1
|
Eichinger L, Pachebat J, Glöckner G, Rajandream MA, Sucgang R, Berriman M, Song J, Olsen R, Szafranski K, Xu Q, Tunggal B, Kummerfeld S, Madera M, Konfortov BA, Rivero F, Bankier AT, Lehmann R, Hamlin N, Davies R, Gaudet P, Fey P, Pilcher K, Chen G, Saunders D, Sodergren E, Davis P, Kerhornou A, Nie X, Hall N, Anjard C, Hemphill L, Bason N, Farbrother P, Desany B, Just E, Morio T, Rost R, Churcher C, Cooper J, Haydock S, van Driessche N, Cronin A, Goodhead I, Muzny D, Mourier T, Pain A, Lu M, Harper D, Lindsay R, Hauser H, James K, Quiles M, Babu MM, Saito T, Buchrieser C, Wardroper A, Felder M, Thangavelu M, Johnson D, Knights A, Loulseged H, Mungall K, Oliver K, Price C, Quail M, Urushihara H, Hernandez J, Rabbinowitsch E, Steffen D, Sanders M, Ma J, Kohara Y, Sharp S, Simmonds M, Spiegler S, Tivey A, Sugano S, White B, Walker D, Woodward J, Winckler T, Tanaka Y, Shaulsky G, Schleicher M, Weinstock G, Rosenthal A, Cox E, Chisholm RL, Gibbs R, Loomis WF, Platzer M, Kay RR, Williams J, Dear PH, Noegel AA, Barrell B, Kuspa A. The genome of the social amoeba Dictyostelium discoideum. Nature 2005; 435:43-57. [PMID: 15875012 PMCID: PMC1352341 DOI: 10.1038/nature03481] [Citation(s) in RCA: 970] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Accepted: 02/17/2005] [Indexed: 02/07/2023]
Abstract
The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes of this organism encode approximately 12,500 predicted proteins, a high proportion of which have long, repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal ribosomal DNA (rDNA) element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal-fungal lineage after the plant-animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.
Collapse
|
research-article |
20 |
970 |
24
|
Abazov VM, Abbott B, Abdesselam A, Abolins M, Abramov V, Acharya BS, Adams DL, Adams M, Ahmed SN, Alexeev GD, Alton A, Alves GA, Arnoud Y, Avila C, Babintsev VV, Babukhadia L, Bacon TC, Baden A, Baffioni S, Baldin B, Balm PW, Banerjee S, Barberis E, Baringer P, Barreto J, Bartlett JF, Bassler U, Bauer D, Bean A, Beaudette F, Begel M, Belyaev A, Beri SB, Bernardi G, Bertram I, Besson A, Beuselinck R, Bezzubov VA, Bhat PC, Bhatnagar V, Bhattacharjee M, Blazey G, Blekman F, Blessing S, Boehnlein A, Bojko NI, Bolton TA, Borcherding F, Bos K, Bose T, Brandt A, Briskin G, Brock R, Brooijmans G, Bross A, Buchholz D, Buehler M, Buescher V, Burtovoi VS, Butler JM, Canelli F, Carvalho W, Casey D, Castilla-Valdez H, Chakraborty D, Chan KM, Chekulaev SV, Cho DK, Choi S, Chopra S, Claes D, Clark AR, Connolly B, Cooper WE, Coppage D, Crépé-Renaudin S, Cummings MAC, Cutts D, Da Motta H, Davis GA, De K, De Jong SJ, Demarteau M, Demina R, Demine P, Denisov D, Denisov SP, Desai S, Diehl HT, Diesburg M, Doulas S, Dudko LV, Duflot L, Dugad SR, Duperrin A, Dyshkant A, Edmunds D, Ellison J, Eltzroth JT, Elvira VD, et alAbazov VM, Abbott B, Abdesselam A, Abolins M, Abramov V, Acharya BS, Adams DL, Adams M, Ahmed SN, Alexeev GD, Alton A, Alves GA, Arnoud Y, Avila C, Babintsev VV, Babukhadia L, Bacon TC, Baden A, Baffioni S, Baldin B, Balm PW, Banerjee S, Barberis E, Baringer P, Barreto J, Bartlett JF, Bassler U, Bauer D, Bean A, Beaudette F, Begel M, Belyaev A, Beri SB, Bernardi G, Bertram I, Besson A, Beuselinck R, Bezzubov VA, Bhat PC, Bhatnagar V, Bhattacharjee M, Blazey G, Blekman F, Blessing S, Boehnlein A, Bojko NI, Bolton TA, Borcherding F, Bos K, Bose T, Brandt A, Briskin G, Brock R, Brooijmans G, Bross A, Buchholz D, Buehler M, Buescher V, Burtovoi VS, Butler JM, Canelli F, Carvalho W, Casey D, Castilla-Valdez H, Chakraborty D, Chan KM, Chekulaev SV, Cho DK, Choi S, Chopra S, Claes D, Clark AR, Connolly B, Cooper WE, Coppage D, Crépé-Renaudin S, Cummings MAC, Cutts D, Da Motta H, Davis GA, De K, De Jong SJ, Demarteau M, Demina R, Demine P, Denisov D, Denisov SP, Desai S, Diehl HT, Diesburg M, Doulas S, Dudko LV, Duflot L, Dugad SR, Duperrin A, Dyshkant A, Edmunds D, Ellison J, Eltzroth JT, Elvira VD, Engelmann R, Eno S, Eppley G, Ermolov P, Eroshin OV, Estrada J, Evans H, Evdokimov VN, Ferbel T, Filthaut F, Fisk HE, Fortner M, Fox H, Fu S, Fuess S, Gallas E, Galyaev AN, Gao M, Gavrilov V, Genik RJ, Genser K, Gerber CE, Gershtein Y, Ginther G, Gómez B, Goncharov PI, Gounder K, Goussiou A, Grannis PD, Greenlee H, Greenwood ZD, Grinstein S, Groer L, Grünendahl S, Grünewald MW, Gurzhiev SN, Gutierrez G, Gutierrez P, Hadley NJ, Haggerty H, Hagopian S, Hagopian V, Hall RE, Han C, Hansen S, Hauptman JM, Hebert C, Hedin D, Heinmiller JM, Heinson AP, Heintz U, Hildreth MD, Hirosky R, Hobbs JD, Hoeneisen B, Huang J, Huang Y, Iashvili I, Illingworth R, Ito AS, Jaffré M, Jain S, Jesik R, Johns K, Johnson M, Jonckheere A, Jöstlein H, Juste A, Kahl W, Kahn S, Kajfasz E, Kalinin AM, Karmanov D, Karmgard D, Kehoe R, Kesisoglou S, Khanov A, Kharchilava A, Klima B, Kohli JM, Kostritskiy AV, Kotcher J, Kothari B, Kozelov AV, Kozlovsky EA, Krane J, Krishnaswamy MR, Krivkova P, Krzywdzinski S, Kubantsev M, Kuleshov S, Kulik Y, Kunori S, Kupco A, Kuznetsov VE, Landsberg G, Lee WM, Leflat A, Lehner F, Leonidopoulos C, Li J, Li QZ, Lima JGR, Lincoln D, Linn SL, Linnemann J, Lipton R, Lucotte A, Lueking L, Lundstedt C, Luo C, Maciel AKA, Madaras RJ, Malyshev VL, Manankov V, Mao HS, Marshall T, Martin MI, Mattingly SEK, Mayorov AA, McCarthy R, McMahon T, Melanson HL, Melnitchouk A, Merkin A, Merritt KW, Miao C, Miettinen H, Mihalcea D, Mokhov N, Mondal NK, Montgomery HE, Moore RW, Mutaf YD, Nagy E, Narain M, Narasimham VS, Naumann NA, Neal HA, Negret JP, Nelson S, Nomerotski A, Nunnemann T, O'Neil D, Oguri V, Oshima N, Padley P, Papageorgiou K, Parashar N, Partridge R, Parua N, Patwa A, Peters O, Pétroff P, Piegaia R, Pope BG, Prosper HB, Protopopescu S, Przybycien MB, Qian J, Rajagopalan S, Rapidis PA, Reay NW, Reucroft S, Ridel M, Rijssenbeek M, Rizatdinova F, Rockwell T, Royon C, Rubinov P, Ruchti R, Sabirov BM, Sajot G, Santoro A, Sawyer L, Schamberger RD, Schellman H, Schwartzman A, Shabalina E, Shivpuri RK, Shpakov D, Shupe M, Sidwell RA, Simak V, Sirotenko V, Slattery P, Smith RP, Snow GR, Snow J, Snyder S, Solomon J, Song Y, Sorín V, Sosebee M, Sotnikova N, Soustruznik K, Souza M, Stanton NR, Steinbrück G, Stoker D, Stolin V, Stone A, Stoyanova DA, Strang MA, Strauss M, Strovink M, Stutte L, Sznajder A, Talby M, Taylor W, Tentindo-Repond S, Trippe TG, Turcot AS, Tuts PM, Van Kooten R, Vaniev V, Varelas N, Villeneuve-Seguier F, Volkov AA, Vorobiev AP, Wahl HD, Wang ZM, Warchol J, Watts G, Wayne M, Weerts H, White A, Whiteson D, Wijngaarden DA, Willis S, Wimpenny SJ, Womersley J, Wood DR, Xu Q, Yamada R, Yasuda T, Yatsunenko YA, Yip K, Yu J, Zanabria M, Zhang X, Zhou B, Zhou Z, Zielinski M, Zieminska D, Zieminski A, Zutshi V, Zverev EG, Zylberstejn A. A precision measurement of the mass of the top quark. Nature 2004; 429:638-42. [PMID: 15190311 DOI: 10.1038/nature02589] [Show More Authors] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 04/21/2004] [Indexed: 11/09/2022]
Abstract
The standard model of particle physics contains parameters--such as particle masses--whose origins are still unknown and which cannot be predicted, but whose values are constrained through their interactions. In particular, the masses of the top quark (M(t)) and W boson (M(W)) constrain the mass of the long-hypothesized, but thus far not observed, Higgs boson. A precise measurement of M(t) can therefore indicate where to look for the Higgs, and indeed whether the hypothesis of a standard model Higgs is consistent with experimental data. As top quarks are produced in pairs and decay in only about 10(-24) s into various final states, reconstructing their masses from their decay products is very challenging. Here we report a technique that extracts more information from each top-quark event and yields a greatly improved precision (of +/- 5.3 GeV/c2) when compared to previous measurements. When our new result is combined with our published measurement in a complementary decay mode and with the only other measurements available, the new world average for M(t) becomes 178.0 +/- 4.3 GeV/c2. As a result, the most likely Higgs mass increases from the experimentally excluded value of 96 to 117 GeV/c2, which is beyond current experimental sensitivity. The upper limit on the Higgs mass at the 95% confidence level is raised from 219 to 251 GeV/c2.
Collapse
|
Journal Article |
21 |
203 |