1
|
Rao DVS, Radhakrishnanand P, Suryanarayana MV, Himabindu V. A Stability-Indicating LC Method for Candesartan Cilexetil. Chromatographia 2007. [DOI: 10.1365/s10337-007-0364-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
|
18 |
21 |
2
|
Vishnuvardhan C, Radhakrishnanand P, Navalgund SG, Atcha KR, Satheeshkumar N. RP-HPLC Method for the Simultaneous Estimation of Eight Cardiovascular Drugs. Chromatographia 2013. [DOI: 10.1007/s10337-013-2598-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
|
12 |
13 |
3
|
Rao DVS, Radhakrishnanand P, Himabindu V. Stress Degradation Studies on Tadalafil and Development of a Validated Stability-Indicating LC Assay for Bulk Drug and Pharmaceutical Dosage Form. Chromatographia 2007. [DOI: 10.1365/s10337-007-0478-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
|
18 |
13 |
4
|
Shetty SK, Surendranath KV, Radhakrishnanand P, Satish J, Jogul J, Tripathi UM. Stress Degradation Behavior of Entacapone and Development of LC Stability-Indicating Related Substances and Assay Method. Chromatographia 2009. [DOI: 10.1365/s10337-009-1068-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
|
16 |
12 |
5
|
Kaja RK, Surendranath KV, Radhakrishnanand P, Satish J, Satyanarayana PVV. A Stability Indicating LC Method for Deferasirox in Bulk Drugs and Pharmaceutical Dosage Forms. Chromatographia 2009. [DOI: 10.1365/s10337-009-1023-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
|
16 |
11 |
6
|
Rao DVS, Radhakrishnanand P. Stress Degradation Studies on Dutasteride and Development of a Stability-Indicating HPLC Assay Method for Bulk Drug and Pharmaceutical Dosage Form. Chromatographia 2008. [DOI: 10.1365/s10337-008-0584-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
|
17 |
11 |
7
|
Radhakrishnanand P, Subba Rao DV, Himabindu V. A Validated LC Method for Determination of the Enantiomeric Purity of Darifenacin in Bulk Drug and Extended Release Tablets. Chromatographia 2008. [DOI: 10.1365/s10337-008-0795-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
|
17 |
11 |
8
|
Radhakrishnanand P, Subba Rao DV, Himabindu V. Validated Chiral LC Method for the Enantiomeric Separation of Palonosetron Hydrochloride. Chromatographia 2008. [DOI: 10.1365/s10337-008-0887-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
|
17 |
11 |
9
|
Radhakrishnanand P, Subba Rao DV, Surendranath KV, Subrahmanyam D, Himabindu V. A Validated LC Method for Determination of the Enantiomeric Purity of Montelukast Sodium in Bulk Drug Samples and Pharmaceutical Dosage Forms. Chromatographia 2008. [DOI: 10.1365/s10337-008-0684-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
|
17 |
10 |
10
|
Adye DR, Ponneganti S, Malakar TK, Radhakrishnanand P, Murty US, Banerjee S, Borkar RM. Extraction of small molecule from human plasma by prototyping 3D printed sorbent through extruded filament for LC-MS/MS analysis. Anal Chim Acta 2021; 1187:339142. [PMID: 34753580 DOI: 10.1016/j.aca.2021.339142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 08/19/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022]
Abstract
Analytical sample preparation techniques are regarded as crucial steps for analyzing compounds from different biological matrices. The development of new extraction techniques is a modern trend in the bioanalytical sciences. 3D printed techniques have emerged as a valuable technology for prototyping devices in customized shapes for a cost-effective way to advance analytical sample preparation techniques. The present study aims to fabricate customized filaments through the hot-melt extrusion (HME) technique followed by fused deposition modeling mediated 3D printing process for rapid prototyping of 3D printed sorbents to extract a sample from human plasma. Thus, we fabricated our own indigenous filament using poly (vinyl alcohol), Eudragit® RSPO, and tri-ethyl citrate through HME to prototype the fabricated filament into a 3D printed sorbent for the extraction of small molecules. The 3D sorbent was applied to extract hydrocortisone from human plasma and analyzed using a validated LC-MS/MS method. The extraction procedure was optimized, and the parameters influencing the sorbent extraction were systematically investigated. The extraction recovery of hydrocortisone was found to be >82% at low, medium, and high quality control samples, with a relative standard deviation of <2%. The intra-and inter-day precisions for hydrocortisone ranged from 1.0% to 12% and 2.0%-10.0%, respectively, whereas the intra-and inter-day accuracy for hydrocortisone ranged from 93.0% to 111.0% and 92.0% to 110.0%, respectively. The newly customizable size and shape of the 3D printed sorbent opens new possibilities for extracting small molecules from human plasma.
Collapse
|
|
4 |
7 |
11
|
Chavan BB, Prasanna GL, Radhakrishnanand P, Kosuri ER, Kalariya PD, Talluri MVNK. Development of a stability-indicating UPLC method for terconazole and characterization of the acidic and oxidative degradation products by UPLC-Q-TOF/MS/MS and NMR. NEW J CHEM 2018. [DOI: 10.1039/c8nj00509e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Terconazole, a triazole antifungal drug, is used to treat infections in the form of a cream or suppositories.
Collapse
|
|
7 |
6 |
12
|
Subba Rao DV, Surendranath KV, Radhakrishnanand P, Suryanarayana MV, Raghuram P. A Stability Indicating LC Method for Vardenafil HCl. Chromatographia 2008. [DOI: 10.1365/s10337-008-0766-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
|
17 |
6 |
13
|
Kshetrimayum V, Heisnam R, Keithellakpam OS, Radhakrishnanand P, Akula SJ, Mukherjee PK, Sharma N. Paris polyphylla Sm. Induces Reactive Oxygen Species and Caspase 3-Mediated Apoptosis in Colorectal Cancer Cells In Vitro and Potentiates the Therapeutic Significance of Fluorouracil and Cisplatin. PLANTS (BASEL, SWITZERLAND) 2023; 12:1446. [PMID: 37050072 PMCID: PMC10097216 DOI: 10.3390/plants12071446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/19/2023]
Abstract
Paris polyphylla Sm. (Melanthiaceae) is an essential, vulnerable herb with a wide range of traditional applications ranging from fever to cancer in various communities. The use of P. polyphylla in India is limited to traditional healers. Here, we demonstrated that P. polyphylla extract (PPE) has good phenol, flavonoid, saponin, and steroidal saponin content and anti-oxidant activity with IC50 35.12 ± 6.1 μg/mL in DPPH and 19.69 ± 6.7 μg/mL in ABTS. Furthermore, PPE induces cytotoxicity in HCT-116 with IC50 8.72 ± 0.71 μg/mL without significant cytotoxicity inthe normal human colon epithelial cell line, CCD 841 CoN. PPE inhibits the metastatic property and induces apoptosis in HCT-116, as measured by Annexin V/PI, by increasing the production of reactive oxygen species (ROS) and caspase 3 activation. PPE acts synergistically with 5FU and cisplatin in HCT-116 and potentiates their therapeutic significance. Steroidal saponins with anticancer activities were detected in PPE by HR-LCMS. The present study demonstrated that PPE induces apoptosis by increasing ROS and activating caspase 3, which was attributed to steroidal saponins. PPE can be used as a potential natural remedy for colon cancer.
Collapse
|
research-article |
2 |
5 |
14
|
Kaja RK, Surendranath KV, Radhakrishnanand P, Satish J, Satyanarayana PVV. A Stability-Indicating LC Method for Analysis of Balsalazide Disodium in the Bulk Drug and in Pharmaceutical Dosage Forms. Chromatographia 2009. [DOI: 10.1365/s10337-009-1031-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
|
16 |
4 |
15
|
Radhakrishnanand P, Subba Rao DV, Surendranath KV, Subrahmanyam D, Himabindu V. A Validated Chiral LC Method for the Separation and Quantification of (S,R,S)-Enantiomer and (R,R,R)-Isomer of Aprepitant. Chromatographia 2008. [DOI: 10.1365/s10337-008-0772-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
|
17 |
4 |
16
|
Vishnuvardhan C, Radhakrishnanand P, Navalgund S, Satheeshkumar N. Liquid Chromatography/Electrospray Ionisation Tandem Mass Spectrometric Study of Sitagliptin and its Stressed Degradation Products. Drug Res (Stuttg) 2014; 64:668-74. [DOI: 10.1055/s-0034-1370915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
|
11 |
4 |
17
|
Shetty SK, Borkar RM, Devrukhakar PS, Surendranath KV, Radhakrishnanand P, Satish J, Shastri N, Jogul J, Tripathi UM. RP-HPLC SEPARATION METHOD FOR INDIVIDUAL COMPONENTS OF POLYCAP IN PRESENCE OF THEIR DEGRADATION/INTERACTION PRODUCTS. J LIQ CHROMATOGR R T 2012. [DOI: 10.1080/10826076.2011.606585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
|
13 |
3 |
18
|
Joseph A, Kumar GJ, Pawar SD, Hirlekar BU, Bharatam PV, Konda S, Mudiam MKR, Murty US, Sahu PL, Dubey S, Radhakrishnanand P, Adye DR, Borkar RM, Thirupathi C, Kumar P. Analytical developments of p-hydroxy prenylamine reference material for dope control research: Characterization and purity assessment. Drug Test Anal 2022; 14:224-232. [PMID: 34617411 DOI: 10.1002/dta.3171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/12/2022]
Abstract
Prenylamine was initially used for the treatment of angina pectoris and later on withdrawn from the market in 1988 due to cardiac arrhythmias concern. The major phase I metabolite of prenylamine is p-hydroxy prenylamine that has a chiral center in the structure. Even though p-hydroxy prenylamine was synthesized earlier, it lacked complete analytical developments for chiral high-performance liquid chromatography (HPLC) separation. However, p-hydroxy prenylamine reference material is not commercially available. The innovation of this manuscript is the development and validation of a chiral HPLC separation method and more extensive characterization of the reference material than previously reported method. Therefore, it was hypothesized to develop and validate normal phase HPLC method for p-hydroxy prenylamine reference material. p-Hydroxy prenylamine was synthesized in two batches and characterized successfully using 13 C NMR, 1 H NMR, high-resolution mass spectrometry (HRMS), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). A normal phase chiral HPLC method was developed to analyze the p-hydroxy prenylamine purity. Separation of the p-hydroxy prenylamine enantiomers were achieved using ultra-high-performance liquid chromatography (UHPLC) on a ChiralCel ODH column at wavelength of 220 nm. The developed method was validated in terms of its linearity, accuracy, precision, and robustness for purification, purity assessment, and stability studies. Proton and carbon peaks were confirmed by nuclear magnetic resonance (NMR) analysis. Functional groups were confirmed by FT-IR. Loss on drying was 0.3% and 0.6% for Batches 1 and 2, respectively. The purity of the developed reference material for Batches 1 and 2 was found to be 99.59% and 100%, respectively. Therefore, the synthesized batches of p-hydroxy prenylamine can be used in dope testing as reference material.
Collapse
|
|
3 |
3 |
19
|
Subba Rao DV, Radhakrishnanand P, Surendranath KV, Raghuram P, Himabindu V. A Stability Indicating LC Method for Amtolmetin Guacyl. Chromatographia 2008. [DOI: 10.1365/s10337-008-0743-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
|
17 |
2 |
20
|
Jala A, Ponneganti S, Vishnubhatla DS, Bhuvanam G, Mekala PR, Varghese B, Radhakrishnanand P, Adela R, Murty US, Borkar RM. Transporter-mediated drug-drug interactions: advancement in models, analytical tools, and regulatory perspective. Drug Metab Rev 2021; 53:285-320. [PMID: 33980079 DOI: 10.1080/03602532.2021.1928687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023]
Abstract
Drug-drug interactions mediated by transporters are a serious clinical concern hence a tremendous amount of work has been done on the characterization of the transporter-mediated proteins in humans and animals. The underlying mechanism for the transporter-mediated drug-drug interaction is the induction or inhibition of the transporter which is involved in the cellular uptake and efflux of drugs. Transporter of the brain, liver, kidney, and intestine are major determinants that alter the absorption, distribution, metabolism, excretion profile of drugs, and considerably influence the pharmacokinetic profile of drugs. As a consequence, transporter proteins may affect the therapeutic activity and safety of drugs. However, mounting evidence suggests that many drugs change the activity and/or expression of the transporter protein. Accordingly, evaluation of drug interaction during the drug development process is an integral part of risk assessment and regulatory requirements. Therefore, this review will highlight the clinical significance of the transporter, their role in disease, possible cause underlying the drug-drug interactions using analytical tools, and update on the regulatory requirement. The recent in-silico approaches which emphasize the advancement in the discovery of drug-drug interactions are also highlighted in this review. Besides, we discuss several endogenous biomarkers that have shown to act as substrates for many transporters, which could be potent determinants to find the drug-drug interactions mediated by transporters. Transporter-mediated drug-drug interactions are taken into consideration in the drug approval process therefore we also provided the extrapolated decision trees from in-vitro to in-vivo, which may trigger the follow-up to clinical studies.
Collapse
|
Review |
4 |
2 |
21
|
Kalita SJ, Pawar SD, Vernekar P, Pawar MA, Veena KS, Mishra KMA, Sethi KK, Radhakrishnanand P, Murty US, Sahu PL, Dubey S, Sahu K, Upadhyay A, Kori RK, Kumar P. Synthesis and characterization of octopamine sulfate, norfenefrine sulfate and etilefrine sulfate reference materials for doping control. JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY 2023; 98:2318-2329. [DOI: 10.1002/jctb.7458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/09/2023] [Indexed: 09/25/2023]
Abstract
AbstractBACKGROUNDDoping is the use of prohibited substances by athletes to improve their performance. World Anti‐Doping Agency (WADA)‐accredited laboratories require various metabolite reference standards of the prohibited chemical substances or drugs for routine quality control. Therefore, it was proposed to develop efficient synthetic methodologies for highly pure reference materials of Phase II metabolites of octopamine, norfenefrine and etilefrine, which are prohibited in sports by WADA under the S6 stimulant category. The reference materials were characterized using various analytical techniques. New high‐performance liquid chromatography with diode‐array detection (HPLC‐DAD) methods were developed for purity assessment.RESULTSThe synthesized Phase II metabolite reference standards, i.e. octopamine sulfate, norfenefrine sulfate and etilefrine sulfate, were confirmed by 1H NMR, 13C NMR, liquid chromatography–high‐resolution mass spectrometry (LC‐HRMS), attenuated total reflectance Fourier transform infrared and thermogravimetric analysis. In the LC‐HRMS study, the mass error value of synthesized compounds was less than 10 ppm (error) which confirms the identity of the reference materials. New HPLC‐DAD method were developed to ensure the purity of the reference materials. We used the HILIC column as metabolite reference standards are highly polar. The mobile phase was composed of water and acetonitrile in fixed composition. The HPLC‐DAD purity of the developed reference materials was observed as 100%.CONCLUSIONWe have developed reproducible synthetic routes for octopamine sulfate, norfenefrine sulfate and etilefrine sulfate, which are prohibited in sports by WADA. The synthesized metabolites were characterized using different advanced analytical techniques. These reference standards will be helpful to all WADA‐accredited laboratories in routine anti‐doping testing. © 2023 Society of Chemical Industry (SCI).
Collapse
|
|
2 |
|
22
|
Chanu KD, Thoithoisana S, Kar A, Mukherjee PK, Radhakrishnanand P, Parmar K, Sharma N. Phytochemically analysed extract of Ageratina adenophora (Sprengel) R.M.King & H. Rob. initiates caspase 3-dependant apoptosis in colorectal cancer cell: A synergistic approach with chemotherapeutic drugs. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117591. [PMID: 38104872 DOI: 10.1016/j.jep.2023.117591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ageratina adenophora (Sprengel) R.M.King & H.Rob. has been used as traditional indigenous medicine all across the globe for its diverse therapeutic applications such as anticancer, analgesic, antipyretic, thermogenic, antiseptic, antimicrobial as well as astringent. The various ethnic groups of India use plant parts to treat cuts and wounds, venomous insect bites, skin lesions, blisters, scabies and other skin irritations, gastritis and indigestion problems, cough, stomach ache and dysentery. The Portuguese traditionally extract the juice from the plant and use it for cancer, diabetes, liver disorder, gallbladder and stomach ailments. Nigerian healers use different parts of the plant to treat diabetes, fever and inflammation. AIM OF THE STUDY The aim of this study is to investigate the cytotoxic potential of A. adenophora hydroalcoholic leaves extract (AHL) on Colorectal cancer (CRC) cell lines (HCT-116, HCT-15 and HT-29), synergistic potential with chemotherapeutic drugs 5FU and Cisplatin as well as reactive oxygen species (ROS) generation, based on the sample collected from Mao district of Manipur, India. Identification of bioactive phytocompounds in AHL was also performed by HRLCMS. METHODS The AHL was evaluated for its cytotoxic as well as antiproliferative activities by 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide (MTT) assay, clonogenic and cell migration assays. The total phenolic content (TPC) and total flavonoid content (TFC) were quantified by Folin-ciocalteu and Aluminium chloride assays respectively. Caspase 3 activation was evaluated using Caspase-3 Assay Kit. Apoptosis detection by flow cytometry was carried out using annexin V-FITC/PI apoptosis detection kit. The apoptotic cells were also visualized by Giemsa and 4',6-Diamidino-2-phenylindole (DAPI) staining. The intracellular Reactive oxygen species (ROS) generation was also evaluated using fluorescent probe 2',7'-dichlorodihydrofluorescein di-acetate (H2DCFDA) in flow cytometry. The combination effects of AHL with chemotherapeutic drugs 5FU and Cisplatin were also evaluated. The identification of phytochemical constituents of AHL were analysed by HR-LCMS. RESULTS The AHL induced cytotoxic activity significantly in HCT-116 with IC50 of 65.65 ± 2.10 μg/mL, but non-cancerous cell HeK-293 was least cytotoxic. Colony formation and cell migration were inhibited in a dose and time dependent manner. The cell morphology upon AHL treatment was significantly altered with apoptotic features. The extract was rich in total phenolic (82.09 ± 0.35mgGAE/g) and total flavonoid (58.31 ± 0.55 mgQAE/g) contents. AHL induced apoptosis as detected by AnnexinV/PI, via activation of caspase 3 and elevated production of Reactive oxygen species (ROS). AHL in combination with 5FU and Cisplatin acts synergistically and potentiates the therapeutic properties of the extract. Sesquiterpenes, phenolic as well as flavonoid derivatives with anticancer properties were detected in AHL by HRLCMS, and these phytoconstituents may be attributed for anticancer property of AHL. CONCLUSION The present study evaluates the effectiveness of AHL against Colorectal cancer cell lines. AHL is cytotoxic and induces apoptosis in HCT-116 cells by caspase 3 activation and increased ROS production that can be attributed to sesquiterpenoids. Thus, the plant A. adenophora has therapeutic potential for Colorectal cancer and can be further exploited for developing anticancer drug.
Collapse
|
|
1 |
|
23
|
Reema R, Bedmutha T, Kakati N, Rayala VVSK, Radhakrishnanand P, Juliya Devi C, Thakur D, Sankaranarayanan K. Ethidium Bromide Degradation by Cold Atmospheric Plasma in Water and the Assessment of Byproduct Toxicity for Environmental Protection. ACS OMEGA 2024; 9:48044-48054. [PMID: 39676953 PMCID: PMC11635473 DOI: 10.1021/acsomega.4c04302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 12/17/2024]
Abstract
Ethidium bromide (Et-Br) is a widely used fluorescent dye in molecular biology and biotechnology laboratories for visualizing nucleic acids in agarose gel electrophoresis. However, concerns have been raised about its environmental impact and potential health risks due to its persistence and toxicity. The potential accumulation and long-term effects on the environment necessitate the removal of Et-Br from water. This study investigates the potential of novel cold plasma technology for the degradation of Et-Br. Cold atmospheric plasma (CAP) is an environmentally friendly technology that does not produce secondary pollutants and generates a variety of potent chemical reactive oxidants such as hydroxyl radicals (•OH), H2O2, NO2, and NO3. In this study, Et-Br was treated with CAP for 15 min without the addition of any chemicals, resulting in substantial removal of Et-Br. The degradation kinetics revealed that the CAP-treated Et-Br followed a pseudo-first-order reaction, dependent on the treatment time of CAP. The degradation of Et-Br by CAP is distinctly evident through the results obtained from both high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) analyses, providing clear evidence of the occurrence of degradation. Furthermore, toxicity analyses of the degradation products were conducted by evaluating the Et-Br intercalation ability with DNA before and after treatment of Et-Br with CAP. To supplement the assessment, the binding of Et-Br with BSA has also been studied before and after CAP treatment. The impact of CAP-treated Et-Br on the growth and colony-forming unit (CFU) counts of Escherichia coli was also evaluated. Results indicated an increase in bacterial growth with an increase in CAP treatment time, suggesting that the degradation products of Et-Br using CAP were nontoxic. This study highlights the potential of CAP as a clean and efficient technology for the degradation of Et-Br, presenting a promising solution for mitigating its environmental and health risks.
Collapse
|
research-article |
1 |
|
24
|
Devi ST, Kshetrimayum V, Heisnam R, Akula SJ, Radhakrishnanand P, Mukherjee PK, Singh KB, Sharma N. Investigating the impact of Terminalia chebula, an underutilized functional fruit, on oral squamous cell carcinoma: Exploring cell death mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119482. [PMID: 39938761 DOI: 10.1016/j.jep.2025.119482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
ETHNOPHARMALOGICAL RELEVANCE Terminalia chebula, known for its extensive use in traditional medicinal practices among indigenous cultures, is recognized for its effectiveness in treating various oral disorders. Healers in India and China utilize the ripe fruits of T. chebula to prevent and manage conditions such as dental cavities, gingivitis, bleeding gums and stomatitis. The fruits have also been traditionally used in Ayurvedic and Siddha medicines for treatment of various diseases including anticancer properties. It is also an important component of Tibetan traditional medicine used for the treatment of cancer. Studies have demonstrated the efficacy of T. chebula against lung and colon carcinoma. AIM OF THE STUDY Despite its historical significance in oral health, the potential of T. chebula against oral cancer has not been explored, warranting further investigation into its bioactive properties. This study aims to explore the therapeutic potential of the hydroalcoholic extract of Terminalia chebula fruits and its fractions against oral squamous cell carcinoma (OSCC) using SCC9 cells focusing on their cytotoxicity, anti-proliferative effect and the synergistic action of its ethyl-acetate fraction with cisplatin (CP). Additionally it seeks to identify the bioactive phytoconstituents in EAF were identified using LC-ESI-QTOF-MS. MATERIALS AND METHODS Antioxidant activity of TYH and its fraction were assessed using DPPH and ABTS assays. Total phenolic (TPC) and total flavonoid content (TFC) were quantified via Folin-ciocalteau and alluminium chloride assays respectively. Cytotoxic and antiproliferative effects were assessed using MTT assay, clonogenic assay and cell migration assay. Apoptosis in EAF treated SCC9 cells was analysed by using DAPI, Giemsa staining and flow cytometry using Annexin V-FITC/PI apoptosis detection kit. Intracellular reactive oxygen species (ROS) was assessed using H2DCFDA, western blotting examined expression of apoptosis related proteins in SCC9 cells. Combinational effect of EAF with cisplatin (CP) was also assessed and phytochemical constituents of EAF were analysed using LC-ESI-QTOF-MS. RESULTS The ethyl acetate fraction (EAF) showed the highest antioxidant activity (IC50 value of 8.16 ± 0.59 μg/mL and 4.99 ± 0.82 μg/mL in DPPH and ABTS assays respectively) which reciprocated with a high TPC and TFC (528.46 ± 2.59 mgGAE/g and 49.10 ± 1.61 mgQE/g dry weight of the extract respectively) content. EAF significantly reduced cell viability with an IC50 value of 86.73 ± 0.55 μg/mL, resulted in dose dependent cell death, and prevented the proliferation and migration in SCC9 cells. Further Annexin V-PI based flow cytometric analysis and caspase-3/7 enzyme activity assay confirmed the apoptotic effect of EAF in SCC9 cells. Intrinsic pathway of apoptosis post treatment with EAF was confirmed by western blotting with marker proteins, Bax, Bcl-2, Mcl-1, cleaved caspase, procaspase and PARP. A combinatorial study of EAF with the standard drug cisplatin also indicated a synergistic effect of the fraction in cisplatin treated cells with a CI value of 0.67571. LC-ESI-QTOF-MS led to identification of the presence of phenolics and gallotannins with anticancer properties in EAF. CONCLUSION This study demonstrates the potential of the hydroalcoholic extract of Terminalia chebula fruits (TYH), especially its ethyl acetate fraction (EAF), as a therapeutic agent against oral squamous cell carcinoma (OSCC).
Collapse
|
|
1 |
|
25
|
Prabakaran A, Rakshit D, Patel I, Susanna KJ, Mishra A, Radhakrishnanand P, Sarma P, Alexander A. Enhanced cognitive function in mice through intranasal delivery of sinapic acid via chitosan-coated solid lipid nanoparticles. Int J Pharm 2025; 675:125565. [PMID: 40187700 DOI: 10.1016/j.ijpharm.2025.125565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/07/2025]
Abstract
Sinapic acid (SAc) is a plant-based antioxidant known for its neuroprotective effects. However, its therapeutic potential for Alzheimer's disease (AD) remains limited because of its low bioavailability in the brain. Therefore, the present study hypothesized safe and effective delivery of SAc using chitosan-coated solid lipid nanoparticles (Cs-SAc-SLNs) via the intranasal route for AD treatment. The characterization of Cs-SAc-SLNs using AFM, SEM, and TEM confirmed their spherical morphology with a particle size of less than 200 nm. Moreover, the Cs-SAc-SLNs demonstrated a sustained drug release of 61.3 ± 1.7 % in 24 h. Remarkably, Cs-SAc-SLNs showed significant cellular uptake (P < 0.05) than uncoated SLNs in the Neuro-2a cell line. The histopathology study using nasal mucosa demonstrated the safety of the formulation, which makes it ideal for intranasal administration. The in vitro sustained drug release is well mapped with the in vivo pharmacokinetics study, indicating a 1.7-fold increase in the half-life (t1/2) of SAc. Interestingly, the chitosan-coated Cs-SAc-SLNs (i.n.) demonstrated a superior AUC0-∞ (3128.05 ± 129.42 ng/g*h) and showed a significant enhancement in brain bioavailability (3.7-fold) in terms of drug targeting efficiency as compared to plain SAc (i.v.). This improved brain delivery contributed to substantial neuroprotective effects in Aβ1-42-induced cognitively impaired mice. The study also supported the decreased biochemical markers levels of oxidative stress, cholinergic activity, and inflammatory cytokine levels (TNF-α) in the hippocampus and cortex of Aβ1-42-injected mice. Overall, the present study highlights the safe and enhanced cognitive function using chitosan-coated SLNs for AD treatment.
Collapse
|
|
1 |
|