1
|
Majumdar A, Dogra P, Maity S, Mukhopadhyay S. Liquid-Liquid Phase Separation Is Driven by Large-Scale Conformational Unwinding and Fluctuations of Intrinsically Disordered Protein Molecules. J Phys Chem Lett 2019; 10:3929-3936. [PMID: 31260322 DOI: 10.1021/acs.jpclett.9b01731] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Liquid-liquid phase separation occurs via a multitude of transient, noncovalent, and intermolecular interactions resulting in phase transition of intrinsically disordered proteins/regions (IDPs/IDRs) and other biopolymers into mesoscopic, dynamic, nonstoichiometric, and supramolecular condensates. Here we present a unique case to demonstrate that unusual conformational expansion events coupled with solvation and fluctuations drive phase separation of tau, an IDP associated with Alzheimer's disease. Using intramolecular excimer emission as a powerful proximity readout, we show the unraveling of polypeptide chains within the protein-rich interior environment that can promote critical interchain contacts. Using highly sensitive picosecond time-resolved fluorescence depolarization measurements, we directly capture rapid large-amplitude torsional fluctuations in the extended chains that can control the relay of making-and-breaking of noncovalent intermolecular contacts maintaining the internal fluidity. The interplay of these key molecular parameters can be of prime importance in modulating the mesoscale material property of liquid-like condensates and their maturation into pathological gel-like and solid-like aggregates.
Collapse
|
|
6 |
105 |
2
|
Chandra B, Michmerhuizen NL, Shirnekhi HK, Tripathi S, Pioso BJ, Baggett DW, Mitrea DM, Iacobucci I, White MR, Chen J, Park CG, Wu H, Pounds S, Medyukhina A, Khairy K, Gao Q, Qu C, Abdelhamed S, Gorman SD, Bawa S, Maslanka C, Kinger S, Dogra P, Ferrolino MC, Di Giacomo D, Mecucci C, Klco JM, Mullighan CG, Kriwacki RW. Phase Separation Mediates NUP98 Fusion Oncoprotein Leukemic Transformation. Cancer Discov 2022; 12:1152-1169. [PMID: 34903620 PMCID: PMC8983581 DOI: 10.1158/2159-8290.cd-21-0674] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 11/08/2021] [Accepted: 12/09/2021] [Indexed: 01/07/2023]
Abstract
NUP98 fusion oncoproteins (FO) are drivers in pediatric leukemias and many transform hematopoietic cells. Most NUP98 FOs harbor an intrinsically disordered region from NUP98 that is prone to liquid-liquid phase separation (LLPS) in vitro. A predominant class of NUP98 FOs, including NUP98-HOXA9 (NHA9), retains a DNA-binding homeodomain, whereas others harbor other types of DNA- or chromatin-binding domains. NUP98 FOs have long been known to form puncta, but long-standing questions are how nuclear puncta form and how they drive leukemogenesis. Here we studied NHA9 condensates and show that homotypic interactions and different types of heterotypic interactions are required to form nuclear puncta, which are associated with aberrant transcriptional activity and transformation of hematopoietic stem and progenitor cells. We also show that three additional leukemia-associated NUP98 FOs (NUP98-PRRX1, NUP98-KDM5A, and NUP98-LNP1) form nuclear puncta and transform hematopoietic cells. These findings indicate that LLPS is critical for leukemogenesis by NUP98 FOs. SIGNIFICANCE We show that homotypic and heterotypic mechanisms of LLPS control NUP98-HOXA9 puncta formation, modulating transcriptional activity and transforming hematopoietic cells. Importantly, these mechanisms are generalizable to other NUP98 FOs that share similar domain structures. These findings address long-standing questions on how nuclear puncta form and their link to leukemogenesis. This article is highlighted in the In This Issue feature, p. 873.
Collapse
|
research-article |
3 |
81 |
3
|
Arya S, Singh AK, Bhasne K, Dogra P, Datta A, Das P, Mukhopadhyay S. Femtosecond Hydration Map of Intrinsically Disordered α-Synuclein. Biophys J 2019; 114:2540-2551. [PMID: 29874605 DOI: 10.1016/j.bpj.2018.04.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 10/14/2022] Open
Abstract
Protein hydration water plays a fundamentally important role in protein folding, binding, assembly, and function. Little is known about the hydration water in intrinsically disordered proteins that challenge the conventional sequence-structure-function paradigm. Here, by combining experiments and simulations, we show the existence of dynamical heterogeneity of hydration water in an intrinsically disordered presynaptic protein, namely α-synuclein, implicated in Parkinson's disease. We took advantage of nonoccurrence of cysteine in the sequence and incorporated a number of cysteine residues at the N-terminal segment, the central amyloidogenic nonamyloid-β component (NAC) domain, and the C-terminal end of α-synuclein. We then labeled these cysteine variants using environment-sensitive thiol-active fluorophore and monitored the solvation dynamics using femtosecond time-resolved fluorescence. The site-specific femtosecond time-resolved experiments allowed us to construct the hydration map of α-synuclein. Our results show the presence of three dynamically distinct types of water: bulk, hydration, and confined water. The amyloidogenic NAC domain contains dynamically restrained water molecules that are strikingly different from the water molecules present in the other two domains. Atomistic molecular dynamics simulations revealed longer residence times for water molecules near the NAC domain and supported our experimental observations. Additionally, our simulations allowed us to decipher the molecular origin of the dynamical heterogeneity of water in α-synuclein. These simulations captured the quasi-bound water molecules within the NAC domain originating from a complex interplay between the local chain compaction and the sequence composition. Our findings from this synergistic experimental simulation approach suggest longer trapping of interfacial water molecules near the amyloidogenic hotspot that triggers the pathological conversion into amyloids via chain sequestration, chain desolvation, and entropic liberation of ordered water molecules.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
32 |
4
|
Dogra P, Joshi A, Majumdar A, Mukhopadhyay S. Intermolecular Charge-Transfer Modulates Liquid–Liquid Phase Separation and Liquid-to-Solid Maturation of an Intrinsically Disordered pH-Responsive Domain. J Am Chem Soc 2019; 141:20380-20389. [DOI: 10.1021/jacs.9b10892] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
|
6 |
30 |
5
|
Thakur S, Kumari S, Dogra P, Chauhan GS. A new guar gum-based adsorbent for the removal of Hg(II) from its aqueous solutions. Carbohydr Polym 2014; 106:276-82. [PMID: 24721079 DOI: 10.1016/j.carbpol.2014.02.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/25/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
Abstract
Modification of biopolymers by oxidation is an easy process to develop effective adsorbents for the removal of toxic metal ions from their aqueous solutions. In the present study, guar gum (GG) was crosslinked with epichlorohydrin and then oxidized to the polydialdehyde form (GG-clPDA). The latter was converted to a Schiff-base, GG-clCHN(CH2)6NCHGG, by reaction with hexamethylenediamine. Different forms of the modified GG were characterized by SEM, FTIR and XRD and investigated as adsorbents for the removal of Hg(II) ions from their aqueous solutions. The adsorption process was carried out through the variation of time, temperature, pH and initial concentration of Hg(II) ions. GG-clCHN(CH2)6NCHGG was observed to be an efficient adsorbent with a maximum adsorption capacity of 41.13 mg/g. It is reusable up to five cycles at the optimum conditions obtained for the maximum ions uptake. The kinetic data generated fit the Freundlich isotherm and pseudo-second order kinetics.
Collapse
|
Journal Article |
11 |
25 |
6
|
Dogra P, Bhattacharya M, Mukhopadhyay S. pH-Responsive Mechanistic Switch Regulates the Formation of Dendritic and Fibrillar Nanostructures of a Functional Amyloid. J Phys Chem B 2017; 121:412-419. [DOI: 10.1021/acs.jpcb.6b11281] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
8 |
18 |
7
|
Bhattacharya M, Jain N, Dogra P, Samai S, Mukhopadhyay S. Nanoscopic Amyloid Pores Formed via Stepwise Protein Assembly. J Phys Chem Lett 2013; 4:480-485. [PMID: 26281744 DOI: 10.1021/jz3019786] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein aggregation leading to various nanoscale assemblies is under scrutiny due to its implications in a broad range of human diseases. In the present study, we have used ovalbumin, a model non-inhibitory serpin, to elucidate the molecular events involved in amyloid assembly using a diverse array of spectroscopic and imaging tools such as fluorescence, laser Raman, circular dichroism spectroscopy, and atomic force microscopy (AFM). The AFM images revealed a progressive morphological transition from spherical oligomers to nanoscopic annular pores that further served as templates for higher-order supramolecular assembly into larger amyloid pores. Raman spectroscopic investigations illuminated in-depth molecular details into the secondary structural changes of the protein during amyloid assembly and pore formation. Additionally, Raman measurements indicated the presence of antiparallel β-sheets in the amyloid core. Overall, our studies revealed that the protein conformational switch in the context of the oligomers triggers the hierarchical assembly into nanoscopic amyloid pores. Our results will have broad implications in the structural characterization of amyloid pores derived from a variety of disease-related proteins.
Collapse
|
|
12 |
17 |
8
|
Sharma S, Kanwar SS, Dogra P, Chauhan GS. Gallic acid-based alkyl esters synthesis in a water-free system by celite-bound lipase ofBacillus licheniformisSCD11501. Biotechnol Prog 2015; 31:715-23. [DOI: 10.1002/btpr.2072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/21/2015] [Indexed: 12/14/2022]
|
|
10 |
16 |
9
|
Saun NK, Narwal SK, Dogra P, Chauhan GS, Gupta R. Comparative Study of Free and Immobilized Lipase from Bacillus aerius and its Application in Synthesis of Ethyl Ferulate. J Oleo Sci 2014; 63:911-9. [DOI: 10.5650/jos.ess14026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
|
11 |
14 |
10
|
Narwal SK, Saun NK, Dogra P, Gupta R. Green synthesis of isoamyl acetate via silica immobilized novel thermophilic lipase from Bacillus aerius. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016010118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
|
9 |
14 |
11
|
Dogra P, Chauhan G. Functionalization of Tetracycline and Evaluation of Its Antibacterial Activity Including Against Resistant Bacteria. Med Chem 2014; 11:86-93. [DOI: 10.2174/1573406410666140507094435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/20/2014] [Accepted: 04/28/2014] [Indexed: 11/22/2022]
|
|
11 |
5 |
12
|
Dogra P, Arya S, Singh AK, Datta A, Mukhopadhyay S. Conformational and Solvation Dynamics of an Amyloidogenic Intrinsically Disordered Domain of a Melanosomal Protein. J Phys Chem B 2022; 126:443-452. [PMID: 34986640 DOI: 10.1021/acs.jpcb.1c09304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The conformational plasticity of intrinsically disordered proteins (IDPs) allows them to adopt a range of conformational states that can be important for their biological functions. The driving force for the conformational preference of an IDP emanates from an intricate interplay between chain-chain and chain-solvent interactions. Using ultrafast femtosecond and picosecond time-resolved fluorescence measurements, we characterized the conformational and solvation dynamics around the N- and C-terminal segments of a disordered repeat domain of a melanosomal protein Pmel17 that forms functional amyloid responsible for melanin biosynthesis. Our time-resolved fluorescence anisotropy results revealed slight compaction and slower rotational dynamics around the amyloidogenic C-terminal segment when compared to the proline-rich N-terminal segment of the repeat domain. The compaction of the C-terminal region was also associated with the restrained mobility of hydration water as indicated by our solvation dynamics measurements. Our findings indicate that sequence-dependent chain-solvent interactions govern both the conformational and solvation dynamics that are crucial in directing the conversion of a highly dynamic IDP into an ordered amyloid assembly. Such an interplay of amino acid composition-dependent conformational and solvation dynamics might have important physicochemical consequences in specific water-protein, ion-protein, and protein-protein interactions involved in amyloid formation and phase transitions.
Collapse
|
|
3 |
2 |
13
|
Dogra P, Mukhopadhyay S. Illuminating the interface: Protein aggregation at the condensate interface. Biophys J 2024; 123:1311-1313. [PMID: 37944533 PMCID: PMC11163285 DOI: 10.1016/j.bpj.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
|
Comment |
1 |
|
14
|
Yadav A, Dogra P, Sagar P, Srivastava M, Srivastava A, Kumar R, Srivastava SK. A contemporary overview on quantum dots-based fluorescent biosensors: Exploring synthesis techniques, sensing mechanism and applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:126002. [PMID: 40068316 DOI: 10.1016/j.saa.2025.126002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 03/24/2025]
Abstract
In the epoch of bioinformatics, pivotal biomedical scrutiny and clinical diagnosis hinge upon the unfolding of highly efficacious biosensors for intricate and targeted identification of specific biomolecules. In pursuit of developing robust biosensors endowed with superior sensitivity, precise selectivity, rapid performance, and operational simplicity, semiconductor QDs have been acknowledged as pivotal and advantageous entities. In this review, we present a comprehensive analysis of the latest unfolding within the domain of QDs used in fluorescent biosensors for the detection of diverse biomolecular entities, encompassing proteins, nucleic acids, and a range of small molecules, with an emphasis on the synthesis methodologies of QDs employed and mechanism behind sensing. Additionally, this review delves into several pivotal facets of QD-based fluorescent biosensors in detail, such as surface functionalization methodologies aimed at enhancing biocompatibility and improving target specificity. The challenges and future perspectives of QD-based fluorescent biosensors are also considered, emphasizing the necessity of ongoing multidisciplinary research to realize their full potential in enhancing personalized medicine and biomedical diagnostics.
Collapse
|
Review |
1 |
|
15
|
Bhattacharya M, Jain N, Dogra P, Samai S, Patil S, Mukhopadhyay S. Biophysical Studies on Protein Aggregation and Amyloid Fibril Formation. Biophys J 2012. [DOI: 10.1016/j.bpj.2011.11.2425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
|
13 |
|
16
|
Dogra P, Singha Roy S, Bhattacharya M, Prabhu SS, Mukhopadhyay S. Proton-Induced Switching of an Intrinsically Disordered Domain of a Melanosomal Protein into a Polymorphic Functional Amyloid. Biophys J 2018. [DOI: 10.1016/j.bpj.2017.11.3228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
|
7 |
|
17
|
Seth A, Wadhwa P, Gupta N, Hemal A, Dogra P, Kumar R. UP-01.54. Urology 2006. [DOI: 10.1016/j.urology.2006.08.693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
19 |
|
18
|
Majumdar A, Das D, Dogra P, Maity S, Mukhopadhyay S. Proximity Rulers in Amyloids and Liquid Droplets of Intrinsically Disordered Proteins. Biophys J 2019. [DOI: 10.1016/j.bpj.2018.11.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
|
6 |
|
19
|
Seth A, Gupta N, Hemal A, Dogra P, Kumar R, Wadhwa P. V-03.08. Urology 2006. [DOI: 10.1016/j.urology.2006.08.1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
19 |
|
20
|
Dogra P, Ferrolino MC, Khatun S, Tolbert M, Miao Q, Pruett-Miller SM, Pitre A, Tripathi S, Campbell GE, Bajpai R, Freyaldenhoven T, Gibbs E, Park CG, Kriwacki RW. Granular component sub-phases direct ribosome biogenesis in the nucleolus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.01.640913. [PMID: 40093048 PMCID: PMC11908144 DOI: 10.1101/2025.03.01.640913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The hierarchical, multiphase organization of the nucleolus underlies ribosome biogenesis. Ribonucleoprotein particles that regulate ribosomal subunit assembly are heterogeneously disposed in the granular component (GC) of the nucleolus. However, the molecular origins of the GC's spatial heterogeneity and its association with ribosomal subunit assembly remain poorly understood. Here, using super-resolution microscopy, we uncover that key GC biomolecules, including nucleophosmin (NPM1), surfeit locus protein 6 (SURF6), and ribosomal RNA (rRNA), are heterogeneously localized within sub-phases in the GC. In vitro reconstitution showed that these GC biomolecules form multiphase condensates with SURF6/rRNA-rich core and NPM1-rich shell, providing a mechanistic basis for GC's spatial heterogeneity. SURF6's association with rRNA is weakened upon ribosome subunit assembly, enabling NPM1 to extract assembled subunits from condensates-suggesting an assembly-line-like mechanism of subunit efflux from the GC. Our results establish a framework for understanding the heterogeneous structure of the GC and reveal how its distinct sub-phases facilitate ribosome subunit assembly.
Collapse
|
Preprint |
1 |
|
21
|
Dogra P, Saini A, Javali T, Singh P, Saxena V. VID-07.06 Extraperitoneal Robot-Assisted Radical Prostatectomy Revisited. Urology 2011. [DOI: 10.1016/j.urology.2011.07.518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
|
14 |
|
22
|
Seth A, Saini A, Dogra P. VID-03.07 Hybrid Minimally Invasive Oral Mucosal graft Urethroplasty for Pan-Anterior Urethral Strictures. Urology 2011. [DOI: 10.1016/j.urology.2011.07.488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
|
14 |
|
23
|
Mukhopadhyay S, Majumdar A, Dogra P, Maity S, Joshi A. The Dynamism of Intrinsically Disordered Proteins in Liquid-Liquid Phase Separation. Biophys J 2020. [DOI: 10.1016/j.bpj.2019.11.503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
|
5 |
|