1
|
|
|
50 |
1350 |
2
|
Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K. Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci U S A 1998; 95:6460-4. [PMID: 9600988 PMCID: PMC27798 DOI: 10.1073/pnas.95.11.6460] [Citation(s) in RCA: 870] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The amyloid precursor protein (APP) plays a crucial role in the pathogenesis of Alzheimer's disease. During intracellular transport APP undergoes a series of proteolytic cleavages that lead to the release either of an amyloidogenic fragment called beta-amyloid (Abeta) or of a nonamyloidogenic secreted form consisting of the ectodomain of APP (APPsec). It is Abeta that accumulates in the brain lesions that are thought to cause the disease. By reducing the cellular cholesterol level of living hippocampal neurons by 70% with lovastatin and methyl-beta-cyclodextrin, we show that the formation of Abeta is completely inhibited while the generation of APPsec is unperturbed. This inhibition of Abeta formation is accompanied by increased solubility in the detergent Triton X-100 and is fully reversible by the readdition of cholesterol to previously depleted cells. Our results show that cholesterol is required for Abeta formation to occur and imply a link between cholesterol, Abeta, and Alzheimer's disease.
Collapse
|
research-article |
27 |
870 |
3
|
Fassbender K, Simons M, Bergmann C, Stroick M, Lutjohann D, Keller P, Runz H, Kuhl S, Bertsch T, von Bergmann K, Hennerici M, Beyreuther K, Hartmann T. Simvastatin strongly reduces levels of Alzheimer's disease beta -amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci U S A 2001; 98:5856-61. [PMID: 11296263 PMCID: PMC33303 DOI: 10.1073/pnas.081620098] [Citation(s) in RCA: 792] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent epidemiological studies show a strong reduction in the incidence of Alzheimer's disease in patients treated with cholesterol-lowering statins. Moreover, elevated Abeta42 levels and the varepsilon4 allele of the lipid-carrier apolipoprotein E are regarded as risk factors for sporadic and familial Alzheimer's disease. Here we demonstrate that the widely used cholesterol-lowering drugs simvastatin and lovastatin reduce intracellular and extracellular levels of Abeta42 and Abeta40 peptides in primary cultures of hippocampal neurons and mixed cortical neurons. Likewise, guinea pigs treated with high doses of simvastatin showed a strong and reversible reduction of cerebral Abeta42 and Abeta40 levels in the cerebrospinal fluid and brain homogenate. These results suggest that lipids are playing an important role in the development of Alzheimer's disease. Lowered levels of Abeta42 may provide the mechanism for the observed reduced incidence of dementia in statin-treated patients and may open up avenues for therapeutic interventions.
Collapse
|
research-article |
24 |
792 |
4
|
Pralle A, Keller P, Florin EL, Simons K, Hörber J. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 2000; 148:997-1008. [PMID: 10704449 PMCID: PMC2174552 DOI: 10.1083/jcb.148.5.997] [Citation(s) in RCA: 740] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To probe the dynamics and size of lipid rafts in the membrane of living cells, the local diffusion of single membrane proteins was measured. A laser trap was used to confine the motion of a bead bound to a raft protein to a small area (diam < or = 100 nm) and to measure its local diffusion by high resolution single particle tracking. Using protein constructs with identical ectodomains and different membrane regions and vice versa, we demonstrate that this method provides the viscous damping of the membrane domain in the lipid bilayer. When glycosylphosphatidylinositol (GPI) -anchored and transmembrane proteins are raft-associated, their diffusion becomes independent of the type of membrane anchor and is significantly reduced compared with that of nonraft transmembrane proteins. Cholesterol depletion accelerates the diffusion of raft-associated proteins for transmembrane raft proteins to the level of transmembrane nonraft proteins and for GPI-anchored proteins even further. Raft-associated GPI-anchored proteins were never observed to dissociate from the raft within the measurement intervals of up to 10 min. The measurements agree with lipid rafts being cholesterol-stabilized complexes of 26 +/- 13 nm in size diffusing as one entity for minutes.
Collapse
|
research-article |
25 |
740 |
5
|
Abstract
Transport from the TGN to the basolateral surface involves a rab/N-ethylmaleimide-sensitive fusion protein (NSF)/soluble NSF attachment protein (SNAP)/SNAP receptor (SNARE) mechanism. Apical transport instead is thought to be mediated by detergent-insoluble sphingolipid-cholesterol rafts. By reducing the cholesterol level of living cells by 60-70% with lovastatin and methyl-beta-cyclodextrin, we show that the TGN-to-surface transport of the apical marker protein influenza virus hemagglutinin was slowed down, whereas the transport of the basolateral marker vesicular stomatitis virus glycoprotein as well as the ER-to-Golgi transport of both membrane proteins was not affected. Reduction of transport of hemagglutinin was accompanied by increased solubility in the detergent Triton X-100 and by significant missorting of hemagglutinin to the basolateral membrane. In addition, depletion of cellular cholesterol by lovastatin and methyl-beta-cyclodextrin led to missorting of the apical secretory glycoprotein gp-80, suggesting that gp-80 uses a raft-dependent mechanism for apical sorting. Our data provide for the first time direct evidence for the functional significance of cholesterol in the sorting of apical membrane proteins as well as of apically secreted glycoproteins.
Collapse
|
research-article |
27 |
434 |
6
|
Ley TJ, DeSimone J, Anagnou NP, Keller GH, Humphries RK, Turner PH, Young NS, Keller P, Nienhuis AW. 5-azacytidine selectively increases gamma-globin synthesis in a patient with beta+ thalassemia. N Engl J Med 1982; 307:1469-75. [PMID: 6183586 DOI: 10.1056/nejm198212093072401] [Citation(s) in RCA: 375] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
5-Azacytidine is a cytidine analogue that is capable of activating repressed genes in tissue-culture cells and has been shown to increase hemoglobin-F production in anemic baboons. This drug was administered to a patient with severe beta-thalassemia in an attempt to stimulate hemoglobin-F production. After seven days of 5-azacytidine treatment, gamma-globin synthesis increased approximately sevenfold, temporarily normalizing the patient's unbalanced globin synthesis. Erythropoiesis became more effective, leading to a temporary increase in the absolute reticulocyte count (from 5000 to 22,000 per cubic millimeter) and in hemoglobin concentration (from 8.0 to 10.8 g per deciliter). Hypomethylation of bone-marrow DNA near both the gamma-globin and epsilon-globin genes was directly demonstrated. At the time of peak drug effect, about 7000 gamma-globin messenger RNA molecules were present per erythroid bone-marrow cell, in contrast to 10 to 15 epsilon-globin messenger RNA molecules per cell. 5-Azacytidine selectivity increases gamma-globin synthesis and therefore provides a new approach to the treatment of severe beta-thalassemia. Further studies will be required to evaluate the efficacy, risks, and long-term toxicity of 5-azacytidine (or related compounds) before this approach can be used as a therapy for patients with disorders of hemoglobin synthesis.
Collapse
|
Case Reports |
43 |
375 |
7
|
Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, Febbraio M, Saltin B. Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil 2003; 24:113-9. [PMID: 14609022 DOI: 10.1023/a:1026070911202] [Citation(s) in RCA: 357] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
For years the search for the stimulus that initiates and maintains the change of excitability or sensibility of the regulating centers in exercise has been progressing. For lack of more precise knowledge, it has been called the 'work stimulus', 'the work factor' or 'the exercise factor'. In other terms, one big challenge for muscle and exercise physiologists has been to determine how muscles signal to central and peripheral organs. Here we discuss the possibility that interleukin-6 (IL-6) could mediate some of the health beneficial effects of exercise. In resting muscle, the IL-6 gene is silent, but it is rapidly activated by contractions. The transcription rate is very fast and the fold changes of IL-6 mRNA is marked. IL-6 is released from working muscles into the circulation in high amounts. The IL-6 production is modulated by the glycogen content in muscles, and IL-6 thus works as an energy sensor. IL-6 exerts its effect on adipose tissue, inducing lipolysis and gene transcription in abdominal subcutaneous fat and increases whole body lipid oxidation. Furthermore, IL-6 inhibits low-grade TNF-alpha-production and may thereby inhibit TNF-alpha-induced insulin resistance and atherosclerosis development. We propose that IL-6 and other cytokines, which are produced and released by skeletal muscles, exerting their effects in other organs of the body, should be named 'myokines'.
Collapse
|
Review |
22 |
357 |
8
|
Keller P, Toomre D, Díaz E, White J, Simons K. Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nat Cell Biol 2001; 3:140-9. [PMID: 11175746 DOI: 10.1038/35055042] [Citation(s) in RCA: 348] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The biogenesis and maintenance of asymmetry is crucial to many cellular functions including absorption and secretion, signalling, development and morphogenesis. Here we have directly visualized the segregation and trafficking of apical (glycosyl phosphatidyl inositol-anchored) and basolateral (vesicular stomatitis virus glycoprotein) cargo in living cells using multicolour imaging of green fluorescent protein variants. Apical and basolateral cargo segregate progressively into large domains in Golgi/trans-Golgi network structures, exclude resident proteins, and exit in separate transport containers. These remain distinct and do not merge with endocytic structures suggesting that lateral segregation in the trans-Golgi network is the primary sorting event. Fusion with the plasma membrane was detected by total internal reflection microscopy and reveals differences between apical and basolateral carriers as well as new 'hot spots' for exocytosis.
Collapse
|
|
24 |
348 |
9
|
Schieber A, Keller P, Carle R. Determination of phenolic acids and flavonoids of apple and pear by high-performance liquid chromatography. J Chromatogr A 2001; 910:265-73. [PMID: 11261721 DOI: 10.1016/s0021-9673(00)01217-6] [Citation(s) in RCA: 343] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new HPLC stationary phase has been applied to the analysis of phenolic acids and flavonoids with diode array and mass spectrometric detection. The separation of 26 standard compounds was achieved within 1 h. The stationary phase displayed excellent resolution especially of flavonol glycosides. The analytical system has been used for the determination of phenolic compounds in apple pomace and apple juice, and in extracts of pear fruits of different cultivars. Apple pomace was found to be a promising source of phenolics. However, yields are affected by the drying conditions applied. Furthermore, the applicability of the analytical system for the authenticity control of apple and pear juice was demonstrated by determination of characteristic quercetin and isorhamnetin glycosides, and dihydrochalcones, respectively. Since isorhamnetin-3-glucoside was present in all pear cultivars investigated, the usefulness of arbutin as a specific marker of pear products appears to be doubtful.
Collapse
|
|
24 |
343 |
10
|
White J, Johannes L, Mallard F, Girod A, Grill S, Reinsch S, Keller P, Tzschaschel B, Echard A, Goud B, Stelzer EH. Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J Cell Biol 1999; 147:743-60. [PMID: 10562278 PMCID: PMC2156170 DOI: 10.1083/jcb.147.4.743] [Citation(s) in RCA: 330] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We visualized a fluorescent-protein (FP) fusion to Rab6, a Golgi-associated GTPase, in conjunction with fluorescent secretory pathway markers. FP-Rab6 defined highly dynamic transport carriers (TCs) translocating from the Golgi to the cell periphery. FP-Rab6 TCs specifically accumulated a retrograde cargo, the wild-type Shiga toxin B-fragment (STB), during STB transport from the Golgi to the endoplasmic reticulum (ER). FP-Rab6 TCs associated intimately with the ER, and STB entered the ER via specialized peripheral regions that accumulated FP-Rab6. Microinjection of antibodies that block coatomer protein I (COPI) function inhibited trafficking of a KDEL-receptor FP-fusion, but not FP-Rab6. Additionally, markers of COPI-dependent recycling were excluded from FP-Rab6/STB TCs. Overexpression of Rab6:GDP (T27N mutant) using T7 vaccinia inhibited toxicity of Shiga holotoxin, but did not alter STB transport to the Golgi or Golgi morphology. Taken together, our results indicate Rab6 regulates a novel Golgi to ER transport pathway.
Collapse
|
research-article |
26 |
330 |
11
|
Abstract
Eukaryotic cells have developed complex machineries to distribute proteins and lipids from the Golgi complex. Contrary to what has originally been postulated, delivery of proteins to the cell surface is not a simple bulk flow process but involves sorting into distinct pathways from the trans-Golgi network. Here we describe the various routes emerging from the trans-Golgi network in different cell types, and we discuss the mechanisms that mediate sorting into these pathways. While much remains to be learned about these sorting mechanisms, it is apparent that a number of pathways previously believed to be restricted to certain cell types might be used more commonly.
Collapse
|
|
28 |
283 |
12
|
Mañes S, Mira E, Gómez-Moutón C, Lacalle RA, Keller P, Labrador JP, Martínez-A C. Membrane raft microdomains mediate front-rear polarity in migrating cells. EMBO J 1999; 18:6211-20. [PMID: 10562533 PMCID: PMC1171684 DOI: 10.1093/emboj/18.22.6211] [Citation(s) in RCA: 262] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The acquisition of spatial and functional asymmetry between the rear and the front of the cell is a necessary step for cell chemotaxis. Insulin-like growth factor-I (IGF-I) stimulation of the human adenocarcinoma MCF-7 induces a polarized phenotype characterized by asymmetrical CCR5 chemokine receptor redistribution to the leading cell edge. CCR5 associates with membrane raft microdomains, and its polarization parallels redistribution of raft molecules, including the raft-associated ganglioside GM1, glycosylphosphatidylinositol-anchored green fluorescent protein and ephrinB1, to the leading edge. The non-raft proteins transferrin receptor and a mutant ephrinB1 are distributed homogeneously in migrating MCF-7 cells, supporting the raft localization requirement for polarization. IGF-I stimulation of cholesterol-depleted cells induces projection of multiple pseudopodia over the entire cell periphery, indicating that raft disruption specifically affects the acquisition of cell polarity, but not IGF-I-induced protrusion activity. Cholesterol depletion inhibits MCF-7 chemotaxis, which is restored by replenishing cholesterol. Our results indicate that initial segregation between raft and non-raft membrane proteins mediates the necessary redistribution of specialized molecules for cell migration.
Collapse
|
research-article |
26 |
262 |
13
|
Toomre D, Keller P, White J, Olivo JC, Simons K. Dual-color visualization of trans-Golgi network to plasma membrane traffic along microtubules in living cells. J Cell Sci 1999; 112 ( Pt 1):21-33. [PMID: 9841901 DOI: 10.1242/jcs.112.1.21] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The mechanisms and carriers responsible for exocytic protein trafficking between the trans-Golgi network (TGN) and the plasma membrane remain unclear. To investigate the dynamics of TGN-to-plasma membrane traffic and role of the cytoskeleton in these processes we transfected cells with a GFP-fusion protein, vesicular stomatitis virus G protein tagged with GFP (VSVG3-GFP). After using temperature shifts to block VSVG3-GFP in the endoplasmic reticulum and subsequently accumulate it in the TGN, dynamics of TGN-to-plasma membrane transport were visualized in real time by confocal and video microscopy. Both small vesicles (<250 nm) and larger vesicular-tubular structures (>1.5 microm long) are used as transport containers (TCs). These TCs rapidly moved out of the Golgi along curvilinear paths with average speeds of approximately 0.7 micrometer/second. Automatic computer tracking objectively determined the dynamics of different carriers. Fission and fusion of TCs were observed, suggesting that these late exocytic processes are highly interactive. To directly determine the role of microtubules in post-Golgi traffic, rhodamine-tubulin was microinjected and both labeled cargo and microtubules were simultaneously visualized in living cells. These studies demonstrated that exocytic cargo moves along microtubule tracks and reveals that carriers are capable of switching between tracks.
Collapse
|
|
26 |
196 |
14
|
Yoshimori T, Keller P, Roth MG, Simons K. Different biosynthetic transport routes to the plasma membrane in BHK and CHO cells. J Cell Biol 1996; 133:247-56. [PMID: 8609159 PMCID: PMC2120802 DOI: 10.1083/jcb.133.2.247] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The question of how membrane proteins are delivered from the TGN to the cell surface in fibroblasts has received little attention. In this paper we have studied how their post-Golgi delivery routes compare with those in epithelia] cells. We have analyzed the transport of the vesicular stomatitis virus G protein, the Semliki Forest virus spike glycoprotein, both basolateral in MDCK cells, and the influenza virus hemagglutinin, apical in MDCK cells. In addition, we also have studied the transport of a hemagglutinin mutant (Cys543Tyr) which is basolateral in MDCK cells. Aluminum fluoride, a general activator of heterotrimeric G proteins, inhibited the transport of the basolateral cognate proteins, as well as of the hemagglutinin mutant, from the TGN to the cell surface in BHK and CHO cells, while having no effect on the surface delivery of the wild-type hemagglutinin. Only wild-type hemagglutinin became insoluble in the detergent CHAPS during transport through the BHK and CHO Golgi complexes, whereas the basolateral marker proteins remained CHAPS-soluble. We also have developed an in vitro assay using streptolysin O-permeabilized BHK cells, similar to the one we have previously used for analyzing polarized transport in MDCK cells (Pimplikar, S.W., E. Ikonen, and K. Simons. 1994. J. Cell Biol. 125:1025-1035). In this assay anti-NSF and rab-GDI inhibited transport of Semliki Forest virus spike glycoproteins from the TGN to the cell surface while having little effect on transport of the hemagglutinin. Altogether these data suggest that fibroblasts have apical and basolateral cognate routes from the TGN to the plasma membrane.
Collapse
|
research-article |
29 |
192 |
15
|
Kobilka BK, Frielle T, Dohlman HG, Bolanowski MA, Dixon RA, Keller P, Caron MG, Lefkowitz RJ. Delineation of the intronless nature of the genes for the human and hamster beta 2-adrenergic receptor and their putative promoter regions. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)48239-7] [Citation(s) in RCA: 188] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
|
38 |
188 |
16
|
Levy CE, Nichols DS, Schmalbrock PM, Keller P, Chakeres DW. Functional MRI evidence of cortical reorganization in upper-limb stroke hemiplegia treated with constraint-induced movement therapy. Am J Phys Med Rehabil 2001; 80:4-12. [PMID: 11138954 DOI: 10.1097/00002060-200101000-00003] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The purpose of this pilot study was to test constraint-induced movement therapy for chronic upper-limb stroke hemiparesis and to investigate the neural correlates of recovery with functional magnetic resonance imaging (MRI) in two subjects. Both subjects had been discharged from traditional therapy because no further improvement was anticipated. DESIGN Constraint-induced movement therapy consisted of 6 hr of daily upper-limb training for 2 wk; a restrictive mitt was worn on the nonparetic limb during waking hours. Functional MRI was performed on a 1.5-T MRI with echo-planar imaging; at the same time, the subjects attempted sequential finger-tapping. RESULTS Compared with baseline, performance time improved an average of 24% immediately after training and also continued to improve up to 33% 3 mo after training. Lift, grip strength, and Motor Activity Log scores likewise improved. Initially, on functional MRI, subject 1 activated scattered regions in the ipsilateral posterior parietal and occipital cortices. Subject 2 showed almost no areas of significant activation. After training, subject 1 showed activity bordering the lesion, bilateral activation in the association motor cortices, and ipsilateral activation in the primary motor cortex. Subject 2 showed activation near the lesion site. CONCLUSION Constraint-induced movement therapy produced significant functional improvement and resulted in plasticity as demonstrated by functional MRI.
Collapse
|
Case Reports |
24 |
184 |
17
|
Simons M, Keller P, Dichgans J, Schulz JB. Cholesterol and Alzheimer's disease: is there a link? Neurology 2001; 57:1089-93. [PMID: 11571339 DOI: 10.1212/wnl.57.6.1089] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Abeta-amyloid peptide (Abeta), the main component of amyloid plaques, is derived by proteolytic cleavage from the amyloid precursor protein (APP). Epidemiologic and biochemical data suggest a link between cholesterol, APP processing, Abeta, and Alzheimer's disease. Two recent epidemiologic studies indicate that there is a decreased prevalence of AD associated with the use of cholesterol-lowering drugs that inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase inhibitors or statins). Experiments in cell culture and in vivo demonstrate that treatment with statins reduces production of Abeta. The authors discuss how cholesterol might modulate Abeta deposit formation. As neurons receive only small amounts of exogenous cholesterol, statins that efficiently cross the blood-brain barrier may reduce the amount of neuronal cholesterol below a critical level. Decreased neuronal cholesterol levels inhibit the Abeta-forming amyloidogenic pathway possibly by removing APP from cholesterol- and sphingolipid-enriched membrane microdomains. In addition, depletion of cellular cholesterol levels reduces the ability of Abeta to act as a seed for further fibril formation. These intriguing relationships raise the hopes that cholesterol-lowering strategies may influence the progression of AD.
Collapse
|
|
24 |
172 |
18
|
Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, Wolsk-Petersen E, Febbraio M. The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor? Proc Nutr Soc 2007; 63:263-7. [PMID: 15294041 DOI: 10.1079/pns2004338] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
For most of the last century, researchers have searched for a muscle contraction-induced factor that mediates some of the exercise effects in other tissues such as the liver and the adipose tissue. It has been called the ‘work stimulus’, the ‘work factor’ or the ‘exercise factor’. In the search for such a factor, a cytokine, IL-6, was found to be produced by contracting muscles and released into the blood. It has been demonstrated that IL-6 has many biological roles such as: (1) induction of lipolysis; (2) suppression of TNF production; (3) stimulation of cortisol production. The IL-6 gene is rapidly activated during exercise, and the activation of this gene is further enhanced when muscle glycogen content is low. In addition, carbohydrate supplementation during exercise has been shown to inhibit the release of IL-6 from contracting muscle. Thus, it is suggested that muscle-derived IL-6 fulfils the criteria of an exercise factor and that such classes of cytokines could be termed ‘myokines’.
Collapse
|
|
18 |
166 |
19
|
Chodak GW, Keller P, Schoenberg HW. Assessment of screening for prostate cancer using the digital rectal examination. J Urol 1989; 141:1136-8. [PMID: 2709500 DOI: 10.1016/s0022-5347(17)41192-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An early detection study for prostate cancer was initiated to determine the effect of routine digital rectal examinations on the stage of prostate cancer at diagnosis. A prostate biopsy was recommended if induration, asymmetry or nodules were detected on the digital examination. During a 6-year period 4,160 examinations were performed on 2,131 men more than 45 years old. A prostate biopsy was performed on 144 men and 36 malignant tumors were detected, of which 68 per cent were clinically localized. Pelvic lymph node metastases were found in 6 per cent of the surgically staged cancer patients and in 10 per cent of the patients who had a high grade tumor. Surgical staging revealed that 50 per cent of the patients with clinical stage B disease were upstaged to stage C or D1 disease. These results suggest that mass screening programs using digital examination may not add sufficient benefit over conventional medical care to warrant the expense. Definitive proof that screening can lower the mortality rate from prostate cancer can be obtained only by a prospective randomized clinical trial.
Collapse
|
|
36 |
133 |
20
|
Barvian M, Boschelli DH, Cossrow J, Dobrusin E, Fattaey A, Fritsch A, Fry D, Harvey P, Keller P, Garrett M, La F, Leopold W, McNamara D, Quin M, Trumpp-Kallmeyer S, Toogood P, Wu Z, Zhang E. Pyrido[2,3-d]pyrimidin-7-one inhibitors of cyclin-dependent kinases. J Med Chem 2000; 43:4606-16. [PMID: 11101352 DOI: 10.1021/jm000271k] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The identification of 8-ethyl-2-phenylamino-8H-pyrido[2, 3-d]pyrimidin-7-one (1) as an inhibitor of Cdk4 led to the initiation of a program to evaluate related pyrido[2, 3-d]pyrimidin-7-ones for inhibition of cyclin-dependent kinases (Cdks). Analysis of more than 60 analogues has identified some clear SAR trends that may be exploited in the design of more potent Cdk inhibitors. The most potent Cdk4 inhibitors reported in this study inhibit Cdk4 with IC(50) = 0.004 microM ([ATP] = 25 microM). X-ray crystallographic analysis of representative compounds bound to the related kinase, Cdk2, reveals that they occupy the ATP binding site. Modest selectivity between Cdks is exhibited by some compounds, and Cdk4-selective inhibitors block pRb(+) cells in the G(1)-phase of the cell division cycle.
Collapse
|
|
25 |
130 |
21
|
Yue TL, Wang C, Romanic AM, Kikly K, Keller P, DeWolf WE, Hart TK, Thomas HC, Storer B, Gu JL, Wang X, Feuerstein GZ. Staurosporine-induced apoptosis in cardiomyocytes: A potential role of caspase-3. J Mol Cell Cardiol 1998; 30:495-507. [PMID: 9515027 DOI: 10.1006/jmcc.1997.0614] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiomyocyte apoptosis has been demonstrated in animal models of cardiac injury as well as in patients with congestive heart failure or acute myocardial infarction. Therefore, apoptosis has been proposed as an important process in cardiac remodeling and progression of myocardial dysfunction. However, the mechanisms underlying cardiac apoptosis are poorly understood. The present study was designed to determine whether the family of caspase proteases and stress-activated protein kinase (SAPK/JNK) are involved in cardiac apoptosis. Cultured rat neonatal cardiac myocytes were treated with staurosporine to induce apoptosis as evidenced by the morphological (including ultrastructural) characteristics of cell shrinkage, cytoplasmic and nuclear condensation, and fragmentation. Nucleosomal DNA fragmentation in myocytes was further identified by agarose gel electrophoresis (DNA ladder) as well as in situ nick end-labeling (TUNEL). Staurosporine-induced apoptosis in myocytes was a time- and concentration-(0.25-1 micro M)-dependent process. Staurosporine-induced apoptosis in myocytes was reduced by a cell-permeable, irreversible tripeptide inhibitor of caspases, ZVAD-fmk, but not by the ICE-specific inhibitor, Ac-YVAD-CHO. At 10, 50 and 100 muM of ZVAD-fmk, staurosporine-induced myocyte apoptosis was reduced by 5.8, 39.1 (P<0.01) and 53.8% (P<0.01), respectively. Staurosporine, at 0.25-1 micro M, increased caspase activity in cardiomyocytes by five- to eight-fold, peaking at 4-8 h after stimulation. Based on substrate specificity analysis, the major component of caspases activated in myocytes was consistent with caspase-3 (CPP32). Moreover, the appearance of the 17-kD subunit of active caspase-3 in staurosporine-treated myocytes was demonstrated by immunocytochemical analysis. In contrast, staurosporine induced a rapid and transient inhibition of SAPK/JNK in myocytes. The SAPK activity in myocytes was reduced by 68.3 and 58.3% (P<0.01 v basal) at 10 and 30 min after treatment with 1 micro M of staurosporine, respectively. Our results suggest that staurosporine-induced cardiac myocyte apoptosis involves activation of caspases, mainly caspase-3, but not activation of the SAPK signaling pathway.
Collapse
|
|
27 |
121 |
22
|
Keller P, Carvalho B, Cotton J, Lambert M, Moussa F, Pépy G. Side chain mesomorphic polymers : studies of labelled backbones by neutron scattering. ACTA ACUST UNITED AC 1985. [DOI: 10.1051/jphyslet:0198500460220106500] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
|
40 |
101 |
23
|
Levelut A, Germain C, Keller P, Liebert L, Billard J. Two new mesophases in a chiral compound. ACTA ACUST UNITED AC 1983. [DOI: 10.1051/jphys:01983004405062300] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
|
42 |
99 |
24
|
Meyer F, Keller P, Hartl J, Gröninger OG, Kiefer P, Vorholt JA. Methanol-essential growth of Escherichia coli. Nat Commun 2018; 9:1508. [PMID: 29666370 PMCID: PMC5904121 DOI: 10.1038/s41467-018-03937-y] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/22/2018] [Indexed: 12/22/2022] Open
Abstract
Methanol represents an attractive substrate for biotechnological applications. Utilization of reduced one-carbon compounds for growth is currently limited to methylotrophic organisms, and engineering synthetic methylotrophy remains a major challenge. Here we apply an in silico-guided multiple knockout approach to engineer a methanol-essential Escherichia coli strain, which contains the ribulose monophosphate cycle for methanol assimilation. Methanol conversion to biomass was stoichiometrically coupled to the metabolization of gluconate and the designed strain was subjected to laboratory evolution experiments. Evolved strains incorporate up to 24% methanol into core metabolites under a co-consumption regime and utilize methanol at rates comparable to natural methylotrophs. Genome sequencing reveals mutations in genes coding for glutathione-dependent formaldehyde oxidation (frmA), NAD(H) homeostasis/biosynthesis (nadR), phosphopentomutase (deoB), and gluconate metabolism (gntR). This study demonstrates a successful metabolic re-routing linked to a heterologous pathway to achieve methanol-dependent growth and represents a crucial step in generating a fully synthetic methylotrophic organism. Engineering synthetic methylotrophy remains challenging. Here, the authors engineer a methanol-essential E. coli by an in silico-guided multiple knockout approach and show a laboratory evolved strain can incorporate up to 24% methanol into core metabolites during growth.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
97 |
25
|
Yue TL, Ni J, Romanic AM, Gu JL, Keller P, Wang C, Kumar S, Yu GL, Hart TK, Wang X, Xia Z, DeWolf WE, Feuerstein GZ. TL1, a novel tumor necrosis factor-like cytokine, induces apoptosis in endothelial cells. Involvement of activation of stress protein kinases (stress-activated protein kinase and p38 mitogen-activated protein kinase) and caspase-3-like protease. J Biol Chem 1999; 274:1479-86. [PMID: 9880523 DOI: 10.1074/jbc.274.3.1479] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
TL1 is a recently discovered novel member of the tumor necrosis factor (TNF) cytokine family. TL1 is abundantly expressed in endothelial cells, but its function is not known. The present study was undertaken to explore whether TL1 induces apoptosis in endothelial cells and, if so, to explore its mechanism of action. Cultured bovine pulmonary artery endothelial cells (BPAEC) exposed to TL1 showed morphological (including ultrastructural) and biochemical features characteristic of apoptosis. TL1-induced apoptosis in BPAEC was a time- and concentration-dependent process (EC50 = 72 ng/ml). The effect of TL1 was not inhibited by soluble TNF receptors 1 or 2. TL1 up-regulated Fas expression in BPAEC at 8 and 24 h after treatment, and significantly activated stress-activated protein kinase (SAPK) and p38 mitogen-activated protein kinase (p38 MAPK). The peak activities of SAPK and p38 MAPK in TL1-treated BPAEC were increased by 9- and 4-fold, respectively. TL1-induced apoptosis in the BPAEC was reduced by expression of a dominant-interfering mutant of c-Jun (62.8%, p < 0.05) or by a specific p38 inhibitor, SB203580 (1-10 microM) dose-dependently. TL1 also activated caspases in BPAEC, and TL1-induced apoptosis in BPAEC was significantly attenuated by the caspase inhibitor, ZVAD-fluromethyl-ketone. The major component activated by TL1 in BPAEC was caspase-3, which was based on substrate specificity and immunocytochemical analysis. These findings suggest that TL1 may act as an autocrine factor to induce apoptosis in endothelial cells via activation of multiple signaling pathways, including stress protein kinases as well as certain caspases.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Apoptosis
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Caspase 3
- Caspases/metabolism
- Cattle
- Cells, Cultured
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/physiology
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Imidazoles/pharmacology
- JNK Mitogen-Activated Protein Kinases
- Mitogen-Activated Protein Kinases
- Molecular Sequence Data
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Pulmonary Artery
- Pyridines/pharmacology
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Up-Regulation
- fas Receptor/biosynthesis
- p38 Mitogen-Activated Protein Kinases
Collapse
|
|
26 |
86 |