1
|
Nag P, Sadani K, Mohapatra S, Mukherji S, Mukherji S. Evanescent Wave Optical Fiber Sensors Using Enzymatic Hydrolysis on Nanostructured Polyaniline for Detection of β-Lactam Antibiotics in Food and Environment. Anal Chem 2021; 93:2299-2308. [PMID: 33411532 DOI: 10.1021/acs.analchem.0c04169] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
β-Lactam antibiotics such as penicillins and cephalosporins are extensively used for human infection therapy. Consistent unintended exposure to these antibiotics via food and water is known to promote antibiotic-resistant bacterial pathogenesis with high morbidity and mortality in humans. An optical enzymatic biosensor for rapid and point-of-use detection of these antibiotics in food and water has been developed and tested. Enzymatic hydrolysis of β-lactams, on the electroactive polyaniline nanofibers, altered the polymeric backbone of the nanofibers, from emeraldine base form to emeraldine salt, which was measured as an increase in evanescent wave absorbance at 435 nm. The sensors were calibrated by spiking antibiotic-free milk with ceftazidime (as a model β-lactam analyte) in a linear range of 0.36-3600 nM (R2 = 0.98). The calibration was further validated for packaged milk, local cow milk, and buffalo milk. A similar calibration was devised for chicken meat samples in a linear range of 9-1800 nM (R2 = 0.982) and tap water in a linear range of 0.18-180 nM (R2 = 0.99). Interestingly, it was possible to use the same calibration for the determination of other β-lactam antibiotics (ampicillin, amoxicillin, and cefotaxime), which reflects the usefulness of the sensor for wide-scale deployment. The sensor performance was validated with a wastewater sample, from a wastewater treatment plant (WWTP), qualitatively analyzed by high-resolution liquid chromatography coupled with mass spectroscopy for detection of β-lactams. The sensor scheme developed and tested is of grassroot relevance as a quick solution for measurement of β-lactam residues in food and environment.
Collapse
|
|
4 |
21 |
2
|
Nag P, Shriti S, Das S. Microbiological strategies for enhancing biological nitrogen fixation in nonlegumes. J Appl Microbiol 2020; 129:186-198. [PMID: 31858682 DOI: 10.1111/jam.14557] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 01/17/2023]
Abstract
In an agro-ecosystem, industrially produced nitrogenous fertilizers are the principal sources of nitrogen for plant growth; unfortunately these also serve as the leading sources of pollution. Hence, it becomes imperative to find pollution-free methods of providing nitrogen to crop plants. A diverse group of free-living, plant associative and symbiotic prokaryotes are able to perform biological nitrogen fixation (BNF). BNF is a two component process involving the nitrogen fixing diazotrophs and the host plant. Symbiotic nitrogen fixation is most efficient as it can fix nitrogen inside the nodule formed on the roots of the plant; delivering nitrogen directly to the host. However, most of the important crop plants are nonleguminous and are unable to form symbiotic associations. In this context, the plant associative and endophytic diazotrophs assume importance. BNF in nonlegumes can be encouraged either through the transfer of BNF traits from legumes or by elevating the nitrogen fixing capacity of the associative and endophytic diazotrophs. In this review we discuss mainly the microbiological strategies which may be used in nonleguminous crops for enhancement of BNF.
Collapse
|
Review |
5 |
19 |
3
|
Nag P, Sadani K, Mukherji S. Optical Fiber Sensors for Rapid Screening of COVID-19. TRANSACTIONS OF THE INDIAN NATIONAL ACADEMY OF ENGINEERING : AN INTERNATIONAL JOURNAL OF ENGINEERING AND TECHNOLOGY 2020; 5:233-236. [PMID: 38624428 PMCID: PMC7303588 DOI: 10.1007/s41403-020-00128-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 04/14/2023]
Abstract
Rapid diagnosis of coronavirus disease COVID-19 is challenging in developing countries due to diverse clinical presentations and limited healthcare infrastructure. Biosensors hold immense prospects for diagnosis of the disease. Two approaches are proposed: the first involves measurement of host immune response and second, the detection of viruses or viral cell surface proteins using suitable bioreceptors. The article provides an overview of evanescent wave absorbance and localized surface plasmon resonance-based optic fiber platform for potential screening of COVID-19.
Collapse
|
research-article |
5 |
17 |
4
|
Agarwal S, Nag P, Sikora S, Prasad TL, Kumar S, Gupta RK. Fentanyl-augmented MRCP. ACTA ACUST UNITED AC 2006; 31:582-7. [PMID: 16465580 DOI: 10.1007/s00261-005-0155-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 06/29/2005] [Indexed: 12/24/2022]
Abstract
BACKGROUND Drugs such as secretin and morphine have been used to augment the visualization of magnetic resonance cholangiopancreatography (MRCP). This study investigated the effectiveness of intravenous administration of a synthetic opioid, fentanyl, in improving the MRCP image quality. METHODS Thirty consecutive patients with a provisional diagnosis of benign biliary and/or pancreatic disease underwent MRCP. Coronal single-shot fast spin-echo heavily T2-weighted dynamic MRCP images were generated before and at every minute for 10 min after intravenous administration of fentanyl citrate at a dose of 1.0 mug/kg. Pre- and postinjection images were compared and analyzed qualitatively and quantitatively. RESULTS Qualitatively, visualization of intrahepatic bile ducts, common bile duct, and main pancreatic duct improved after fentanyl injection in five (16%), 11 (37%), and 19 (63%) patients, respectively. The pancreatobiliary junction and common channel were visualized better after fentanyl injection in eight of the 18 patients (44%). Quantitatively, signal intensity and diameters of the intrahepatic ducts, common bile duct, and main pancreatic duct measured at corresponding points on pre- and postinjection images showed an increase above preinjection values in 28 (93%), 27 (90%), and 21 (70%) and in 18 (60%), 26 (86%), and 22 (73%), respectively, and these changes were highly significant at all sites (p < 0.001). CONCLUSIONS Intravenous administration of fentanyl before MRCP improves qualitative and quantitative visualization of the ductal system anatomy that may be of value in clinical diagnosis and management.
Collapse
|
Journal Article |
19 |
12 |
5
|
Godwin J, Hartman V, Nag P, Crews D. Androgenic regulation of steroid hormone receptor mRNAs in the brain of whiptail lizards. J Neuroendocrinol 2000; 12:599-606. [PMID: 10849204 DOI: 10.1046/j.1365-2826.2000.00513.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sex and species differences in androgenic regulation of steroid hormone receptor mRNAs were examined in the diencephalon of two species of whiptail lizards: Cnemidophorus inornatus is a sexual species and the direct evolutionary ancestor to Cnemidophorus uniparens, an all-female parthenogenetic species. Lizards were gonadectomized and treated with different doses of either aromatizable testosterone or nonaromatizable dihydrotestosterone. The relative abundances of androgen-, oestrogen-, and progesterone-receptor mRNAs were compared in various nuclei following in situ hybridization with homologous riboprobes. A diversity of patterns in androgenic regulation was observed, with effects differing according to brain region, the steroid-receptor mRNA being considered and, in some cases, between androgens. In the ancestral sexual species, intact males had lower androgen-receptor mRNA abundances than castrated, blank-implanted males in the medial preoptic area. Testosterone significantly decreased androgen-receptor mRNA abundance in the medial preoptic area of castrated males. Males had higher androgen-receptor mRNA levels in the preoptic area than females generally and neither the sexual or parthenogenetic females showed a decrease in androgen-receptor mRNA with androgen treatment. Both testosterone and dihydrotestosterone increased oestrogen-receptor mRNA abundance in the ventromedial hypothalamus of C. inornatus, but no sex differences in this effect were observed. Gonadectomy decreased, whereas androgen treatment increased, progesterone-receptor mRNA abundance in the ventromedial hypothalamus. There was a sex difference in this response to androgen in the sexual species, with males having greater amounts than females in this brain area. The parthenogenetic species exhibited a similar pattern to females of the sexual species, but the levels were higher overall, possibly because Cnemidophorus uniparens is triploid. The periventricular preoptic area showed a different pattern, with testosterone treatment increasing progesterone-receptor mRNA abundance in both sexes of the sexual species and in the parthenogenetic species, while dihydrotestosterone did not. The diversity of patterns in androgen effects indicates that gonadal sex, aromatization of androgen, and perhaps gene dosage all influence the expression of steroid-receptor mRNAs in the lizard brain.
Collapse
|
|
25 |
9 |
6
|
Ragesh Kumar TP, Nag P, Ranković M, Luxford TFM, Kočišek J, Mašín Z, Fedor J. Distant Symmetry Control in Electron-Induced Bond Cleavage. J Phys Chem Lett 2022; 13:11136-11142. [PMID: 36441975 DOI: 10.1021/acs.jpclett.2c03096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We experimentally show that N-H bond cleavage in the pyrrole molecule following resonant electron attachment is allowed and controlled by the motion of the atoms which are not dissociating, namely, of the carbon-attached hydrogen atoms. We use this fact to steer the efficiency of this bond cleavage. In order to interpret the experimental findings, we have developed a method for locating all resonant and virtual states of an electron-molecule system in the complex plane, based on all-electron R-matrix scattering calculations. Mapping these as a function of molecular geometry allows us to separate two contributing dissociation mechanisms: a π* resonance formation inducing strong bending deformations and a nonresonant σ* mechanism originating in a virtual state. The coupling between the two mechanisms is enabled by the out-of-plane motion of the C-H bonds, and we show that it must happen on an ultrafast (few fs) time scale.
Collapse
|
|
3 |
8 |
7
|
Ranković M, Kumar T P R, Nag P, Kočišek J, Fedor J. Temporary anions of the dielectric gas C 3F 7CN and their decay channels. J Chem Phys 2020; 152:244304. [PMID: 32610971 DOI: 10.1063/5.0008897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We probe the transient anion states (resonances) in the dielectric gas C4F7N by the electron energy loss spectroscopy and the dissociative electron attachment spectroscopy. The vibrationally inelastic electron scattering leads to two excitation types. The first is the excitation of specific vibrational modes that are assigned with the help of an infrared spectrum of this molecule and quantum chemistry calculations. In the second type of vibrational excitation, the excess energy is randomized via internal vibrational redistribution in the temporary anion, and the electrons are emitted statistically. The electron attachment proceeds in three different regimes. The first is the formation of the parent C4F7N- anion at energies close to 0 eV. The second is a statistical evaporation of the F-atom, leading to the defluorinated anion C4F6N-. Finally, the third is dissociative electron attachment proceeding via the formation of several resonances and leading to a number of fragments. The present data explain the puzzling recent results of the pulsed-Townsend experiments with this gas.
Collapse
|
|
5 |
6 |
8
|
Nag P, Inubushi T, Sasaki JI, Murotani T, Kusano S, Nakanishi Y, Shiraishi Y, Kurosaka H, Imazato S, Yamaguchi Y, Yamashiro T. Tmem2 Deficiency Leads to Enamel Hypoplasia and Soft Enamel in Mouse. J Dent Res 2023; 102:1162-1171. [PMID: 37449307 DOI: 10.1177/00220345231182355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Teeth consist of 3 mineralized tissues: enamel, dentin, and cementum. Tooth malformation, the most common craniofacial anomaly, arises from complex genetic and environmental factors affecting enamel structure, size, shape, and tooth eruption. Hyaluronic acid (HA), a primary extracellular matrix component, contributes to structural and physiological functions in periodontal tissue. Transmembrane protein 2 (TMEM2), a novel cell surface hyaluronidase, has been shown to play a critical role during embryogenesis. In this study, we demonstrate Tmem2 messenger RNA expression in inner enamel epithelium and presecretory, secretory, and mature ameloblasts. Tmem2 knock-in reporter mice reveal TMEM2 protein localization at the apical and basal ends of secretory ameloblasts. Micro-computed tomography analysis of epithelial-specific Tmem2 conditional knockout (Tmem2-CKO) mice shows a significant reduction in enamel layer thickness and severe enamel deficiency. Enamel matrix protein expression was remarkably downregulated in Tmem2-CKO mice. Scanning electron microscopy of enamel from Tmem2-CKO mice revealed an irregular enamel prism structure, while the microhardness and density of enamel were significantly reduced, indicating impaired ameloblast differentiation and enamel matrix mineralization. Histological evaluation indicated weak adhesion between cells and the basement membrane in Tmem2-CKO mice. The reduced and irregular expressions of vinculin and integrin β1 suggest that Tmem2 deficiency attenuated focal adhesion formation. In addition, abnormal HA accumulation in the ameloblast layer and weak claudin 1 immunoreactivity in Tmem2-CKO mice indicate impaired tight junction gate function. Irregular actin filament assembly was also observed at the apical and basal ends of secretory ameloblasts. Last, we demonstrated that Tmem2-deficient mHAT9d mouse ameloblasts exhibit defective adhesion to HA-containing substrates in vitro. Collectively, our data highlight the importance of TMEM2 in adhesion to HA-rich extracellular matrix, cell-to-cell adhesion, ameloblast differentiation, and enamel matrix mineralization.
Collapse
|
|
2 |
3 |
9
|
Nag P, Gurjar OP, Bhandari V, Gupta KL, Bagdare P, Goyal H. Intraluminal brachytherapy boost following external beam radiotherapy with concurrent chemotherapy of oesophagus carcinoma: Results of a prospective observational study. Cancer Radiother 2018; 22:163-166. [PMID: 29615371 DOI: 10.1016/j.canrad.2017.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/19/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE The main objective of our study is to evaluate response and toxicity profile in patients receiving external beam radiotherapy with concurrent chemotherapy followed by intraluminal brachytherapy boost for a carcinoma of the oesophagus. MATERIAL AND METHODS Twenty patients with biopsy-proven carcinoma of the oesophagus received external beam radiotherapy (50Gy in 25 fractions) with concurrent chemotherapy (cisplatin: 40mg/m2). After a gap of two to three weeks, intraluminal brachytherapy (10Gy in two fractions each 1 week apart by a high dose rate 60Co source) was given. Response was evaluated at 1 month and at 1 year of completion of treatment. In addition, acute and chronic toxicity was evaluated at 1 month and 6 months of treatment. RESULTS Complete response were seen in 80% of patients and partial response in 20% at 1 month. Moreover, there were 65% complete response, 10% local recurrences, 15% patients showed local control with distant metastasis and 10% patients died at 1 year. Grade 1, grade 2 and grade 3 oesophagitis were seen in 10%, 70% and 20% of patients respectively. Stricture was seen in 40% of patients and fistula in 10% of patients. There was no spinal cord, cardiac and nephrotoxicity found. CONCLUSIONS With the concept that high tumoricidal dose for adequate tumor control achieved by intraluminal brachytherapy as a mean of dose escalation, while sparing surrounding normal tissue and potentially improving therapeutic ratio, external beam radiotherapy followed by intraluminal brachytherapy could be a better choice for oesophagus carcinoma.
Collapse
|
Observational Study |
7 |
2 |
10
|
Sadani K, Nag P, Pisharody L, Thian XY, Bajaj G, Natu G, Mukherji S, Mukherji S. Polyphenol stabilized copper nanoparticle formulations for rapid disinfection of bacteria and virus on diverse surfaces. NANOTECHNOLOGY 2021; 33:035701. [PMID: 34633302 DOI: 10.1088/1361-6528/ac2e77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Rapid and sustained disinfection of surfaces is necessary to check the spread of pathogenic microbes. The current study proposes a method of synthesis and use of copper nanoparticles (CuNPs) for contact disinfection of pathogenic microorganisms. Polyphenol stabilized CuNPs were synthesized by successive reductive disassembly and reassembly of copper phenolic complexes. Morphological and compositional characterization by transmission electron microscope (TEM), selected area diffraction and electron energy loss spectroscopy revealed monodispersed spherical (ϕ5-8 nm) CuNPs with coexisting Cu, Cu(I) and Cu (II) phases. Various commercial grade porous and non-porous substrates, such as, glass, stainless steel, cloth, plastic and silk were coated with the nanoparticles. Complete disinfection of 107copies of surrogate enveloped and non-enveloped viruses: bacteriophage MS2, SUSP2, phi6; and gram negative as well as gram positive bacteria:Escherichia coliandStaphylococcus aureuswas achieved on most substrates within minutes. Structural cell damage was further analytically confirmed by TEM. The formulation was well retained on woven cloth surfaces even after repeated washing, thereby revealing its promising potential for use in biosafe clothing. In the face of the current pandemic, the nanomaterials developed are also of commercial utility as an eco-friendly, mass producible alternative to bleach and alcohol based public space sanitizers used today.
Collapse
|
|
4 |
1 |
11
|
Nag P. The role of women in internal migration in Zambia. POPULATION GEOGRAPHY : A JOURNAL OF THE ASSOCIATION OF POPULATION GEOGRAPHERS OF INDIA 1983; 5:60-9. [PMID: 12179101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
|
|
42 |
|
12
|
Nag P, Ranković M, Polášek M, Čurík R, Slaughter DS, Fedor J. Contrasting Dynamics in Isoelectronic Anions Formed by Electron Attachment. J Phys Chem Lett 2024; 15:895-902. [PMID: 38241169 PMCID: PMC10839900 DOI: 10.1021/acs.jpclett.3c03460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Cyanogen NCCN and cyanoacetylene HCCCN are isoelectronic molecules, and as such, they have many similar properties. We focus on the bond cleavage in these induced by the dissociative electron attachment. In both molecules, resonant electron attachment produces CN- with very similar energy dependence. We investigate the very different dissociation dynamics, in each of the two molecules, revealed by velocity map imaging of this common fragment. Different dynamics are manifested both in the excess energy partitioning and in the angular distributions of fragments. Based on the comparison with electron energy loss spectra, which provide information about possible parent states of the resonances (both optically allowed and forbidden excited states of the neutral target), we ascribe the observed effect to the distortion of the nuclear frame during the formation of core-excited resonance in cyanoacetylene. The proposed mechanism also explains a puzzling difference in the magnitude of the CN- cross section in the two molecules which has been so far unexplained.
Collapse
|
rapid-communication |
1 |
|
13
|
Kini V, C S S, Mondal D, Sundarabal N, Nag P, Sadani K. Recent advances in electrochemical sensing and remediation technologies for ciprofloxacin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2210-2237. [PMID: 39808260 PMCID: PMC11802654 DOI: 10.1007/s11356-024-35852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
Ciprofloxacin (CIP) is an extensively used broad-spectrum, fluoroquinolone antibiotic used for treating diverse bacterial infections. Effluent treatment plants (ETPs) worldwide lack technologies to detect or remediate antibiotics. CIP reaches the aquatic phase primarily due to inappropriate disposal practices, lack of point-of-use sensing, and preloaded activated charcoal filter at ETPs. The co-existence of bacteria and CIP in such aqueous pools has promoted fluoroquinolone resistance in bacteria and should be minimized. The worldwide accepted standard detection methodologies for the detection of CIP are high-performance liquid chromatography and mass spectrometry, which are lab-based, require state-of-the-art equipment, and are expensive. Hence, it is difficult to integrate them for on-site monitoring. Further, the current remediation technologies like conventional sludge-treatment techniques fail to remove antibiotics such as CIP. Several point-of-use technologies for the detection of CIP are being investigated. These typically involve the development of electrochemical sensors where substrates, modifiers, biorecognition elements, and their chemistries are designed and optimized to enable robust, point-of-use detection of CIP. Similarly, remediation techniques like adsorption, membrane filtration, ion exchange, photocatalysis, ozonation, oxidation by Fenton's reagent, and bioremediation are explored, but their onsite use is limited. The use of these sensing and remediation technologies in tandem is possibly the only way the issues related to antimicrobial resistance may be effectively tackled. This article provides a focused critical review on the recent advances in the development of such technologies, laying out the prospects and perspectives of their synergistic use to curb the menace of AMR and preserve antibiotics.
Collapse
|
Review |
1 |
|
14
|
Nag P, Sadani K, Pisharody L, Thian XY, Ratnakar TS, Ansari A, Mukherji S, Mukherji S. Essential oil mediated synthesis and application of highly stable copper nanoparticles as coatings on textiles and surfaces for rapid and sustained disinfection of microorganisms. NANOTECHNOLOGY 2024; 35:345602. [PMID: 38788697 DOI: 10.1088/1361-6528/ad501b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
Rampant pathogenesis induced by communicable microbes has necessitated development of technologies for rapid and sustained disinfection of surfaces. Copper nanoparticles (CuNPs) have been widely reported for their antimicrobial properties. However, nanostructured copper is prone to oxidative dissolution in the oil phase limiting its sustained use on surfaces and coatings. The current study reports a systematic investigation of a simple synthesis protocol using fatty acid stabilizers (particularly essential oils) for synthesis of copper nanoparticles in the oil phase. Of the various formulations synthesized, rosemary oil stabilized copper nanoparticles (RMO CuNPs) were noted to have the best inactivation kinetics and were also most stable. Upon morphological characterization by TEM and EELS, these were found to be monodispersed (φ5-8 nm) with copper coexisting in all three oxidation states on the surface of the nanoparticles. The nanoparticles were drop cast on woven fabric of around 500 threads per inch and exposed to gram positive bacteria (Staphylococcus aureus), gram negative bacteria (Escherichia coliandPseudomonas aeruginosa), enveloped RNA virus (phi6), non-enveloped RNA virus (MS2) and non-enveloped DNA virus (T4) to encompass the commonly encountered groups of pathogens. It was possible to completely disinfect 107copies of all microorganisms within 40 min of exposure. Further, this formulation was incorporated with polyurethane as thinners and used to coat non-woven fabrics. These also exhibited antimicrobial properties. Sustained disinfection with less than 9% cumulative copper loss for upto 14 washes with soap water was observed while the antioxidant activity was also preserved. Based on the studies conducted, RMO CuNP in oil phase was found to have excellent potential of integration on surface coatings, paints and polymers for rapid and sustained disinfection of microbes on surfaces.
Collapse
|
|
1 |
|
15
|
Shenoy AG, Sadani K, Nag P. Optic fiber sensors with tunable sensitivities for rapid detection of amatoxins in water and mushroom derived agro-products. Food Res Int 2025; 203:115885. [PMID: 40022398 DOI: 10.1016/j.foodres.2025.115885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
Amatoxin is a toxin predominantly found in Amanita phalloides, popularly called 'the death cap mushroom'. An optical fiber-based biosensor has been developed for the detection of amatoxin in water and mushroom derived agro-products. In the first configuration, U-bend optical fibers modified with spherical gold nanoparticles (SGnP) were used for localised surface plasmon resonance (LSPR) based immunosensing of amatoxin in deionised water, and in mushroom based agro-products. The sensor was calibrated for a range of 0.5-200 µg/mL in water, 1-200 µg/mL in mushroom, and 0.1-100 µg/mL in mushroom wine with a detection limit of 0.5,1, and 0.1 µg/mL respectively. To further tune the sensitivities, a gold-on-gold approach was devised where gold nanorods (GnR) were immobilized on SGnP modified fibers to attain higher plasmonic field and penetration depth. These sensors were calibrated for a range of 0.001-10 µg/mL in water, and 0.01-10 µg/mL in mushroom and was able to detect the toxin within 30 min. The sensor performance was validated with real mushroom samples characterized to inherently contain amatoxin by HR-LCMS; and a coherent value of 1.41 ± 0.27 µg/mL was obtained by sensors developed with both approaches. Recovery studies with mushroom tinctures and mushroom samples indicated an overall error of <10 % with respect to the standard calibrations. Thus, a technique to tailor the sensitivities of optic fiber based LSPR immunosensors to achieve sensing in relevant ranges is demonstrated, which will be pertinent in screening of amatoxins in water, and mushroom derived agro-products, to decide on its fitness for consumption.
Collapse
|
|
1 |
|
16
|
Tadi SR, Shenoy AG, Bharadwaj A, C S S, Mukhopadhyay C, Sadani K, Nag P. Recent advances in the design of SERS substrates and sensing systems for (bio)sensing applications: Systems from single cell to single molecule detection. F1000Res 2025; 13:670. [PMID: 40255478 PMCID: PMC12009482 DOI: 10.12688/f1000research.149263.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/22/2025] Open
Abstract
The Raman effect originates from spontaneous inelastic scattering of photons by matter. These photons provide a characteristic fingerprint of this matter, and are extensively utilized for chemical and biological sensing. The inherently lower generation of these Raman scattered photons, do not hold potential for their direct use in sensing applications. Surface enhanced Raman spectroscopy (SERS) overcomes the low sensitivity associated with Raman spectroscopy and assists the sensing of diverse analytes, including ions, small molecules, inorganics, organics, radionucleotides, and cells. Plasmonic nanoparticles exhibit localized surface plasmon resonance (LSPR) and when they are closely spaced, they create hotspots where the electromagnetic field is significantly enhanced. This amplifies the Raman signal and may offer up to a 10 14-fold SERS signal enhancement. The development of SERS active substrates requires further consideration and optimization of several critical features such as surface periodicity, hotspot density, mitigation of sample or surface autofluorescence, tuning of surface hydrophilicities, use of specific (bio) recognition elements with suitable linkers and bioconjugation chemistries, and use of appropriate optics to obtain relevant sensing outcomes in terms of sensitivity, cross-sensitivity, limit of detection, signal-to-noise ratio (SNR), stability, shelf-life, and disposability. This article comprehensively reviews the recent advancements on the use of disposable materials such as commercial grades of paper, textiles, glasses, polymers, and some specific substrates such as blue-ray digital versatile discs (DVDs) for use as SERS-active substrates for point-of-use (POU) sensing applications. The advancements in these technologies have been reviewed and critiqued for analyte detection in resource-limited settings, highlighting the prospects of applications ranging from single-molecule to single-cell detection. We conclude by highlighting the prospects and possible avenues for developing viable field deployable sensors holding immense potential in environmental monitoring, food safety and biomedical diagnostics.
Collapse
|
Review |
1 |
|
17
|
Nag P, Paul AK, Mukherji S. Effects of mercury, copper & zinc on the growth, cell division, GA-induced alpha-amylase synthesis & membrane permeability of plant tissues. INDIAN JOURNAL OF EXPERIMENTAL BIOLOGY 1980; 18:822-7. [PMID: 6161890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
|
45 |
|
18
|
Nag P. Population redistribution: aspects of Zambian national development plans and projects. GEOGRAPHICAL REVIEW OF INDIA 1981; 43:41-9. [PMID: 12279664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
|
|
44 |
|
19
|
C S S, Kini V, Singh M, Mukhopadhyay C, Nag P, Sadani K. Disposable electrochemical biosensors for the detection of bacteria in the light of antimicrobial resistance. Biotechnol Bioeng 2024; 121:2549-2584. [PMID: 38822742 DOI: 10.1002/bit.28735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/30/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
Persistent and inappropriate use of antibiotics is causing rife antimicrobial resistance (AMR) worldwide. Common bacterial infections are thus becoming increasingly difficult to treat without the use of last resort antibiotics. This has necessitated a situation where it is imperative to confirm the infection to be bacterial, before treating it with antimicrobial speculatively. Conventional methods of bacteria detection are either culture based which take anywhere between 24 and 96 hor require sophisticated molecular analysis equipment with libraries and trained operators. These are difficult propositions for resource limited community healthcare setups of developing or less developed countries. Customized, inexpensive, point-of-care (PoC) biosensors are thus being researched and developed for rapid detection of bacterial pathogens. The development and optimization of disposable sensor substrates is the first and crucial step in development of such PoC systems. The substrates should facilitate easy charge transfer, a high surface to volume ratio, be tailorable by the various bio-conjugation chemistries, preserve the integrity of the biorecognition element, yet be inexpensive. Such sensor substrates thus need to be thoroughly investigated. Further, if such systems were made disposable, they would attain immunity to biofouling. This article discusses a few potential disposable electrochemical sensor substrates deployed for detection of bacteria for environmental and healthcare applications. The technologies have significant potential in helping reduce bacterial infections and checking AMR. This could help save lives of people succumbing to bacterial infections, as well as improve the overall quality of lives of people in low- and middle-income countries.
Collapse
|
Review |
1 |
|
20
|
Nag P. Contributions of the IGU and ICA commissions in population studies. POPULATION GEOGRAPHY : A JOURNAL OF THE ASSOCIATION OF POPULATION GEOGRAPHERS OF INDIA 1989; 11:86-96. [PMID: 12179041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
|
36 |
|
21
|
KHAN M, Nag P, Giuliani K, Wang X, Grivei A, Hoy W, Healy H, Diwan V, Gobe G, Kassianos A. POS-377 BAICALEIN ATTENUATES ADENINE-INDUCED FERROPTOSIS IN HUMAN KIDNEY PRIMARY PROXIMAL TUBULAR EPITHELIAL CELLS (PTEC) VIA MAINTENANCE OF HEME OXYGENASE-1 EXPRESSION. Kidney Int Rep 2021. [DOI: 10.1016/j.ekir.2021.03.395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
|
4 |
|