subset of patients likely to derive benefit from MET inhibitors.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
600 |
21
|
Stephens P, Hunter C, Bignell G, Edkins S, Davies H, Teague J, Stevens C, O'Meara S, Smith R, Parker A, Barthorpe A, Blow M, Brackenbury L, Butler A, Clarke O, Cole J, Dicks E, Dike A, Drozd A, Edwards K, Forbes S, Foster R, Gray K, Greenman C, Halliday K, Hills K, Kosmidou V, Lugg R, Menzies A, Perry J, Petty R, Raine K, Ratford L, Shepherd R, Small A, Stephens Y, Tofts C, Varian J, West S, Widaa S, Yates A, Brasseur F, Cooper CS, Flanagan AM, Knowles M, Leung SY, Louis DN, Looijenga LHJ, Malkowicz B, Pierotti MA, Teh B, Chenevix-Trench G, Weber BL, Yuen ST, Harris G, Goldstraw P, Nicholson AG, Futreal PA, Wooster R, Stratton MR. Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 2004; 431:525-6. [PMID: 15457249 DOI: 10.1038/431525b] [Citation(s) in RCA: 586] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The protein-kinase family is the most frequently mutated gene family found in human cancer and faulty kinase enzymes are being investigated as promising targets for the design of antitumour therapies. We have sequenced the gene encoding the transmembrane protein tyrosine kinase ERBB2 (also known as HER2 or Neu) from 120 primary lung tumours and identified 4% that have mutations within the kinase domain; in the adenocarcinoma subtype of lung cancer, 10% of cases had mutations. ERBB2 inhibitors, which have so far proved to be ineffective in treating lung cancer, should now be clinically re-evaluated in the specific subset of patients with lung cancer whose tumours carry ERBB2 mutations.
Collapse
|
Journal Article |
21 |
586 |
22
|
|
|
59 |
573 |
23
|
Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, Swerdlow H, Turner DJ. A large genome center's improvements to the Illumina sequencing system. Nat Methods 2008; 5:1005-10. [PMID: 19034268 PMCID: PMC2610436 DOI: 10.1038/nmeth.1270] [Citation(s) in RCA: 564] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Wellcome Trust Sanger Institute is one of the world's largest genome centers, and a substantial amount of our sequencing is performed with 'next-generation' massively parallel sequencing technologies: in June 2008 the quantity of purity-filtered sequence data generated by our Genome Analyzer (Illumina) platforms reached 1 terabase, and our average weekly Illumina production output is currently 64 gigabases. Here we describe a set of improvements we have made to the standard Illumina protocols to make the library preparation more reliable in a high-throughput environment, to reduce bias, tighten insert size distribution and reliably obtain high yields of data.
Collapse
|
research-article |
17 |
564 |
24
|
Jeselsohn R, Yelensky R, Buchwalter G, Frampton G, Meric-Bernstam F, Gonzalez-Angulo AM, Ferrer-Lozano J, Perez-Fidalgo JA, Cristofanilli M, Gómez H, Arteaga CL, Giltnane J, Balko JM, Cronin MT, Jarosz M, Sun J, Hawryluk M, Lipson D, Otto G, Ross JS, Dvir A, Soussan-Gutman L, Wolf I, Rubinek T, Gilmore L, Schnitt S, Come SE, Pusztai L, Stephens P, Brown M, Miller VA. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor-positive breast cancer. Clin Cancer Res 2014; 20:1757-1767. [PMID: 24398047 DOI: 10.1158/1078-0432.ccr-13-2332] [Citation(s) in RCA: 510] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE We undertook this study to determine the prevalence of estrogen receptor (ER) α (ESR1) mutations throughout the natural history of hormone-dependent breast cancer and to delineate the functional roles of the most commonly detected alterations. EXPERIMENTAL DESIGN We studied a total of 249 tumor specimens from 208 patients. The specimens include 134 ER-positive (ER(+)/HER2(-)) and, as controls, 115 ER-negative (ER(-)) tumors. The ER(+) samples consist of 58 primary breast cancers and 76 metastatic samples. All tumors were sequenced to high unique coverage using next-generation sequencing targeting the coding sequence of the estrogen receptor and an additional 182 cancer-related genes. RESULTS Recurring somatic mutations in codons 537 and 538 within the ligand-binding domain of ER were detected in ER(+) metastatic disease. Overall, the frequency of these mutations was 12% [9/76; 95% confidence interval (CI), 6%-21%] in metastatic tumors and in a subgroup of patients who received an average of 7 lines of treatment the frequency was 20% (5/25; 95% CI, 7%-41%). These mutations were not detected in primary or treatment-naïve ER(+) cancer or in any stage of ER(-) disease. Functional studies in cell line models demonstrate that these mutations render estrogen receptor constitutive activity and confer partial resistance to currently available endocrine treatments. CONCLUSIONS In this study, we show evidence for the temporal selection of functional ESR1 mutations as potential drivers of endocrine resistance during the progression of ER(+) breast cancer.
Collapse
|
Research Support, N.I.H., Extramural |
11 |
510 |
25
|
Vaishnavi A, Capelletti M, Le AT, Kako S, Butaney M, Ercan D, Mahale S, Davies KD, Aisner DL, Pilling AB, Berge EM, Kim J, Sasaki H, Park S, Kryukov G, Garraway LA, Hammerman PS, Haas J, Andrews SW, Lipson D, Stephens PJ, Miller VA, Varella-Garcia M, Jänne PA, Doebele RC. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med 2013; 19:1469-1472. [PMID: 24162815 PMCID: PMC3823836 DOI: 10.1038/nm.3352] [Citation(s) in RCA: 475] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 08/15/2013] [Indexed: 12/31/2022]
Abstract
We identified new gene fusions in patients with lung cancer harboring the kinase domain of the NTRK1 gene that encodes the high-affinity nerve growth factor receptor (TRKA protein). Both the MPRIP-NTRK1 and CD74-NTRK1 fusions lead to constitutive TRKA kinase activity and are oncogenic. Treatment of cells expressing NTRK1 fusions with inhibitors of TRKA kinase activity inhibited autophosphorylation of TRKA and cell growth. Tumor samples from 3 of 91 patients with lung cancer (3.3%) without known oncogenic alterations assayed by next-generation sequencing or fluorescence in situ hybridization demonstrated evidence of NTRK1 gene fusions.
Collapse
|
Research Support, N.I.H., Extramural |
12 |
475 |