1
|
Galeotti G, De Marchi F, Hamzehpoor E, MacLean O, Rajeswara Rao M, Chen Y, Besteiro LV, Dettmann D, Ferrari L, Frezza F, Sheverdyaeva PM, Liu R, Kundu AK, Moras P, Ebrahimi M, Gallagher MC, Rosei F, Perepichka DF, Contini G. Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties. NATURE MATERIALS 2020; 19:874-880. [PMID: 32424372 DOI: 10.1038/s41563-020-0682-z] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/14/2020] [Indexed: 05/08/2023]
Abstract
Two-dimensional materials with high charge carrier mobility and tunable band gaps have attracted intense research effort for their potential use in nanoelectronics. Two-dimensional π-conjugated polymers constitute a promising subclass because the band structure can be manipulated by varying the molecular building blocks while preserving key features such as Dirac cones and high charge mobility. The major barriers to the application of two-dimensional π-conjugated polymers have been the small domain size and high defect density attained in the syntheses explored so far. Here, we demonstrate the fabrication of mesoscale ordered two-dimensional π-conjugated polymer kagome lattices with semiconducting properties, Dirac cone structures and flat bands on Au(111). This material has been obtained by combining a rigid azatriangulene precursor and a hot dosing approach, which favours molecular diffusion and eliminates voids in the network. These results open opportunities for the synthesis of two-dimensional π-conjugated polymer Dirac cone materials and their integration into devices.
Collapse
|
|
5 |
126 |
2
|
Stepanow S, Lodi Rizzini A, Krull C, Kavich J, Cezar JC, Yakhou-Harris F, Sheverdyaeva PM, Moras P, Carbone C, Ceballos G, Mugarza A, Gambardella P. Spin tuning of electron-doped metal-phthalocyanine layers. J Am Chem Soc 2014; 136:5451-9. [PMID: 24635343 DOI: 10.1021/ja501204q] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The spin state of organic-based magnets at interfaces is to a great extent determined by the organic environment and the nature of the spin-carrying metal center, which is further subject to modifications by the adsorbate-substrate coupling. Direct chemical doping offers an additional route for tailoring the electronic and magnetic characteristics of molecular magnets. Here we present a systematic investigation of the effects of alkali metal doping on the charge state and crystal field of 3d metal ions in Cu, Ni, Fe, and Mn phthalocyanine (Pc) monolayers adsorbed on Ag. Combined X-ray absorption spectroscopy and ligand field multiplet calculations show that Cu(II), Ni(II), and Fe(II) ions reduce to Cu(I), Ni(I), and Fe(I) upon alkali metal adsorption, whereas Mn maintains its formal oxidation state. The strength of the crystal field at the Ni, Fe, and Mn sites is strongly reduced upon doping. The combined effect of these changes is that the magnetic moment of high- and low-spin ions such as Cu and Ni can be entirely turned off or on, respectively, whereas the magnetic configuration of MnPc can be changed from intermediate (3/2) to high (5/2) spin. In the case of FePc a 10-fold increase of the orbital magnetic moment accompanies charge transfer and a transition to a high-spin state.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
11 |
63 |
3
|
Pazniak H, Varezhnikov AS, Kolosov DA, Plugin IA, Vito AD, Glukhova OE, Sheverdyaeva PM, Spasova M, Kaikov I, Kolesnikov EA, Moras P, Bainyashev AM, Solomatin MA, Kiselev I, Wiedwald U, Sysoev VV. 2D Molybdenum Carbide MXenes for Enhanced Selective Detection of Humidity in Air. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104878. [PMID: 34601739 PMCID: PMC11468926 DOI: 10.1002/adma.202104878] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Indexed: 05/27/2023]
Abstract
2D transition metal carbides and nitrides (MXenes) open up novel opportunities in gas sensing with high sensitivity at room temperature. Herein, 2D Mo2 CTx flakes with high aspect ratio are successfully synthesized. The chemiresistive effect in a sub-µm MXene multilayer for different organic vapors and humidity at 101 -104 ppm in dry air is studied. Reasonably, the low-noise resistance signal allows the detection of H2 O down to 10 ppm. Moreover, humidity suppresses the response of Mo2 CTx to organic analytes due to the blocking of adsorption active sites. By measuring the impedance of MXene layers as a function of ac frequency in the 10-2 -106 Hz range, it is shown that operation principle of the sensor is dominated by resistance change rather than capacitance variations. The sensor transfer function allows to conclude that the Mo2 CTx chemiresistance is mainly originating from electron transport through interflake potential barriers with heights up to 0.2 eV. Density functional theory calculations, elucidating the Mo2 C surface interaction with organic analytes and H2 O, explain the experimental data as an energy shift of the density of states under the analyte's adsorption which induces increasing electrical resistance.
Collapse
|
research-article |
4 |
26 |
4
|
Moras P, Mentes TO, Sheverdyaeva PM, Locatelli A, Carbone C. Coexistence of multiple silicene phases in silicon grown on Ag(1 1 1). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:185001. [PMID: 24727950 DOI: 10.1088/0953-8984/26/18/185001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Silicene, the silicon equivalent of graphene, is attracting increasing scientific and technological attention in view of the exploitation of its exotic electronic properties. This novel material has been theoretically predicted to exist as a free-standing layer in a low-buckled, stable form, and can be synthesized by the deposition of Si on appropriate crystalline substrates. By employing low-energy electron diffraction and microscopy, we have studied the growth of Si on Ag(1 1 1) and observed a rich variety of rotationally non-equivalent silicene structures. Our results highlight a very complex formation diagram, reflecting the coexistence of different and nearly degenerate silicene phases, whose relative abundance can be controlled by varying the Si coverage and growth temperature. At variance with other studies, we find that the formation of single-phase silicene monolayers cannot be achieved on Ag(1 1 1).
Collapse
|
|
11 |
11 |
5
|
Rusponi S, Papagno M, Moras P, Vlaic S, Etzkorn M, Sheverdyaeva PM, Pacilé D, Brune H, Carbone C. Highly anisotropic Dirac cones in epitaxial graphene modulated by an island superlattice. PHYSICAL REVIEW LETTERS 2010; 105:246803. [PMID: 21231546 DOI: 10.1103/physrevlett.105.246803] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/13/2010] [Indexed: 05/30/2023]
Abstract
We present a new method to engineer the charge carrier mobility and its directional asymmetry in epitaxial graphene by using metal cluster superlattices self-assembled onto the moiré pattern formed by graphene on Ir(111). Angle-resolved photoemission spectroscopy reveals threefold symmetry in the band structure associated with strong renormalization of the electron group velocity close to the Dirac point giving rise to highly anisotropic Dirac cones. We further find that the cluster superlattice also affects the spectral-weight distribution of the carbon bands as well as the electronic gaps between graphene states.
Collapse
|
|
15 |
10 |
6
|
Holtgrewe K, Mahatha SK, Sheverdyaeva PM, Moras P, Flammini R, Colonna S, Ronci F, Papagno M, Barla A, Petaccia L, Aliev ZS, Babanly MB, Chulkov EV, Sanna S, Hogan C, Carbone C. Topologization of β-antimonene on Bi 2Se 3 via proximity effects. Sci Rep 2020; 10:14619. [PMID: 32884112 PMCID: PMC7471962 DOI: 10.1038/s41598-020-71624-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/19/2020] [Indexed: 11/09/2022] Open
Abstract
Topological surface states usually emerge at the boundary between a topological and a conventional insulator. Their precise physical character and spatial localization depend on the complex interplay between the chemical, structural and electronic properties of the two insulators in contact. Using a lattice-matched heterointerface of single and double bilayers of β-antimonene and bismuth selenide, we perform a comprehensive experimental and theoretical study of the chiral surface states by means of microscopy and spectroscopic measurements complemented by first-principles calculations. We demonstrate that, although β-antimonene is a trivial insulator in its free-standing form, it inherits the unique symmetry-protected spin texture from the substrate via a proximity effect that induces outward migration of the topological state. This "topologization" of β-antimonene is found to be driven by the hybridization of the bands from either side of the interface.
Collapse
|
research-article |
5 |
9 |
7
|
Hogan C, Holtgrewe K, Ronci F, Colonna S, Sanna S, Moras P, Sheverdyaeva PM, Mahatha S, Papagno M, Aliev ZS, Babanly M, Chulkov EV, Carbone C, Flammini R. Temperature Driven Phase Transition at the Antimonene/Bi 2Se 3 van der Waals Heterostructure. ACS NANO 2019; 13:10481-10489. [PMID: 31469534 DOI: 10.1021/acsnano.9b04377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report the discovery of a temperature-induced phase transition between the α and β structures of antimonene. When antimony is deposited at room temperature on bismuth selenide, it forms domains of α-antimonene having different orientations with respect to the substrate. During a mild annealing, the β phase grows and prevails over the α phase, eventually forming a single domain that perfectly matches the surface lattice structure of bismuth selenide. First-principles thermodynamics calculations of this van der Waals heterostructure explain the different temperature-dependent stability of the two phases and reveal a minimum energy transition path. Although the formation energies of freestanding α- and β-antimonene only slightly differ, the β phase is ultimately favored in the annealed heterostructure due to an increased interaction with the substrate mediated by the perfect lattice match.
Collapse
|
|
6 |
7 |
8
|
Milotti V, Cacovich S, Ceratti DR, Ory D, Barichello J, Matteocci F, Di Carlo A, Sheverdyaeva PM, Schulz P, Moras P. Degradation and Self-Healing of FAPbBr 3 Perovskite under Soft-X-Ray Irradiation. SMALL METHODS 2023; 7:e2300222. [PMID: 37287372 DOI: 10.1002/smtd.202300222] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/08/2023] [Indexed: 06/09/2023]
Abstract
The extensive use of perovskites as light absorbers calls for a deeper understanding of the interaction of these materials with light. Here, the evolution of the chemical and optoelectronic properties of formamidinium lead tri-bromide (FAPbBr3 ) films is tracked under the soft X-ray beam of a high-brilliance synchrotron source by photoemission spectroscopy and micro-photoluminescence. Two contrasting processes are at play during the irradiation. The degradation of the material manifests with the formation of Pb0 metallic clusters, loss of gaseous Br2 , decrease and shift of the photoluminescence emission. The recovery of the photoluminescence signal for prolonged beam exposure times is ascribed to self-healing of FAPbBr3 , thanks to the re-oxidation of Pb0 and migration of FA+ and Br- ions. This scenario is validated on FAPbBr3 films treated by Ar+ ion sputtering. The degradation/self-healing effect, which is previously reported for irradiation up to the ultraviolet regime, has the potential of extending the lifetime of X-ray detectors based on perovskites.
Collapse
|
|
2 |
7 |
9
|
Fernandez L, Blanco-Rey M, Castrillo-Bodero R, Ilyn M, Ali K, Turco E, Corso M, Ormaza M, Gargiani P, Valbuena MA, Mugarza A, Moras P, Sheverdyaeva PM, Kundu AK, Jugovac M, Laubschat C, Ortega JE, Schiller F. Influence of 4f filling on electronic and magnetic properties of rare earth-Au surface compounds. NANOSCALE 2020; 12:22258-22267. [PMID: 33146198 DOI: 10.1039/d0nr04964f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One-atom-thick rare-earth/noble metal (RE-NM) compounds are attractive materials to investigate two-dimensional magnetism, since they are easy to synthesize into a common RE-NM2 structure with high crystal perfection. Here we perform a comparative study of the GdAu2, HoAu2, and YbAu2 monolayer compounds grown on Au(111). We find the same atomic lattice quality and moiré superlattice periodicity in the three cases, but different electronic properties and magnetism. The YbAu2 monolayer reveals the characteristic electronic signatures of a mixed-valence configuration in the Yb atom. In contrast, GdAu2 and HoAu2 show the trivalent character of the rare-earth and ferromagnetic transitions below 22 K. Yet, the GdAu2 monolayer has an in-plane magnetic easy-axis, versus the out-of-plane one in HoAu2. The electronic bands of the two trivalent compounds are very similar, while the divalent YbAu2 monolayer exhibits different band features. In the latter, a strong 4f-5d hybridization is manifested in neatly resolved avoided crossings near the Fermi level. First principles theory points to a residual presence of empty 4f states, explaining the fluctuating valence of Yb in the YbAu2 monolayer.
Collapse
|
|
5 |
6 |
10
|
Dettmann D, Sheverdyaeva PM, Hamzehpoor E, Franchi S, Galeotti G, Moras P, Ceccarelli C, Perepichka DF, Rosei F, Contini G. Electronic Band Engineering of Two-Dimensional Kagomé Polymers. ACS NANO 2024; 18:849-857. [PMID: 38147033 DOI: 10.1021/acsnano.3c09476] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Two-dimensional conjugated polymers (2DCPs) are an emerging class of materials that exhibit properties similar to graphene yet do not have the limitation of zero bandgap. On-surface synthesis provides exceptional control on the polymerization reaction, allowing tailoring properties by choosing suitable monomers. Heteroatom-substituted triangulene 2DCPs constitute a playing ground for such a design and are predicted to exhibit graphene-like band structures with high charge mobility and characteristic Dirac cones in conduction or valence states. However, measuring these properties experimentally is challenging and requires long-range-ordered polymers, preferably with an epitaxial relationship with the substrate. Here, we investigate the electronic properties of a mesoscale-ordered carbonyl-bridged triphenylamine 2DCP (P2TANGO) and demonstrate the presence of a Dirac cone by combining angle-resolved photoemission spectroscopy (ARPES) with density functional theory (DFT) calculations. Moreover, we measure the absolute energy position of the Dirac cone with respect to the vacuum level. We show that the bridging functionality of the triangulene (ether vs carbonyl) does not significantly perturb the band structure but strongly affects the positioning of the bands with respect to the Au(111) states and allows control of the ionization energy of the polymer. Our results provide proof of the controllable electronic properties of 2DCPs and bring us closer to their use in practical applications.
Collapse
|
|
1 |
5 |
11
|
Flammini R, Colonna S, Hogan C, Mahatha SK, Papagno M, Barla A, Sheverdyaeva PM, Moras P, Aliev ZS, Babanly MB, Chulkov EV, Carbone C, Ronci F. Evidence of β-antimonene at the Sb/Bi 2Se 3 interface. NANOTECHNOLOGY 2018; 29:065704. [PMID: 29320369 DOI: 10.1088/1361-6528/aaa2c4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a study of the interface between antimony and the prototypical topological insulator Bi2Se3. Scanning tunnelling microscopy measurements show the presence of ordered domains displaying a perfect lattice match with bismuth selenide. Density functional theory calculations of the most stable atomic configurations demonstrate that the ordered domains can be attributed to stacks of β-antimonene.
Collapse
|
|
7 |
5 |
12
|
Sheverdyaeva PM, Mahatha SK, Moras P, Petaccia L, Fratesi G, Onida G, Carbone C. Electronic States of Silicene Allotropes on Ag(111). ACS NANO 2017; 11:975-982. [PMID: 28032977 DOI: 10.1021/acsnano.6b07593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Silicene, a honeycomb lattice of silicon, presents a particular case of allotropism on Ag(111). Silicene forms multiple structures with alike in-plane geometry but different out-of-plane atomic buckling and registry to the substrate. Angle-resolved photoemission and first-principles calculations show that these silicene structures, with (4×4), (√13×√13)R13.9°, and (2√3×2√3)R30° lattice periodicity, display similar electronic bands despite the structural differences. In all cases the interaction with the substrate modifies the electronic states, which significantly differ from those of free-standing silicene. Complex photoemission patterns arise from surface umklapp processes, varying according to the periodicity of the silicene allotropes.
Collapse
|
|
8 |
3 |
13
|
Sheverdyaeva PM, Hogan C, Bihlmayer G, Fujii J, Vobornik I, Jugovac M, Kundu AK, Gardonio S, Benher ZR, Santo GD, Gonzalez S, Petaccia L, Carbone C, Moras P. Giant and Tunable Out-of-Plane Spin Polarization of Topological Antimonene. NANO LETTERS 2023; 23:6277-6283. [PMID: 37459226 PMCID: PMC10375579 DOI: 10.1021/acs.nanolett.3c00153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Topological insulators are bulk insulators with metallic and fully spin-polarized surface states displaying Dirac-like band dispersion. Due to spin-momentum locking, these topological surface states (TSSs) have a predominant in-plane spin polarization in the bulk fundamental gap. Here, we show by spin-resolved photoemission spectroscopy that the TSS of a topological insulator interfaced with an antimonene bilayer exhibits nearly full out-of-plane spin polarization within the substrate gap. We connect this phenomenon to a symmetry-protected band crossing of the spin-polarized surface states. The nearly full out-of-plane spin polarization of the TSS occurs along a continuous path in the energy-momentum space, and the spin polarization within the gap can be reversibly tuned from nearly full out-of-plane to nearly full in-plane by electron doping. These findings pave the way to advanced spintronics applications that exploit the giant out-of-plane spin polarization of TSSs.
Collapse
|
|
2 |
2 |
14
|
Sheverdyaeva PM, Mahatha SK, Ronci F, Colonna S, Moras P, Satta M, Flammini R. Signature of surface periodicity in the electronic structure of Si(1 1 1)-(7 × 7). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:215001. [PMID: 28362270 DOI: 10.1088/1361-648x/aa6a7b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The surface electronic structure of Si(1 1 1)-[Formula: see text] has been studied by angle-resolved photo electron spectroscopy. Replicas of the S 1 surface state are found in correspondence with several [Formula: see text] unit cells in the reciprocal space. This observation resolves in a direct way the long-standing dichotomy between the structural and electronic properties of the system previously discussed on the basis of the [Formula: see text] or [Formula: see text] R30° surface models.
Collapse
|
|
8 |
1 |
15
|
Moras P, Bihlmayer G, Vescovo E, Sheverdyaeva PM, Papagno M, Ferrari L, Carbone C. Spin-polarized confined states in Ag films on Fe(1 1 0). JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:495806. [PMID: 29091051 DOI: 10.1088/1361-648x/aa9760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Spin- and angle-resolved photoemission spectroscopy of thin Ag(1 1 1) films on ferromagnetic Fe(1 1 0) shows a series of spin-polarized peaks. These features derive from Ag sp-bands, which form quantum well states and resonances due to confinement by a spin-dependent interface potential barrier. The spin-up states are broader and located at higher binding energy than the corresponding spin-down states at [Formula: see text], although the differences attenuate near the Fermi level. The spin-down states display multiple gap openings, which interrupt their parabolic-like dispersion. First-principles calculations attribute these findings to the symmetry- and spin-selective hybridization of the Ag states with the exchange-split bands of the substrate.
Collapse
|
|
8 |
1 |
16
|
Pazniak H, Plugin IA, Sheverdyaeva PM, Rapenne L, Varezhnikov AS, Agresti A, Pescetelli S, Moras P, Kostin KB, Gorokhovsky AV, Ouisse T, Sysoev VV. Alcohol Vapor Sensor Based on Quasi-2D Nb 2O 5 Derived from Oxidized Nb 2CT z MXenes. SENSORS (BASEL, SWITZERLAND) 2023; 24:38. [PMID: 38202899 PMCID: PMC10780349 DOI: 10.3390/s24010038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024]
Abstract
MXenes are two-dimensional (2D) materials with a great potential for sensor applications due to their high aspect ratio and fully functionalized surface that can be tuned for specific gas adsorption. Here, we demonstrate that the Nb2CTz-based sensor exhibits high performance towards alcohol vapors at temperatures up to 300-350 °C, with the best sensitivity towards ethanol. We attribute the observed remarkable chemiresistive effect of this material to the formation of quasi-2D Nb2O5 sheets as the result of the oxidation of Nb-based MXenes. These findings are supported by synchrotron X-ray photoelectron spectroscopy studies together with X-ray diffraction and electron microscopy observations. For analyte selectivity, we employ a multisensor approach where the gas recognition is achieved by linear discriminant analysis of the vector response of the on-chip sensor array. The reported protocol demonstrates that MXene layers are efficient precursors for the derivation of 2D oxide architectures, which are suitable for developing gas sensors and sensor arrays.
Collapse
|
research-article |
2 |
1 |
17
|
Moras P, Sheverdyaeva PM, Carbone C, Topwal D, Ferrari L, Bihlmayer G, Ouazi S, Rusponi S, Lehnert A, Brune H. Electronic states of moiré modulated Cu films. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:335502. [PMID: 22813539 DOI: 10.1088/0953-8984/24/33/335502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We examined by low-energy electron diffraction and scanning tunneling microscopy the surface of thin Cu films on Pt(111). The Cu/Pt lattice mismatch induces a moiré modulation for films from 3 to about 10 ML thickness. We used angle-resolved photoemission spectroscopy to examine the effects of this structural modulation on the electronic states of the system. A series of hexagonal- and trigonal-like constant energy contours is found in the proximity of the Cu(111) zone boundaries. These electronic patterns are generated by Cu sp-quantum well state replicas, originating from multiple points of the reciprocal lattice associated with the moiré superstructure. Layer-dependent strain relaxation and hybridization with the substrate bands concur to determine the dispersion and energy position of the Cu Shockley surface state.
Collapse
|
|
13 |
1 |
18
|
Ogawa M, Gray A, Sheverdyaeva PM, Moras P, Hong H, Huang LC, Tang SJ, Kobayashi K, Carbone C, Chiang TC, Matsuda I. Controlling the topology of Fermi surfaces in metal nanofilms. PHYSICAL REVIEW LETTERS 2012; 109:026802. [PMID: 23030193 DOI: 10.1103/physrevlett.109.026802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Indexed: 06/01/2023]
Abstract
The properties of metal crystals are governed by the electrons of the highest occupied states at the Fermi level and determined by Fermi surfaces, the Fermi energy contours in momentum space. Topological regulation of the Fermi surface has been an important issue in synthesizing functional materials, which we found to be realized at room temperature in nanometer-thick films. Reducing the thickness of a metal thin film down to its electron wavelength scale induces the quantum size effect and the electronic system changes from three to two-dimensional, transforming the Fermi surface topology. Such an ultrathin film further changes its topology through one-dimensional (1D) structural deformation of the film when it is grown on a 1D substrate. In particular, when the interface has 1D metallic bands, the system is additionally stabilized by forming an electron energy gap by hybridization between 1D states of the film and substrate.
Collapse
|
|
13 |
|
19
|
Ogawa M, Sheverdyaeva PM, Moras P, Topwal D, Harasawa A, Kobayashi K, Carbone C, Matsuda I. Electronic structure study of ultrathin Ag(111) films modified by a Si(111) substrate and √3 × √3-Ag2Bi surface. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:115501. [PMID: 22353647 DOI: 10.1088/0953-8984/24/11/115501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Angle-resolved photoemission spectroscopy experiments show that the electronic structure of a Ag(111) film grown on Si(111) is markedly perturbed by the formation of a √3 × √3-Ag(2)Bi Rashba-type surface alloy. Four spin-split surface states, with different band dispersions and energy contours, intercept and hybridize selectively with the sp-derived quantum well states of the Ag layer. Detailed two-dimensional band mapping of the system was carried out and constant energy contours at different energies result in hexagonal-, star- and flower-like distortions of the quantum well states as a result of various interactions. Further wavy-like modulations of the electronic structure of the film are found to originate from umklapp reflections of the Ag film states according to the surface periodicity.
Collapse
|
|
13 |
|
20
|
Matetskiy AV, Milotti V, Sheverdyaeva PM, Moras P, Carbone C, Mihalyuk AN. Interplay between magnetic order and electronic band structure in ultrathin GdGe 2 metalloxene films. NANOSCALE 2023; 15:16080-16088. [PMID: 37750836 DOI: 10.1039/d3nr03398h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Dimensionality can strongly influence the magnetic structure of solid systems. Here, we predict theoretically and confirm experimentally that the antiferromagnetic (AFM) ground state of bulk gadolinium germanide metalloxene, which has a quasi-layered defective GdGe2 structure, is preserved in the ultrathin film limit. Ab initio calculations demonstrate that ultrathin GdGe2 films present in-plane intra-layer ferromagnetic coupling and AFM inter-layer coupling in the ground state. Angle-resolved photoemission spectroscopy finds the AFM-induced band splitting expected for the 2 and 3 GdGe2 trilayer (TL) films, which disappear above the Néel temperature. The comparative analysis of isostructural ultrathin DyGe2 and GdSi2 films confirms the magnetic origin of the observed band splitting. These findings are in contrast with the recent report of ferromagnetism in ultrathin metalloxene films, which we ascribe to the presence of uncompensated magnetic moments.
Collapse
|
|
2 |
|
21
|
Crepaldi A, Zhan RR, Moser S, Sheverdyaeva PM, Carbone C, Papagno M, Moras P, Baraldi A, Grioni M. Interplay between electronic and structural properties in the Pb/Ag(1 0 0) interface. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:455502. [PMID: 26490303 DOI: 10.1088/0953-8984/27/45/455502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report an investigation of the structural and electronic properties of a Pb monolayer (ML) grown on Ag(1 0 0), by combining x-ray photoelectron diffraction (XPD) and angle resolved photoelectron spectroscopy (ARPES). The Pb atoms are found to arrange in a pseudo-hexagonal adlayer commensurate to the underlying square Ag substrate, resulting in a coincidence cell with c([Formula: see text]) periodicity. The electronic structure of the Pb ML in proximity of the Fermi level consists in three p-derived bands, which show different degrees of hybridization with the substrate for their different orbital characters. In particular, we report that the p xy states disperse without forming energy gap, in contrast to previous ARPES studies of the Pb ML on different metallic substrates. We attribute the absence of energy gap to the commensurability between substrate and adlayer, resulting in a higher two-dimensionality of the Pb ML.
Collapse
|
|
10 |
|
22
|
Kamal S, Seo I, Bampoulis P, Jugovac M, Brondin CA, Menteş TO, Šarić Janković I, Matetskiy AV, Moras P, Sheverdyaeva PM, Michely T, Locatelli A, Gohda Y, Kralj M, Petrović M. Unidirectional Nano-modulated Binding and Electron Scattering in Epitaxial Borophene. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38041641 DOI: 10.1021/acsami.3c14884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
A complex interplay between the crystal structure and the electron behavior within borophene renders this material an intriguing 2D system, with many of its electronic properties still undiscovered. Experimental insight into those properties is additionally hampered by the limited capabilities of the established synthesis methods, which, in turn, inhibits the realization of potential borophene applications. In this multimethod study, photoemission spectroscopies and scanning probe techniques complemented by theoretical calculations have been used to investigate the electronic characteristics of a high-coverage, single-layer borophene on the Ir(111) substrate. Our results show that the binding of borophene to Ir(111) exhibits pronounced one-dimensional modulation and transforms borophene into a nanograting. The scattering of photoelectrons from this structural grating gives rise to the replication of the electronic bands. In addition, the binding modulation is reflected in the chemical reactivity of borophene and gives rise to its inhomogeneous aging effect. Such aging is easily reset by dissolving boron atoms in iridium at high temperature, followed by their reassembly into a fresh atomically thin borophene mesh. Besides proving electron-grating capabilities of the boron monolayer, our data provide comprehensive insight into the electronic properties of epitaxial borophene which is vital for further examination of other boron systems of reduced dimensionality.
Collapse
|
|
2 |
|
23
|
Sheverdyaeva PM, Hogan C, Sgarlata A, Fazi L, Fanfoni M, Persichetti L, Moras P, Balzarotti A. Electronic structure of the Ge/Si(1 0 5) hetero-interface: an ARPES and DFT study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:465502. [PMID: 30359332 DOI: 10.1088/1361-648x/aae66f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We present a joint experimental and theoretical study of the electronic properties of the rebonded-step reconstructed Ge/Si(1 0 5) surface which is the main strained face found on Ge/Si(0 0 1) quantum dots and is considered a prototypical model system for surface strain relaxation in heteroepitaxial growth. Using a vicinal surface as a model system for obtaining a stable single-domain film structure with large terraces and rebonded-step surface termination, we realized an extended and ordered Ge/Si planar hetero-junction suitable for direct study with angle-resolved photoemission spectroscopy. At the coverage of four Ge monolayers photoemission spectroscopy reveals the presence of 2D surface and film bands displaying energy-momentum dispersion compatible with the 5 × 4 periodicity of the system. The good agreement between experiment and first-principles electronic structure calculations confirms the validity of the rebonded-step structural model. The direct observation of surface features within 1 eV below the valence band maximum corroborates previously reported analysis of the electronic and optical behavior of the Ge/Si hetero-interface.
Collapse
|
|
7 |
|
24
|
Sheverdyaeva PM, Bihlmayer G, Modesti S, Feyer V, Jugovac M, Zamborlini G, Tusche C, Chen YJ, Tan XL, Hagiwara K, Petaccia L, Thakur S, Kundu AK, Carbone C, Moras P. Giant Rashba-splitting of one-dimensional metallic states in Bi dimer lines on InAs(100). NANOSCALE 2024; 16:15815-15823. [PMID: 39129530 DOI: 10.1039/d4nr01591f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bismuth produces different types of ordered superstructures on the InAs(100) surface, depending on the growth procedure and coverage. The (2 × 1) phase forms at completion of one Bi monolayer and consists of a uniformly oriented array of parallel lines of Bi dimers. Scanning tunneling and core level spectroscopies demonstrate its metallic character, in contrast with the semiconducting properties expected on the basis of the electron counting principle. The weak electronic coupling among neighboring lines gives rise to quasi one-dimensional Bi-derived bands with open contours at the Fermi level. Spin- and angle-resolved photoelectron spectroscopy reveals a giant Rashba splitting of these bands, in good agreement with ab initio electronic structure calculations. The very high density of the dimer lines, the metallic and quasi one-dimensional band dispersion and the Rashba-like spin texture make the Bi/InAs(100)-(2 × 1) phase an intriguing system, where novel transport regimes can be studied.
Collapse
|
|
1 |
|
25
|
Moras P, Sheverdyaeva PM, Pacilé D, Carbone C. Spectroscopic signatures of an ordered array of independent Ag heptamers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:305502. [PMID: 26174180 DOI: 10.1088/0953-8984/27/30/305502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A periodic network of Ag heptamers forms on the carburized W(1 1 0)-R(15 × 12) surface, upon deposition of sub-monolayer amounts of Ag. We investigate the electronic structure and dimensionality of this system by angle-resolved photoemission spectroscopy. The observation of very well-defined Ag 4d-levels confirms the highly ordered growth of size-selected Ag nano-particles on the W(1 1 0)-R(15 × 12) template. The absence of energy dispersion of these states indicates negligible coupling among the Ag heptamers, and points out the local character of the heptamer-substrate interaction. The system can be described as an array of Ag heptamers with fully confined Ag 4d-levels.
Collapse
|
|
10 |
|