1
|
Hatzistergos KE, Quevedo H, Oskouei BN, Hu Q, Feigenbaum GS, Margitich IS, Mazhari R, Boyle AJ, Zambrano JP, Rodriguez JE, Dulce R, Pattany PM, Valdes D, Revilla C, Heldman AW, McNiece I, Hare JM. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res 2010; 107:913-22. [PMID: 20671238 DOI: 10.1161/circresaha.110.222703] [Citation(s) in RCA: 538] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE The regenerative potential of the heart is insufficient to fully restore functioning myocardium after injury, motivating the quest for a cell-based replacement strategy. Bone marrow-derived mesenchymal stem cells (MSCs) have the capacity for cardiac repair that appears to exceed their capacity for differentiation into cardiac myocytes. OBJECTIVE Here, we test the hypothesis that bone marrow derived MSCs stimulate the proliferation and differentiation of endogenous cardiac stem cells (CSCs) as part of their regenerative repertoire. METHODS AND RESULTS Female Yorkshire pigs (n=31) underwent experimental myocardial infarction (MI), and 3 days later, received transendocardial injections of allogeneic male bone marrow-derived MSCs, MSC concentrated conditioned medium (CCM), or placebo (Plasmalyte). A no-injection control group was also studied. MSCs engrafted and differentiated into cardiomyocytes and vascular structures. In addition, endogenous c-kit(+) CSCs increased 20-fold in MSC-treated animals versus controls (P<0.001), there was a 6-fold increase in GATA-4(+) CSCs in MSC versus control (P<0.001), and mitotic myocytes increased 4-fold (P=0.005). Porcine endomyocardial biopsies were harvested and plated as organotypic cultures in the presence or absence of MSC feeder layers. In vitro, MSCs stimulated c-kit(+) CSCs proliferation into enriched populations of adult cardioblasts that expressed Nkx2-5 and troponin I. CONCLUSIONS MSCs stimulate host CSCs, a new mechanism of action underlying successful cell-based therapeutics.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
538 |
2
|
Heldman AW, DiFede DL, Fishman JE, Zambrano JP, Trachtenberg BH, Karantalis V, Mushtaq M, Williams AR, Suncion VY, McNiece IK, Ghersin E, Soto V, Lopera G, Miki R, Willens H, Hendel R, Mitrani R, Pattany P, Feigenbaum G, Oskouei B, Byrnes J, Lowery MH, Sierra J, Pujol MV, Delgado C, Gonzalez PJ, Rodriguez JE, Bagno LL, Rouy D, Altman P, Foo CWP, da Silva J, Anderson E, Schwarz R, Mendizabal A, Hare JM. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: the TAC-HFT randomized trial. JAMA 2014; 311:62-73. [PMID: 24247587 PMCID: PMC4111133 DOI: 10.1001/jama.2013.282909] [Citation(s) in RCA: 414] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IMPORTANCE Whether culture-expanded mesenchymal stem cells or whole bone marrow mononuclear cells are safe and effective in chronic ischemic cardiomyopathy is controversial. OBJECTIVE To demonstrate the safety of transendocardial stem cell injection with autologous mesenchymal stem cells (MSCs) and bone marrow mononuclear cells (BMCs) in patients with ischemic cardiomyopathy. DESIGN, SETTING, AND PATIENTS A phase 1 and 2 randomized, blinded, placebo-controlled study involving 65 patients with ischemic cardiomyopathy and left ventricular (LV) ejection fraction less than 50% (September 1, 2009-July 12, 2013). The study compared injection of MSCs (n=19) with placebo (n = 11) and BMCs (n = 19) with placebo (n = 10), with 1 year of follow-up. INTERVENTIONS Injections in 10 LV sites with an infusion catheter. MAIN OUTCOMES AND MEASURES Treatment-emergent 30-day serious adverse event rate defined as a composite of death, myocardial infarction, stroke, hospitalization for worsening heart failure, perforation, tamponade, or sustained ventricular arrhythmias. RESULTS No patient had a treatment-emergent serious adverse events at day 30. The 1-year incidence of serious adverse events was 31.6% (95% CI, 12.6% to 56.6%) for MSCs, 31.6% (95% CI, 12.6%-56.6%) for BMCs, and 38.1% (95% CI, 18.1%-61.6%) for placebo. Over 1 year, the Minnesota Living With Heart Failure score improved with MSCs (-6.3; 95% CI, -15.0 to 2.4; repeated measures of variance, P=.02) and with BMCs (-8.2; 95% CI, -17.4 to 0.97; P=.005) but not with placebo (0.4; 95% CI, -9.45 to 10.25; P=.38). The 6-minute walk distance increased with MSCs only (repeated measures model, P = .03). Infarct size as a percentage of LV mass was reduced by MSCs (-18.9%; 95% CI, -30.4 to -7.4; within-group, P = .004) but not by BMCs (-7.0%; 95% CI, -15.7% to 1.7%; within-group, P = .11) or placebo (-5.2%; 95% CI, -16.8% to 6.5%; within-group, P = .36). Regional myocardial function as peak Eulerian circumferential strain at the site of injection improved with MSCs (-4.9; 95% CI, -13.3 to 3.5; within-group repeated measures, P = .03) but not BMCs (-2.1; 95% CI, -5.5 to 1.3; P = .21) or placebo (-0.03; 95% CI, -1.9 to 1.9; P = .14). Left ventricular chamber volume and ejection fraction did not change. CONCLUSIONS AND RELEVANCE Transendocardial stem cell injection with MSCs or BMCs appeared to be safe for patients with chronic ischemic cardiomyopathy and LV dysfunction. Although the sample size and multiple comparisons preclude a definitive statement about safety and clinical effect, these results provide the basis for larger studies to provide definitive evidence about safety and to assess efficacy of this new therapeutic approach. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00768066.
Collapse
|
Clinical Trial, Phase I |
11 |
414 |
3
|
Karantalis V, DiFede DL, Gerstenblith G, Pham S, Symes J, Zambrano JP, Fishman J, Pattany P, McNiece I, Conte J, Schulman S, Wu K, Shah A, Breton E, Davis-Sproul J, Schwarz R, Feigenbaum G, Mushtaq M, Suncion VY, Lardo AC, Borrello I, Mendizabal A, Karas TZ, Byrnes J, Lowery M, Heldman AW, Hare JM. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery (PROMETHEUS) trial. Circ Res 2014; 114:1302-10. [PMID: 24565698 DOI: 10.1161/circresaha.114.303180] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Although accumulating data support the efficacy of intramyocardial cell-based therapy to improve left ventricular (LV) function in patients with chronic ischemic cardiomyopathy undergoing CABG, the underlying mechanism and impact of cell injection site remain controversial. Mesenchymal stem cells (MSCs) improve LV structure and function through several effects including reducing fibrosis, neoangiogenesis, and neomyogenesis. OBJECTIVE To test the hypothesis that the impact on cardiac structure and function after intramyocardial injections of autologous MSCs results from a concordance of prorecovery phenotypic effects. METHODS AND RESULTS Six patients were injected with autologous MSCs into akinetic/hypokinetic myocardial territories not receiving bypass graft for clinical reasons. MRI was used to measure scar, perfusion, wall thickness, and contractility at baseline, at 3, 6, and 18 months and to compare structural and functional recovery in regions that received MSC injections alone, revascularization alone, or neither. A composite score of MRI variables was used to assess concordance of antifibrotic effects, perfusion, and contraction at different regions. After 18 months, subjects receiving MSCs exhibited increased LV ejection fraction (+9.4 ± 1.7%, P=0.0002) and decreased scar mass (-47.5 ± 8.1%; P<0.0001) compared with baseline. MSC-injected segments had concordant reduction in scar size, perfusion, and contractile improvement (concordant score: 2.93 ± 0.07), whereas revascularized (0.5 ± 0.21) and nontreated segments (-0.07 ± 0.34) demonstrated nonconcordant changes (P<0.0001 versus injected segments). CONCLUSIONS Intramyocardial injection of autologous MSCs into akinetic yet nonrevascularized segments produces comprehensive regional functional restitution, which in turn drives improvement in global LV function. These findings, although inconclusive because of lack of placebo group, have important therapeutic and mechanistic hypothesis-generating implications. CLINICAL TRIAL REGISTRATION URL http://clinicaltrials.gov/show/NCT00587990. Unique identifier: NCT00587990.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
264 |
4
|
Hare JM, DiFede DL, Rieger AC, Florea V, Landin AM, El-Khorazaty J, Khan A, Mushtaq M, Lowery MH, Byrnes JJ, Hendel RC, Cohen MG, Alfonso CE, Valasaki K, Pujol MV, Golpanian S, Ghersin E, Fishman JE, Pattany P, Gomes SA, Delgado C, Miki R, Abuzeid F, Vidro-Casiano M, Premer C, Medina A, Porras V, Hatzistergos KE, Anderson E, Mendizabal A, Mitrani R, Heldman AW. Randomized Comparison of Allogeneic Versus Autologous Mesenchymal Stem Cells for Nonischemic Dilated Cardiomyopathy: POSEIDON-DCM Trial. J Am Coll Cardiol 2016; 69:526-537. [PMID: 27856208 DOI: 10.1016/j.jacc.2016.11.009] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although human mesenchymal stem cells (hMSCs) have been tested in ischemic cardiomyopathy, few studies exist in chronic nonischemic dilated cardiomyopathy (NIDCM). OBJECTIVES The authors conducted a randomized comparison of safety and efficacy of autologous (auto) versus allogeneic (allo) bone marrow-derived hMSCs in NIDCM. METHODS Thirty-seven patients were randomized to either allo- or auto-hMSCs in a 1:1 ratio. Patients were recruited between December 2011 and July 2015 at the University of Miami Hospital. Patients received hMSCs (100 million) by transendocardial stem cell injection in 10 left ventricular sites. Treated patients were evaluated at baseline, 30 days, and 3-, 6-, and 12-months for safety (serious adverse events [SAE]), and efficacy endpoints: ejection fraction, Minnesota Living with Heart Failure Questionnaire, 6-min walk test, major adverse cardiac events, and immune biomarkers. RESULTS There were no 30-day treatment-emergent SAEs. Twelve-month SAE incidence was 28.2% with allo-hMSCs versus 63.5% with auto-hMSCs (p = 0.1004 for the comparison). One allo-hMSC patient developed an elevated (>80) donor-specific calculated panel reactive antibody level. The ejection fraction increased in allo-hMSC patients by 8.0 percentage points (p = 0.004) compared with 5.4 with auto-hMSCs (p = 0.116; allo vs. auto p = 0.4887). The 6-min walk test increased with allo-hMSCs by 37.0 m (p = 0.04), but not auto-hMSCs at 7.3 m (p = 0.71; auto vs. allo p = 0.0168). MLHFQ score decreased in allo-hMSC (p = 0.0022) and auto-hMSC patients (p = 0.463; auto vs. allo p = 0.172). The major adverse cardiac event rate was lower, too, in the allo group (p = 0.0186 vs. auto). Tumor necrosis factor-α decreased (p = 0.0001 for each), to a greater extent with allo-hMSCs versus auto-hMSCs at 6 months (p = 0.05). CONCLUSIONS These findings demonstrated safety and clinically meaningful efficacy of allo-hMSC versus auto-hMSC in NIDCM patients. Pivotal trials of allo-hMSCs are warranted based on these results. (Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis in Dilated Cardiomyopathy [PoseidonDCM]; NCT01392625).
Collapse
|
Randomized Controlled Trial |
9 |
249 |
5
|
Williams AR, Trachtenberg B, Velazquez DL, McNiece I, Altman P, Rouy D, Mendizabal AM, Pattany PM, Lopera GA, Fishman J, Zambrano JP, Heldman AW, Hare JM. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ Res 2011; 108:792-6. [PMID: 21415390 DOI: 10.1161/circresaha.111.242610] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE Transcatheter, intramyocardial injections of bone marrow-derived cell therapy produces reverse remodeling in large animal models of ischemic cardiomyopathy. OBJECTIVE We used cardiac MRI (CMR) in patients with left ventricular (LV) dysfunction related to remote myocardial infarction (MI) to test the hypothesis that bone marrow progenitor cell injection causes functional recovery of scarred myocardium and reverse remodeling. METHODS AND RESULTS Eight patients (aged 57.2±13.3 years) received transendocardial, intramyocardial injection of autologous bone marrow progenitor cells (mononuclear or mesenchymal stem cells) in LV scar and border zone. All patients tolerated the procedure with no serious adverse events. CMR at 1 year demonstrated a decrease in end diastolic volume (208.7±20.4 versus 167.4±7.32 mL; P=0.03), a trend toward decreased end systolic volume (142.4±16.5 versus 107.6±7.4 mL; P=0.06), decreased infarct size (P<0.05), and improved regional LV function by peak Eulerian circumferential strain in the treated infarct zone (-8.1±1.0 versus -11.4±1.3; P=0.04). Improvements in regional function were evident at 3 months, whereas the changes in chamber dimensions were not significant until 6 months. Improved regional function in the infarct zone strongly correlated with reduction of end diastolic volume (r(2)=0.69, P=0.04) and end systolic volume (r(2)=0.83, P=0.01). CONCLUSIONS These data suggest that transcatheter, intramyocardial injections of autologous bone marrow progenitor cells improve regional contractility of a chronic myocardial scar, and these changes predict subsequent reverse remodeling. The findings support the potential clinical benefits of this new treatment strategy and ongoing randomized clinical trials.
Collapse
|
Journal Article |
14 |
242 |
6
|
McCall GE, Byrnes WC, Dickinson A, Pattany PM, Fleck SJ. Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. J Appl Physiol (1985) 1996; 81:2004-12. [PMID: 8941522 DOI: 10.1152/jappl.1996.81.5.2004] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Twelve male subjects with recreational resistance training backgrounds completed 12 wk of intensified resistance training (3 sessions/wk; 8 exercises/session; 3 sets/exercise; 10 repetitions maximum/set). All major muscle groups were trained, with four exercises emphasizing the forearm flexors. After training, strength (1-repetition maximum preacher curl) increased by 25% (P < 0.05). Magnetic resonance imaging scans revealed an increase in the biceps brachii muscle cross-sectional area (CSA) (from 11.8 +/- 2.7 to 13.3 +/- 2.6 cm2; n = 8; P < 0.05). Muscle biopsies of the biceps brachii revealed increases (P < 0.05) in fiber areas for type I (from 4,196 +/- 859 to 4,617 +/- 1,116 microns2; n = 11) and II fibers (from 6,378 +/- 1,552 to 7,474 +/- 2,017 microns2; n = 11). Fiber number estimated from the above measurements did not change after training (293.2 +/- 61.5 x 10(3) pretraining; 297.5 +/- 69.5 x 10(3) posttraining; n = 8). However, the magnitude of muscle fiber hypertrophy may influence this response because those subjects with less relative muscle fiber hypertrophy, but similar increases in muscle CSA, showed evidence of an increase in fiber number. Capillaries per fiber increased significantly (P < 0.05) for both type I (from 4.9 +/- 0.6 to 5.5 +/- 0.7; n = 10) and II fibers (from 5.1 +/- 0.8 to 6.2 +/- 0.7; n = 10). No changes occurred in capillaries per fiber area or muscle area. In conclusion, resistance training resulted in hypertrophy of the total muscle CSA and fiber areas with no change in estimated fiber number, whereas capillary changes were proportional to muscle fiber growth.
Collapse
|
Clinical Trial |
29 |
200 |
7
|
Hajnal JV, Bryant DJ, Kasuboski L, Pattany PM, De Coene B, Lewis PD, Pennock JM, Oatridge A, Young IR, Bydder GM. Use of fluid attenuated inversion recovery (FLAIR) pulse sequences in MRI of the brain. J Comput Assist Tomogr 1992; 16:841-4. [PMID: 1430427 DOI: 10.1097/00004728-199211000-00001] [Citation(s) in RCA: 186] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fluid attenuated inversion recovery pulse sequences with a long echo time (TE) have been used to image the brain in one volunteer and four patients. The long inversion time used with this sequence suppresses the signal from CSF and the long TE produces very heavy T2 weighting. The marked reduction in flow artefact from CSF and the high T2 weighting enabled anatomical detail to be seen within the brain stem and produced high lesion contrast in areas close to CSF. Lesions were demonstrated with greater conspicuity than with conventional T2-weighted sequences in patients with cerebral infarction, low grade astrocytoma, and diplegia.
Collapse
|
Case Reports |
33 |
186 |
8
|
Pattany PM, Phillips JJ, Chiu LC, Lipcamon JD, Duerk JL, McNally JM, Mohapatra SN. Motion artifact suppression technique (MAST) for MR imaging. J Comput Assist Tomogr 1987; 11:369-77. [PMID: 3571576 DOI: 10.1097/00004728-198705000-00001] [Citation(s) in RCA: 183] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A technique has been developed that significantly improves the image resolution and reduces motion artifacts in conventional two-dimensional Fourier transform and three-dimensional Fourier transform magnetic resonance imaging sequences. Modifications on the gradient waveforms completely refocus the transverse magnetization at the echo time, regardless of the motion occurring between the time of the 90 degrees radiofrequency excitation and the echo time (within-view). This accomplishes suppression of motion artifacts and regains the signal from flowing blood and CSF. Images of the head, abdomen, chest, and spine are reproduced which show the increase in signal and anatomical detail that would otherwise be degraded and lost in artifact noise. This technique has reduced the practical difficulty of obtaining clinically diagnostic T2-weighted abdominal images. It also has allowed diagnostic quality T1- and T2-weighted images to be obtained with one acquisition per view, thus reducing the total scan time.
Collapse
|
Comparative Study |
38 |
183 |
9
|
Belayev L, Zhao W, Pattany PM, Weaver RG, Huh PW, Lin B, Busto R, Ginsberg MD. Diffusion-weighted magnetic resonance imaging confirms marked neuroprotective efficacy of albumin therapy in focal cerebral ischemia. Stroke 1998; 29:2587-99. [PMID: 9836772 DOI: 10.1161/01.str.29.12.2587] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE We have recently shown high-dose human serum albumin therapy to confer marked histological protection in experimental middle cerebral artery occlusion (MCAo). We have now used diffusion-weighted magnetic resonance imaging (DWI) in conjunction with morphological methods to expand our understanding of this therapeutic approach. METHODS Physiologically controlled Sprague-Dawley rats received 2-hour MCAo by the modified intraluminal suture method. Treated rats received 25% human serum albumin solution (1% by body weight) immediately after the MCA was reopened. Vehicle-treated rats received saline. Computer-based image averaging was used to analyze DWI data obtained 24 hours after MCAo and light-microscopic histopathology obtained at 3 days. In a matched series, plasma osmolality and colloid oncotic pressure, as well as brain water content, were determined. RESULTS Albumin therapy, which lowered the hematocrit on average by 37% and raised plasma colloid oncotic pressure by 56%, improved the neurological score throughout the 3-day survival period. Within the ischemic focus, the apparent diffusion coefficient (ADC) computed from DWI data declined by 40% in vehicle-treated rats but was preserved at near-normal levels (8% decline) in albumin-treated rats (P<0.001). Albumin also led to higher ADC values within unlesioned brain regions. Histology revealed large consistent cortical and subcortical infarcts in vehicle-treated rats, while albumin therapy reduced infarct volume at these sites, on average, by 84% and 33%, respectively. Total infarct volume was reduced by 66% and brain swelling was virtually eliminated by albumin treatment. Microscopically, while infarcted regions of vehicle-treated rats had the typical changes of pannecrosis, infarcted zones of albumin-treated brains showed persistence of vascular endothelium and prominent microglial activation, suggesting that albumin therapy may help to preserve the neuropil within zones of residual infarction. CONCLUSIONS These findings confirm the striking neuroprotective efficacy of albumin therapy in focal cerebral ischemia and reveal that this effect is associated with DWI normalization and a mitigation of pannecrotic changes within zones of residual injury.
Collapse
|
|
27 |
112 |
10
|
Karantalis V, Suncion-Loescher VY, Bagno L, Golpanian S, Wolf A, Sanina C, Premer C, Kanelidis AJ, McCall F, Wang B, Balkan W, Rodriguez J, Rosado M, Morales A, Hatzistergos K, Natsumeda M, Margitich I, Schulman IH, Gomes SA, Mushtaq M, DiFede DL, Fishman JE, Pattany P, Zambrano JP, Heldman AW, Hare JM. Synergistic Effects of Combined Cell Therapy for Chronic Ischemic Cardiomyopathy. J Am Coll Cardiol 2016; 66:1990-1999. [PMID: 26516002 DOI: 10.1016/j.jacc.2015.08.879] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Both bone marrow-derived mesenchymal stem cells (MSCs) and c-kit(+) cardiac stem cells (CSCs) improve left ventricular remodeling in porcine models and clinical trials. Using xenogeneic (human) cells in immunosuppressed animals with acute ischemic heart disease, we previously showed that these 2 cell types act synergistically. OBJECTIVES To more accurately model clinical applications for heart failure, this study tested whether the combination of autologous MSCs and CSCs produce greater improvement in cardiac performance than MSCs alone in a nonimmunosuppressed porcine model of chronic ischemic cardiomyopathy. METHODS Three months after ischemia/reperfusion injury, Göttingen swine received transendocardial injections with MSCs alone (n = 6) or in combination with cardiac-derived CSCs (n = 8), or placebo (vehicle; n = 6). Cardiac functional and anatomic parameters were assessed using cardiac magnetic resonance at baseline and before and after therapy. RESULTS Both groups of cell-treated animals exhibited significantly reduced scar size (MSCs -44.1 ± 6.8%; CSC/MSC -37.2 ± 5.4%; placebo -12.9 ± 4.2%; p < 0.0001), increased viable tissue, and improved wall motion relative to placebo 3 months post-injection. Ejection fraction (EF) improved (MSCs 2.9 ± 1.6 EF units; CSC/MSC 6.9 ± 2.8 EF units; placebo 2.5 ± 1.6 EF units; p = 0.0009), as did stroke volume, cardiac output, and diastolic strain only in the combination-treated animals, which also exhibited increased cardiomyocyte mitotic activity. CONCLUSIONS These findings illustrate that interactions between MSCs and CSCs enhance cardiac performance more than MSCs alone, establish the safety of autologous cell combination strategies, and support the development of second-generation cell therapeutic products.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
97 |
11
|
Widerström-Noga E, Pattany PM, Cruz-Almeida Y, Felix ER, Perez S, Cardenas DD, Martinez-Arizala A. Metabolite concentrations in the anterior cingulate cortex predict high neuropathic pain impact after spinal cord injury. Pain 2012; 154:204-212. [PMID: 23141478 DOI: 10.1016/j.pain.2012.07.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 07/13/2012] [Accepted: 07/20/2012] [Indexed: 12/24/2022]
Abstract
Persistent pain is a common reason for reduced quality of life after a spinal cord injury (SCI). Biomarkers of neuropathic pain may facilitate translational research and the understanding of underlying mechanisms. Research suggests that pain and affective distress are anatomically and functionally integrated in the anterior cingulate cortex and can modulate sensory and affective aspects of pain. We hypothesized that severe neuropathic pain with a significant psychosocial impact would be associated with metabolite concentrations (obtained by magnetic resonance spectroscopy) in the anterior cingulate cortex, indicating neuronal and/or glial dysfunction. Participants with SCI and severe, high-impact neuropathic pain (SCI-HPI; n=16), SCI and moderate, low-impact neuropathic pain (SCI-LPI; n=24), SCI without neuropathic pain (SCI-noNP; n=14), and able-bodied, pain-free control subjects (A-B; n=22) underwent a 3-T magnetic resonance imaging brain scan. Analyses revealed that the SCI-HPI group had significantly higher levels of myoinositol (Ins) (P<.000), creatine (P=.007), and choline (P=.014), and significantly lower levels of N-acetyl aspartate/Ins (P=.024) and glutamate-glutamine (Glx)/Ins (P=.003) ratios than the SCI-LPI group. The lower Glx/Ins ratio significantly discriminated between SCI-HPI and the A-B (P=.006) and SCI-noNP (P=.026) groups, displayed excellent test-retest reliability, and was significantly related to greater pain severity, interference, and affective distress. This suggests that the combination of lower glutamatergic metabolism and proliferation of glia and glial activation are underlying mechanisms contributing to the maintenance of severe neuropathic pain with significant psychosocial impact in chronic SCI. These findings indicate that the Glx/Ins ratio may be a useful biomarker for severe SCI-related neuropathic pain with significant psychosocial impact.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
13 |
68 |
12
|
Junttila MJ, Fishman JE, Lopera GA, Pattany PM, Velazquez DL, Williams AR, Trachtenberg BH, Sanina C, Mather J, Hare JM. Safety of serial MRI in patients with implantable cardioverter defibrillators. Heart 2011; 97:1852-6. [PMID: 21873440 DOI: 10.1136/heartjnl-2011-300153] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE While patients with cardiac implantable electronic devices could benefit from magnetic resonance (MR) imaging, the presence of such devices has been designated as an absolute contraindication to MR. Although scanning algorithms are proposed for cardiac implantable electronic devices, their safety remains uncertain. To address this issue, the safety of serial cardiac MR scans was evaluated in patients with implantable cardioverter defibrillators (ICDs). METHODS Three serial cardiac MR scans were prospectively performed at 1.5 T on 10 patients (9 men) of median age 56 years (range 51-68) with ICDs. ICD interrogation was performed before and after the MR scan and at a follow-up of median 370 days (range 274-723). Image quality was also assessed. RESULTS In all patients MR scanning occurred without complications. There were no differences between pre- and post-MR pacing capture threshold, pacing lead or high voltage lead impedance, or battery voltage values. During follow-up there were no occurrences of ICD dysfunction. Although most patients had image artifacts, the studies were generally diagnostic regarding left ventricular function and wall motion. Delayed enhancement imaging was of good quality for inferior wall and inferolateral infarcts, but ICD artifacts often affected the imaging of anterior wall infarcts. CONCLUSION Serial MR scans at 1.5 T in patients with ICDs, when carefully performed in a monitored setting, have no adverse effects on either patient or device. When required, single or multiple MR scans at 1.5 T may therefore be considered for clinical diagnostic purposes in these patients.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
48 |
13
|
Abstract
OBJECTIVES This review has three objectives: 1) to describe spinal vascular anatomy, focusing on thoracolumbar intradural vessels detectable by both magnetic resonance angiography (MRA) and digital subtraction x-ray angiography (DSA), 2) to compare the MRA techniques that have been used to detect the major intradural vessels, and 3) to illustrate the clinical application of these MRA techniques, especially their efficacy in characterizing spinal dural arteriovenous fistulae (AVF). METHODS MRA is an adjunct to conventional magnetic resonance imaging. MRA is usually implemented as a three-dimensional (3D) contrast-enhanced (CE) gradient-echo technique, with two approaches to data acquisition: 1) "standard" 3D CE MRA, requiring approximately 10 minutes per 3D volume, and 2) "fast" (bolus/dynamic) 3D CE MRA, requiring approximately 0.5 to 2 minutes per 3D volume depending on k-space sampling schemes. Vessels are displayed on targeted maximum intensity projection images. RESULTS Normal intradural vessels detected on standard CE MRA are primarily veins (medullary and median), whereas both arteries and veins are detected on fast CE MRA. Identification of arteries (artery of Adamkiewicz, anterior spinal artery) is limited, and their differentiation from veins can be incomplete. Intradural vessels in patients with dural fistulae have abnormal features on MRI (length of flow voids and postcontrast serpentine enhancement) and standard 3D CE MRA (length, tortuosity, and qualitative size of dominant perimedullary vessel), which differ significantly from those of normal vessels. Standard MRA added to a conventional MRI study significantly (P=0.016) increased the rate of detection of the spinal level of a dural fistula. The correct level +/- one vertebral segment was identified in 73% of true-positive patients. CONCLUSIONS Application of spinal MRA requires knowledge of vascular anatomy, specifically the major intradural vessels, and careful implementation of 3D CE MRA techniques. The standard technique allows for more effective noninvasive screening for vascular lesions, particularly dural AVF, than magnetic resonance imaging alone. Preliminary results indicate that the fast technique may further improve characterization of normal and abnormal intradural vessels, especially if continued technical advances yield greater temporal resolution while maintaining adequate spatial resolution.
Collapse
|
|
22 |
47 |
14
|
Bradley WG, Bowen BC, Pattany PM, Rotta F. 1H-magnetic resonance spectroscopy in amyotrophic lateral sclerosis. J Neurol Sci 1999; 169:84-6. [PMID: 10540013 DOI: 10.1016/s0022-510x(99)00221-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1H-magnetic resonance spectroscopy (MRS) is potentially a powerful tool for the investigation of the chemicals of the brain in vivo in health and disease. Levels of N-acetyl-aspartate (NAA) in the motor cortex and brainstem of patients with amyotrophic lateral sclerosis (ALS) have been reported to be reduced by up to 68%, and in one report the level of glutamate in the brainstem was increased by 58%. We studied levels of metabolites in the cerebral cortex and brainstem of 20 ALS patients and 14 age-matched controls with a 1.5 Tesla Picker magnet using MRS. We used the same spectra for determining both the area of the metabolite peaks expressed as a ratio of the area of the creatine (Cr) peak, and the absolute concentrations using the Provencher LC model. These produced different results. With the LC model, the NAA content of the motor cortex of ALS patients was reduced by 7.7% (P=0.015), and that of the brainstem was reduced by 21.5% (P=0.035), compared with controls. The degree of reduction of NAA was related to the severity of upper motor neuron abnormalities. No effect of treatment with anti-glutamate agents on NAA concentration could be detected. Concentrations of other metabolites were not affected in ALS. It appears that MRS is a technique that is still in development, and that further refinement is required before it can be used to understand disease mechanisms and investigate treatment in ALS.
Collapse
|
|
26 |
40 |
15
|
Widerström-Noga E, Cruz-Almeida Y, Felix ER, Pattany PM. Somatosensory phenotype is associated with thalamic metabolites and pain intensity after spinal cord injury. Pain 2015; 156:166-174. [PMID: 25599312 DOI: 10.1016/j.pain.0000000000000019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuropathic pain is one of the most difficult consequences of spinal cord injury (SCI). The clinical correlates of the underlying mechanisms responsible for neuropathic pain are not well understood, although methods such as quantitative somatosensory testing (QST) or brain imaging have been used to further a mechanism-based understanding of pain. Our previous SCI study demonstrated a significantly lower glutamate-glutamine/myo-inositol ratio (Glx/Ins) in the anterior cingulate cortex in persons with severe neuropathic pain compared with those with less severe neuropathic pain or pain-free, able-bodied controls, suggesting that a combination of decreased glutamatergic metabolism and glial activation may contribute to the development of severe neuropathic pain after SCI. The present study aimed to determine the relationships between somatosensory function below the level of injury and low thalamic Glx/Ins in persons with intense neuropathic pain after SCI. Participants underwent QST and a 3 Tesla proton magnetic resonance spectroscopy. A cluster analysis including SCI participants resulted in 1 group (n = 19) with significantly (P < 0.001) greater pain intensity (6.43 ± 1.63; high neuropathic pain [HNP], and lower Glx/Ins [1.22 ± 0.16]) and another group (n = 35) with lower pain intensity ratings (1.59 ± 1.52, low neuropathic pain [LNP], and higher Glx/Ins [1.47 ± 0.26]). After correcting for age, QST indicated significantly greater somatosensory function in the HNP group compared with the LNP group. Our results are consistent with research suggesting that damage to, but not abolition of, the spinothalamic tract contributes to development of neuropathic pain after SCI and that secondary inflammatory processes may amplify residual spinothalamic tract signals by facilitation, disinhibition, or sensitization.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
10 |
35 |
16
|
Bowen BC, Pattany PM, Saraf-Lavi E, Maravilla KR. The brachial plexus: normal anatomy, pathology, and MR imaging. Neuroimaging Clin N Am 2004; 14:59-85, vii-viii. [PMID: 15177257 DOI: 10.1016/j.nic.2003.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The brachial plexus is the most technically and anatomically challenging area of the peripheral nervous system for diagnostic imaging. Marked improvements in spatial and contrast resolution of plexus images have resulted from the use of phased-array technology and newer MR pulse sequence designs. This article presents case material incorporating these improvements and discusses the primary factors that continue to limit MR image quality, such as inhomogenous fat suppression, motion artifacts, and small vessels that mimic or obscure plexus components, and potential solutions and imaging alternatives. Brachial plexus anatomy and its appearance on multiplanar MR images are reviewed. The morphologic features and MR signal characteristics that have been found useful in distinguishing between normal and abnormal plexus components,and in detecting neuropathic lesions, are addressed in the context of clinical indications for plexus imaging as follows: mass involving the plexus, traumatic injury, entrapment syndrome, posttreatment evaluation, and miscellaneous conditions.
Collapse
|
Review |
21 |
34 |
17
|
Maudsley AA, Govindaraju V, Young K, Aygula ZK, Pattany PM, Soher BJ, Matson GB. Numerical simulation of PRESS localized MR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 173:54-63. [PMID: 15705513 DOI: 10.1016/j.jmr.2004.11.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 11/11/2004] [Indexed: 05/24/2023]
Abstract
Numerical simulations of NMR spectra can provide a rapid and convenient method for optimizing acquisition sequence parameters and generating prior spectral information required for parametric spectral analysis. For spatially resolved spectroscopy, spatially dependent variables affect the resultant spectral amplitudes and phases, which must therefore be taken into account in any spectral simulation model. In this study, methods for numerical simulation of spectra obtained using the PRESS localization pulse sequence are examined. A comparison is made between three different simulation models that include different levels of detail regarding the spatial distributions of the excitation functions, and spin evolution during application of the pulses. These methods were evaluated for measurement of spectra from J-coupled spin systems that are of interest for in vivo proton spectroscopy and results compared with experimental data. It is demonstrated that for optimized refocusing pulses it is sufficient to account for chemical shift effects only, although there is some advantage to implementing a more general numerical simulation approach that includes information on RF pulse excitation profiles, which provides sufficient accuracy while maintaining moderate computational requirements and flexibility to handle different spin systems.
Collapse
|
|
20 |
29 |
18
|
Soher BJ, Pattany PM, Matson GB, Maudsley AA. Observation of coupled 1H metabolite resonances at long TE. Magn Reson Med 2005; 53:1283-7. [PMID: 15906305 PMCID: PMC1361280 DOI: 10.1002/mrm.20491] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A PRESS localization (1)H MRS acquisition sequence with a Carr-Purcell train of refocusing pulses (CP-PRESS) has been implemented using global refocusing "sandwich" pulses. The CP pulse train minimized the effects of J-coupled dephasing in metabolites with strongly coupled, multiplet resonance groups as demonstrated in both phantom data and in vivo single-voxel spectroscopy in normal volunteers. Metabolites with multiplet resonance patterns were maintained with greater signal to noise and a simpler resonance pattern at long echo times. T(2) decay times for metabolites with singlet and multiplet resonances were similar to published values, except for the NAA multiplet at 2.5 ppm, which had a significantly shorter T(2) value (147 ms) than that typically reported for the singlet at 2.01 ppm. Metabolite-nulled spectra were acquired in normal volunteers to evaluate the effects of CP-PRESS on baseline signal contributions from residual water, lipids, and macromolecules. The T(2) decay times in four baseline regions in data acquired with the CP-PRESS sequence showed longer decays than corresponding regions in metabolite-nulled spectra from a standard PRESS sequence, but were significantly diminished long before the metabolites of interest were gone. The spectral analysis for spectra with longer TE times also showed less variability due the higher metabolite SNR, simpler spectral patterns, and the decreased baseline contributions.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
28 |
19
|
Tatsui CE, Martinez G, Li X, Pattany P, Levi AD. Evaluation of DuraGen in preventing peridural fibrosis in rabbits. Invited submission from the Joint Section Meeting on Disorders of the Spine and Peripheral Nerves, March 2005. J Neurosurg Spine 2006; 4:51-9. [PMID: 16506466 DOI: 10.3171/spi.2006.4.1.51] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Peridural fibrosis is the scar tissue formed over the dura mater after a laminectomy. It has been implicated as a cause of persistence of pain after spinal surgery and associated with increased risk of complications during revision surgery. The application of a mechanical barrier to cover the peridural space to block the migration of inflammatory cells from superficial layers to the epidural space can potentially prevent or decrease scar formation. The authors evaluated the use of DuraGen for this purpose. METHODS Seventeen New Zealand White rabbits underwent bilateral L-4 and L-7 laminectomies. Each space was randomly assigned to either receive DuraGen, fat graft, or no (sham) treatment. At a mean 18 +/- 4 weeks after surgery, the animals underwent magnetic resonance (MR) imaging with and without Gd enhancement, and the area of the scar tissue overlying the middle of the laminectomy was measured. The rabbits were killed and the spinal cords with an intact dural covering were harvested. The midsection of each treated level was evaluated histologically and the scar area was measured. In rabbits in which a fat graft was placed, MR imaging of the epidural space demonstrated a significant (p < 0.05) increase in the mean area (0.9713 mm2) of scar tissue compared with those in which DuraGen was used (0.687 mm2) or those receiving sham treatment (0.6661 mm2). The same correlation was observed when the histological sections were measured at the middle of the laminectomy site where the mean areas of both DuraGen (1008 mm2) and control (2249 mm2) groups were significantly lower than that in the fat graft group (6007 mm2) (p < 0.01 and 0.05, respectively). No significant differences between the DuraGen and control groups were observed. CONCLUSIONS The authors demonstrated that peridural scarring formed in all groups. The mean area of scar deposition was significantly higher in the fat graft group than in the DuraGen or control group both on MR imaging and histological analysis. DuraGen was more effective than a fat graft in preventing epidural fibrosis but not significantly different from that occurring in control animals.
Collapse
|
Journal Article |
19 |
28 |
20
|
Bowen BC, Quencer RM, Margosian P, Pattany PM. MR angiography of occlusive disease of the arteries in the head and neck: current concepts. AJR Am J Roentgenol 1994; 162:9-18. [PMID: 8273698 DOI: 10.2214/ajr.162.1.8273698] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
MR angiography has many applications in the evaluation of cerebrovascular disease (aneurysm, vascular malformation, neoplasm, arterial and venous occlusive disease) [1]. Of these, the most common application may be in the assessment of arterial occlusive disease in patients at risk for stroke [2]. Consequently, the accuracy of MR angiography vs conventional angiography in this assessment will most likely determine the extent to which MR angiography is routinely used in clinical practice. In this paper, we review the results of clinical trials in which MR angiography has been used to evaluate arterial occlusive disease in the head and neck and describe those recent developments that promise improved visualization of the vasculature.
Collapse
|
Review |
31 |
27 |
21
|
Keshavan A, Paul F, Beyer MK, Zhu AH, Papinutto N, Shinohara RT, Stern W, Amann M, Bakshi R, Bischof A, Carriero A, Comabella M, Crane JC, D'Alfonso S, Demaerel P, Dubois B, Filippi M, Fleischer V, Fontaine B, Gaetano L, Goris A, Graetz C, Gröger A, Groppa S, Hafler DA, Harbo HF, Hemmer B, Jordan K, Kappos L, Kirkish G, Llufriu S, Magon S, Martinelli-Boneschi F, McCauley JL, Montalban X, Mühlau M, Pelletier D, Pattany PM, Pericak-Vance M, Cournu-Rebeix I, Rocca MA, Rovira A, Schlaeger R, Saiz A, Sprenger T, Stecco A, Uitdehaag BMJ, Villoslada P, Wattjes MP, Weiner H, Wuerfel J, Zimmer C, Zipp F, Hauser SL, Oksenberg JR, Henry RG. Power estimation for non-standardized multisite studies. Neuroimage 2016; 134:281-294. [PMID: 27039700 PMCID: PMC5656257 DOI: 10.1016/j.neuroimage.2016.03.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 10/22/2022] Open
Abstract
A concern for researchers planning multisite studies is that scanner and T1-weighted sequence-related biases on regional volumes could overshadow true effects, especially for studies with a heterogeneous set of scanners and sequences. Current approaches attempt to harmonize data by standardizing hardware, pulse sequences, and protocols, or by calibrating across sites using phantom-based corrections to ensure the same raw image intensities. We propose to avoid harmonization and phantom-based correction entirely. We hypothesized that the bias of estimated regional volumes is scaled between sites due to the contrast and gradient distortion differences between scanners and sequences. Given this assumption, we provide a new statistical framework and derive a power equation to define inclusion criteria for a set of sites based on the variability of their scaling factors. We estimated the scaling factors of 20 scanners with heterogeneous hardware and sequence parameters by scanning a single set of 12 subjects at sites across the United States and Europe. Regional volumes and their scaling factors were estimated for each site using Freesurfer's segmentation algorithm and ordinary least squares, respectively. The scaling factors were validated by comparing the theoretical and simulated power curves, performing a leave-one-out calibration of regional volumes, and evaluating the absolute agreement of all regional volumes between sites before and after calibration. Using our derived power equation, we were able to define the conditions under which harmonization is not necessary to achieve 80% power. This approach can inform choice of processing pipelines and outcome metrics for multisite studies based on scaling factor variability across sites, enabling collaboration between clinical and research institutions.
Collapse
|
Comparative Study |
9 |
26 |
22
|
Duerk JL, Pattany PM. In-plane flow velocity quantification along the phase encoding axis in MRI. Magn Reson Imaging 1988; 6:321-33. [PMID: 3398740 DOI: 10.1016/0730-725x(88)90409-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In-plane flow quantification in MRI offers the potential for assessing vessel patency, and both volume flow rate and flow velocity. These techniques will have definite future impact on MR angiography. The method used in this paper employs motion artifact suppression technique (MAST) gradients to refocus spins travelling along any of the three imaging axes while encoding the velocity component along the phase encoding axis. This method has several advantages over in-plane flow quantification along the read axis. Primarily, flow voids due to complete spin dephasing can be eliminated (or reduced), wider velocity limits can be measured, and gradients can be designed which are sensitive to only velocity along the phase axis with no additional effect from higher order derivatives, or motion along the read axis. Flow phantom studies, carried out on 19 mm inside diameter glass tubes, have produced accurate results for flow rates ranging from 0.6 gallons per minute (GPM) to 2.5 GPM, corresponding to a mean velocity range from 13.2 cm/sec to 55.3 cm/sec. Reynolds numbers varied from 2,700 to 11,500. Errors were less than or equal to 8% over the range of flow rates studied.
Collapse
|
|
37 |
24 |
23
|
Kaushik A, Rodriguez J, Rothen D, Bhardwaj V, Jayant RD, Pattany P, Fuentes B, Chand H, Kolishetti N, El-Hage N, Khalili K, Kenyon NS, Nair M. MRI-Guided, Noninvasive Delivery of Magneto-Electric Drug Nanocarriers to the Brain in a Nonhuman Primate. ACS APPLIED BIO MATERIALS 2019; 2:4826-4836. [PMID: 35021482 PMCID: PMC10077812 DOI: 10.1021/acsabm.9b00592] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A magnetically guided brain delivery method previously demonstrated in mice has not yet been translated for clinical applications due to the mismatch of available static magnet dimensions in relation to the human brain size and shape. To develop a human-compatible methodology, we explored magnetic resonance imaging (MRI) as a tool for the delivery of magneto-electric nanoparticles (MENPs) into the brain of a baboon, as a proof-of-concept study. MRI brain image analysis showed a reduction in T2* value at the basal ganglia, hemisphere, and vertex, thereby confirming successful MENP delivery to the brain. The observation of well-integrated morphologically healthy tissues and no blood toxicity over the study duration confirmed the biocompatibility of MENPs and the delivery procedure. Outcomes of this research present MRI-assisted delivery of MENPs to the brain as a safe and noninvasive method in larger species such as baboons and one step closer to human translation. This MENP-based nanomedicine delivery method can be used for clinical application in order to investigate effective central nervous system (CNS) therapies.
Collapse
|
research-article |
6 |
23 |
24
|
Duerk JL, Pattany PM. Analysis of imaging axes significance in motion artifact suppression technique (MAST): MRI of turbulent flow and motion. Magn Reson Imaging 1989; 7:251-63. [PMID: 2761361 DOI: 10.1016/0730-725x(89)90548-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Recently, a new technique has been demonstrated which effectively refocusses the dephasing effects of spins moving during application of MR imaging gradients. This paper presents an analysis of imaging axes significance in spin dephasing for motion occurring along the slice select, read and phase-encoding directions. A flow phantom under constant flow conditions in all experiments was used to provide complete spin dephasing when "traditional" imaging gradients were used. The MAST technique was used to refocus along various combinations of imaging axes, and variable number of terms from the Taylor expansion of motion along them. Results indicate that motion along any imaging axis can be refocussed effectively when MAST gradients are used along only the slice select and read axis.
Collapse
|
|
36 |
18 |
25
|
|
|
25 |
16 |