1
|
Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, Sun F, Lu J, Yin Y, Cai X, Sun Q, Wang K, Ba Y, Wang Q, Wang D, Yang J, Liu P, Xu T, Yan Q, Zhang J, Zen K, Zhang CY. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 2010; 39:133-44. [PMID: 20603081 DOI: 10.1016/j.molcel.2010.06.010] [Citation(s) in RCA: 947] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 01/27/2010] [Accepted: 04/29/2010] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs that regulate target gene expression at the posttranscriptional level. Here, we report that secreted miRNAs can serve as signaling molecules mediating intercellular communication. In human blood cells and cultured THP-1 cells, miR-150 was selectively packaged into microvesicles (MVs) and actively secreted. THP-1-derived MVs can enter and deliver miR-150 into human HMEC-1 cells, and elevated exogenous miR-150 effectively reduced c-Myb expression and enhanced cell migration in HMEC-1 cells. In vivo studies confirmed that intravenous injection of THP-1 MVs significantly increased the level of miR-150 in mouse blood vessels. MVs isolated from the plasma of patients with atherosclerosis contained higher levels of miR-150, and they more effectively promoted HMEC-1 cell migration than MVs from healthy donors. These results demonstrate that cells can secrete miRNAs and deliver them into recipient cells where the exogenous miRNAs can regulate target gene expression and recipient cell function.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
947 |
2
|
Luo Y, Bolon B, Kahn S, Bennett BD, Babu-Khan S, Denis P, Fan W, Kha H, Zhang J, Gong Y, Martin L, Louis JC, Yan Q, Richards WG, Citron M, Vassar R. Mice deficient in BACE1, the Alzheimer's beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat Neurosci 2001; 4:231-2. [PMID: 11224535 DOI: 10.1038/85059] [Citation(s) in RCA: 753] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
|
24 |
753 |
3
|
Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer's disease and Parkinson's disease. Prog Neurobiol 2001; 63:71-124. [PMID: 11040419 DOI: 10.1016/s0301-0082(00)00014-9] [Citation(s) in RCA: 648] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a small dimeric protein, structurally related to nerve growth factor, which is abundantly and widely expressed in the adult mammalian brain. BDNF has been found to promote survival of all major neuronal types affected in Alzheimer's disease and Parkinson's disease, like hippocampal and neocortical neurons, cholinergic septal and basal forebrain neurons, and nigral dopaminergic neurons. In this article, we summarize recent work on the molecular and cellular biology of BDNF, including current ideas about its intracellular trafficking, regulated synthesis and release, and actions at the synaptic level, which have considerably expanded our conception of BDNF actions in the central nervous system. But our primary aim is to review the literature regarding BDNF distribution in the human brain, and the modifications of BDNF expression which occur in the brain of individuals with Alzheimer's disease and Parkinson's disease. Our knowledge concerning BDNF actions on the neuronal populations affected in these pathological states is also reviewed, with an aim at understanding its pathogenic and pathophysiological relevance.
Collapse
|
Review |
24 |
648 |
4
|
Yan Q, Elliott J, Snider WD. Brain-derived neurotrophic factor rescues spinal motor neurons from axotomy-induced cell death. Nature 1992; 360:753-5. [PMID: 1281520 DOI: 10.1038/360753a0] [Citation(s) in RCA: 580] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Current ideas about the dependence of neurons on target-derived growth factors were formulated on the basis of experiments involving neurons with projections to the periphery. Nerve growth factor (NGF) and recently identified members of the NGF family of neuronal growth factors, known as neurotrophins, are thought to regulate survival of sympathetic and certain populations of sensory ganglion cells during development. Far less is known about factors that regulate the survival of spinal and cranial motor neurons, which also project to peripheral targets. NGF has not been shown to influence motor neuron survival, and whether the newly identified neurotrophins promote motor neuron survival is unknown. We show here that brain-derived neurotrophic factor (BDNF) is retrogradely transported by motor neurons in neonatal rats and that local application of BDNF to transected sciatic nerve prevents the massive death of motor neurons that normally follows axotomy in the neonatal period. These results show that BDNF has survival-promoting effects on motor neurons in vivo and suggest that BDNF may influence motor neuron survival during development.
Collapse
|
|
33 |
580 |
5
|
Molliver DC, Wright DE, Leitner ML, Parsadanian AS, Doster K, Wen D, Yan Q, Snider WD. IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron 1997; 19:849-61. [PMID: 9354331 DOI: 10.1016/s0896-6273(00)80966-6] [Citation(s) in RCA: 570] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have tested the role of glial cell line-derived neurotrophic factor (GDNF) in regulating a group of putatively nociceptive dorsal root ganglion (DRG) neurons that do not express calcitonin gene-related peptide (CGRP) and that downregulate the nerve growth factor (NGF) receptor tyrosine kinase, TrkA, after birth. We show that mRNA and protein for the GDNF receptor tyrosine kinase, Ret, are expressed in the DRG in patterns that differ markedly from those of any of the neurotrophin receptors. Most strikingly, a population of small neurons initiates expression of Ret between embryonic day 15.5 and postnatal day 7.5 and maintains Ret expression into adulthood. These Ret-expressing small neurons are selectively labeled by the lectin IB4 and project to lamina IIi of the dorsal horn. Ret-expressing neurons also express the glycosyl-phosphatidyl inositol-linked (GPI-linked) GDNF binding component GDNFR-alpha and retrogradely transport 125I-GDNF, indicating the presence of a biologically active GDNF receptor complex. In vitro, GDNF supports the survival of small neurons that express Ret and bind IB4 while failing to support the survival of neurons expressing TrkA and CGRP. Together, our findings suggest that IB4-binding neurons switch from dependence on NGF in embryonic life to dependence on GDNF in postnatal life and are likely regulated by GDNF in maturity.
Collapse
|
|
28 |
570 |
6
|
Yan Q, Matheson C, Lopez OT. In vivo neurotrophic effects of GDNF on neonatal and adult facial motor neurons. Nature 1995; 373:341-4. [PMID: 7830768 DOI: 10.1038/373341a0] [Citation(s) in RCA: 470] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Motor neurons require neurotrophic factor(s) for their survival during development and for maintenance of function in adulthood. In vivo studies have shown that motor neurons respond to a variety of molecules, including ciliary neurotrophic factor, members of the neurotrophin family, and the insulin growth factor IGF-1 (refs 3-13). Here we investigate the potential motor neuron neurotrophic effects of glial-cell-line-derived neurotrophic factor (GDNF), initially identified as a neurotrophic factor for substantia nigra dopaminergic neurons. We find that GDNF is retrogradely transported, in a receptor-mediated fashion, by spinal cord motor neurons in neonatal rats. Local application of GDNF to the transected facial nerve prevents the massive motor neuron cell death and atrophy that normally follows axotomy in the neonatal period. In adult rats, GDNF administered locally or systemically can markedly attenuate the lesion-induced decrease of choline acetyltransferase immunoreactivity in the facial nucleus. Our data indicate that GDNF has very profound neurotrophic effects in vivo on developing as well as on adult motor neurons, and is the most potent motor neuron trophic factor found so far.
Collapse
|
|
30 |
470 |
7
|
Connor B, Young D, Yan Q, Faull RL, Synek B, Dragunow M. Brain-derived neurotrophic factor is reduced in Alzheimer's disease. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 49:71-81. [PMID: 9387865 DOI: 10.1016/s0169-328x(97)00125-3] [Citation(s) in RCA: 453] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease may be due to a deficiency in neurotrophin protein or receptor expression. Consistent with this hypothesis, a reduction in BDNF mRNA expression has been observed in human post-mortem Alzheimer's disease hippocampi. To further investigate this observation, we examined whether the alteration in BDNF expression also occurred at the protein level in human post-mortem Alzheimer's disease hippocampi and temporal cortices using immunohistochemical techniques. We observed a reduction in the intensity and number of BDNF-immunoreactive cell bodies within both the Alzheimer's disease hippocampus and temporal cortex when compared to normal tissue. These results support and extend previous findings that BDNF mRNA is reduced in the human Alzheimer's disease hippocampus and temporal cortex, and suggest that a loss of BDNF may contribute to the progressive atrophy of neurons in Alzheimer's disease.
Collapse
|
|
28 |
453 |
8
|
Yan Q, Rosenfeld RD, Matheson CR, Hawkins N, Lopez OT, Bennett L, Welcher AA. Expression of brain-derived neurotrophic factor protein in the adult rat central nervous system. Neuroscience 1997; 78:431-48. [PMID: 9145800 DOI: 10.1016/s0306-4522(96)00613-6] [Citation(s) in RCA: 416] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have generated and characterized a multi-functional polyclonal anti-brain-derived neurotrophic factor antibody. Western blot analysis, dorsal root ganglion neurite outgrowth and dorsal root ganglion neuron survival assays showed that this antibody specifically recognized brain-derived neurotrophic factor and not the other neurotrophins. Furthermore, it was capable of blocking the functional effects of brain-derived neurotrophic factor. Using this antibody, we examined the expression of brain-derived neurotrophic factor in adult rat brains by immunohistochemistry. We found distinct brain-derived neurotrophic factor immunoreactivity in several structures of the brain. These included the neocortex, piriform cortex, amygdaloid complex, hippocampal formation, claustrum, some thalamic and hypothalamic nuclei, the substantia nigra and some brainstem structures. In contrast to brain-derived neurotrophic factor messenger RNA expression, brain-derived neurotrophic factor immunoreactivity was also found in the lateral septum, bed nucleus of the stria teminalis, medial preoptic nucleus, olivery pretectal nucleus, lateral paragigantocellular nucleus and the dorsal horn of the spinal cord. In normal adult rat brains, there was little or no staining in the CA1 region or the granule cell layer of the dentate gyrus of the hippocampus. However, kainate treatments greatly increased brain-derived neurotrophic factor immunoreactivity in the pyramidal cells of the CA1 region, as well as in the dentate gyrus, CA2 and CA3 hippocampal regions. We present evidence for both the subcellular localization and anterograde transport of endogenous brain-derived neurotrophic factor in the central nervous system. The detection of brain-derived neurotrophic factor protein in several discrete regions of the adult brain, and brain-derived neurotrophic factor's dramatic up-regulation following kainate treatment, strongly supports a role of brain-derived neurotrophic factor in the maintenance of adult neurons and synapses. Since several populations of neurons lost during neurodegenerative diseases synthesize brain-derived neurotrophic factor protein, modulation of brain-derived neurotrophic factor levels may be clinically beneficial. The antibody described in this paper will be helpful in determining more precisely the functional activities of brain-derived neurotrophic factor in the adult.
Collapse
|
|
28 |
416 |
9
|
Querido E, Blanchette P, Yan Q, Kamura T, Morrison M, Boivin D, Kaelin WG, Conaway RC, Conaway JW, Branton PE. Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. Genes Dev 2001; 15:3104-17. [PMID: 11731475 PMCID: PMC312842 DOI: 10.1101/gad.926401] [Citation(s) in RCA: 392] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although MDM2 plays a major role in regulating the stability of the p53 tumor suppressor protein, other poorly understood MDM2-independent pathways also exist. Human adenoviruses have evolved strategies to regulate p53 function and stability to permit efficient viral replication. One mechanism involves adenovirus E1B55K and E4orf6 proteins, which collaborate to target p53 for degradation. To determine the mechanism of this process, a multiprotein E4orf6-associated complex was purified and shown to contain a novel Cullin-containing E3 ubiquitin ligase that is (1) composed of Cullin family member Cul5, Elongins B and C, and the RING-H2 finger protein Rbx1(ROC1); (2) remarkably similar to the von Hippel-Lindau tumor suppressor and SCF (Skp1-Cul1/Cdc53-F-box) E3 ubiquitin ligase complexes; and (3) capable of stimulating ubiquitination of p53 in vitro in the presence of E1/E2 ubiquitin-activating and -conjugating enzymes. Cullins are activated by NEDD8 modification; therefore, to determine whether Cullin complexes are required for adenovirus-induced p53 degradation, studies were conducted in ts41 Chinese hamster ovary cells that are temperature sensitive for the NEDD8 pathway. E4orf6/E1B55K failed to induce the degradation of p53 at the nonpermissive temperature. Thus, our results identify a novel role for the Cullin-based machinery in regulation of p53.
Collapse
|
research-article |
24 |
392 |
10
|
Oppenheim RW, Yin QW, Prevette D, Yan Q. Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death. Nature 1992; 360:755-7. [PMID: 1465146 DOI: 10.1038/360755a0] [Citation(s) in RCA: 356] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
During normal vertebrate development, about half of spinal motoneurons are lost by a process of naturally occurring or programmed cell death. Additional developing motoneurons degenerate after the removal of targets or afferents. Naturally occurring motoneuron death as well as motoneuron death after loss of targets or after axotomy can be prevented by in vivo treatment with putative target (muscle) derived or other neurotrophic agents. Motoneurons can also be prevented from dying in vitro and in vivo (Y.Q.-W., R.W., D.P., J. Johnson and L. Van Eldik, unpublished data and refs 7, 13, 14) by treatment with central nervous system extracts (brain or spinal cord) and purified central nervous system and glia-derived proteins. Here we report that in vivo treatment of chick embryos with brain-derived neurotrophic factor rescues motoneurons from naturally occurring cell death. Furthermore, in vivo treatment with brain-derived neurotrophic factor (and nerve growth factor) also prevents the induced death of motoneurons that occurs following the removal of descending afferent input (deafferentation). These data indicate that members of the neurotrophin family can promote the survival of developing avian motoneurons.
Collapse
|
|
33 |
356 |
11
|
Uyttendaele H, Marazzi G, Wu G, Yan Q, Sassoon D, Kitajewski J. Notch4/int-3, a mammary proto-oncogene, is an endothelial cell-specific mammalian Notch gene. Development 1996; 122:2251-9. [PMID: 8681805 DOI: 10.1242/dev.122.7.2251] [Citation(s) in RCA: 341] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The int-3 oncogene was identified as a frequent target in Mouse Mammary Tumor Virus (MMTV)-induced mammary carcinomas and encodes the intracellular domain of a novel mouse Notch gene. To investigate the role of the int-3 proto-oncogene in mouse development and carcinogenesis, we isolated cDNA clones corresponding to the entire coding potential of the int-3 proto-oncogene. We propose to name this gene Notch4 and reserve the int-3 nomenclature for references to the oncogenic form. The deduced amino acid sequence of Notch4 contains conserved motifs found in Notch proteins; however Notch4 has fewer epidermal growth factor (EGF)-like repeats and a shorter intracellular domain than other mouse Notch homologues. Comparison of the coding potential of the int-3 gene to that of Notch4 suggests that loss of the extracellular domain of Notch4 leads to constitutive activation of this murine Notch protein. In situ hybridization revealed that Notch4 transcripts are primarily restricted to endothelial cells in embryonic and adult life. Truncated Notch4 transcripts were detected in post-meiotic male germ cells. The distinct Notch4 protein features and its restricted expression pattern suggests a specific role for Notch4 during development of vertebrate endothelium.
Collapse
|
|
29 |
341 |
12
|
Dennis K, Fan T, Geiman T, Yan Q, Muegge K. Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev 2001; 15:2940-4. [PMID: 11711429 PMCID: PMC312825 DOI: 10.1101/gad.929101] [Citation(s) in RCA: 279] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Methylation patterns of the mammalian genome are thought to be crucial for development. The precise mechanisms designating specific genomic loci for methylation are not known. Targeted deletion of Lsh results in perinatal lethality with a rather normal development. We report here, however, that Lsh(-/-) mice show substantial loss of methylation throughout the genome. The hypomethylated loci comprise repetitive elements and single copy genes. This suggests that global genomic methylation is not absolutely required for normal embryogenesis. Based on the similarity of Lsh to other SNF2 chromatin remodeling proteins, it suggests that alteration of chromatin affects global methylation patterns in mice.
Collapse
|
research-article |
24 |
279 |
13
|
Xu XR, Huang J, Xu ZG, Qian BZ, Zhu ZD, Yan Q, Cai T, Zhang X, Xiao HS, Qu J, Liu F, Huang QH, Cheng ZH, Li NG, Du JJ, Hu W, Shen KT, Lu G, Fu G, Zhong M, Xu SH, Gu WY, Huang W, Zhao XT, Hu GX, Gu JR, Chen Z, Han ZG. Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc Natl Acad Sci U S A 2001; 98:15089-94. [PMID: 11752456 PMCID: PMC64988 DOI: 10.1073/pnas.241522398] [Citation(s) in RCA: 272] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. In this work, we report on a comprehensive characterization of gene expression profiles of hepatitis B virus-positive HCC through the generation of a large set of 5'-read expressed sequence tag (EST) clusters (11,065 in total) from HCC and noncancerous liver samples, which then were applied to a cDNA microarray system containing 12,393 genes/ESTs and to comparison with a public database. The commercial cDNA microarray, which contains 1,176 known genes related to oncogenesis, was used also for profiling gene expression. Integrated data from the above approaches identified 2,253 genes/ESTs as candidates with differential expression. A number of genes related to oncogenesis and hepatic function/differentiation were selected for further semiquantitative reverse transcriptase-PCR analysis in 29 paired HCC/noncancerous liver samples. Many genes involved in cell cycle regulation such as cyclins, cyclin-dependent kinases, and cell cycle negative regulators were deregulated in most patients with HCC. Aberrant expression of the Wnt-beta-catenin pathway and enzymes for DNA replication also could contribute to the pathogenesis of HCC. The alteration of transcription levels was noted in a large number of genes implicated in metabolism, whereas a profile change of others might represent a status of dedifferentiation of the malignant hepatocytes, both considered as potential markers of diagnostic value. Notably, the altered transcriptome profiles in HCC could be correlated to a number of chromosome regions with amplification or loss of heterozygosity, providing one of the underlying causes of the transcription anomaly of HCC.
Collapse
|
Comparative Study |
24 |
272 |
14
|
Chen X, Gao C, Li H, Huang L, Sun Q, Dong Y, Tian C, Gao S, Dong H, Guan D, Hu X, Zhao S, Li L, Zhu L, Yan Q, Zhang J, Zen K, Zhang CY. Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res 2010; 20:1128-37. [PMID: 20548333 DOI: 10.1038/cr.2010.80] [Citation(s) in RCA: 267] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent baby formula milk powder contamination incidents have shown that the classic markers or standards in milk quality control are insufficient in identifying "manipulated" poor-quality milk. In the present study, we demonstrated for the first time that cow milk contains large amounts of microRNAs (miRNAs) and that the unique expression profile of milk-specific miRNAs can serve as a novel indicator and possible new standard for the quality control of raw milk and milk-related commercial products, such as fluid milk and powdered formula milk. First, using Solexa sequencing, we systematically screened miRNA expression in raw milk and identified a total of 245 miRNAs in raw milk. Unlike other classic biomarkers whose expression levels are nearly identical at different periods of lactation, individual miRNAs can be significantly altered during lactation process, implicating that miRNAs may be a more accurate indicator to reflect the quality alteration of milk. Second, using TaqMan probe-based miRNA quantitative RT-PCR, we further identified seven miRNAs that have a relatively consistent expression throughout the lactation process, and more importantly, the expression profile of these seven milk-specific miRNAs can serve as an ideal biomarker for discriminating poor-quality or "manipulated" milk from pure raw milk, as well as for the quality control of commercial milk products, such as fluid milk and powdered formula milk. Together, our findings provide a basis for understanding the physiological role of milk miRNAs and a new potential standard for determining the quality of raw milk or milk-related commercial products.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
267 |
15
|
Abstract
SPARC (secreted protein, acidic and rich in cysteine) is a unique matricellular glycoprotein that is expressed by many different types of cells and is associated with development, remodeling, cell turnover, and tissue repair. Its principal functions in vitro are counteradhesion and antiproliferation, which proceed via different signaling pathways. SPARC consists of three domains, each of which has independent activity and unique properties. The extracellular calcium binding module and the follistatin-like module have been recently crystallized. Specific interactions between SPARC and growth factors, extracellular matrix proteins, and cell surface proteins contribute to the diverse activities described for SPARC in vivo and in vitro. The location of SPARC in the nuclear matrix of certain proliferating cells, but only in the cytosol of postmitotic neurons, indicates potential functions of SPARC as a nuclear protein, which might be involved in the regulation of cell cycle progression and mitosis. High levels of SPARC have been found in adult eye, and SPARC-null mice exhibit cataracts at 1-2 months of age. This animal model provides an excellent opportunity to confirm and explore some of the properties of SPARC, to investigate cataractogenesis, and to study SPARC-related family proteins, e.g., SC1/hevin, a counteradhesive matricellular protein that might functionally compensate for SPARC in certain tissues.(J Histochem Cytochem 47:1495-1505, 1999)
Collapse
|
Review |
26 |
261 |
16
|
Kamura T, Conrad MN, Yan Q, Conaway RC, Conaway JW. The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2. Genes Dev 1999; 13:2928-33. [PMID: 10579999 PMCID: PMC317157 DOI: 10.1101/gad.13.22.2928] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The RING-H2 finger protein Rbx1 is a subunit of the related SCF (Skp1-Cdc53/Cul1-F-box protein) and von Hippel-Lindau (VHL) tumor suppressor (elongin BC-Cul2-VHL) E3 ubiquitin ligase complexes, where it functions as a component of Cdc53/Rbx1 and Cul2/Rbx1 modules that activate ubiquitination of target proteins by the E2 ubiquitin-conjugating enzymes Cdc34 and Ubc5. Here we demonstrate that the Cdc53/Rbx1 and Cul2/Rbx1 modules also activate conjugation of the ubiquitin-like protein Rub1 to Cdc53 and Cul2 by the dedicated E2 Rub1 conjugating enzyme Ubc12. Our findings identify Rbx1 as a common component of enzyme systems responsible for ubiquitin and Rub1 modification of target proteins.
Collapse
|
research-article |
26 |
225 |
17
|
Parain K, Murer MG, Yan Q, Faucheux B, Agid Y, Hirsch E, Raisman-Vozari R. Reduced expression of brain-derived neurotrophic factor protein in Parkinson's disease substantia nigra. Neuroreport 1999; 10:557-61. [PMID: 10208589 DOI: 10.1097/00001756-199902250-00021] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Several in vitro and in vivo studies have shown that brain-derived neurotrophic factor (BDNF) promotes survival of damaged mesencephalic dopaminergic neurons. Using a specific antibody directed against human recombinant BDNF, we studied the expression of the protein at the cellular level in the post-mortem mesencephalon of control subjects and patients with Parkinson's disease (PD). In control subjects, BDNF was expressed in all mesencephalic regions containing dopaminergic neurons, and in the substantia nigra pars compacta (SNpc) 65% of the melanized neurons expressed BDNF. In the PD SNpc, the total number of pigmented neurons containing BDNF was reduced to 9.6% of the corresponding control value. In contrast, the number of pigmented neurons non-immunoreactive for BDNF was reduced to 23.9% of the corresponding control value. This result appears to indicate that SNpc melanized neurons not expressing BDNF have a 2.5-fold greater probability of surviving than BDNF-positive melanized neurons. Furthermore, we found that in parkinsonian mesencephalon almost all dopaminergic neurons containing Lewy bodies were immunoreactive for BDNF. These findings demonstrate a reduced expression of BDNF in PD and suggest that BDNF protein expression does not protect melanized SNpc neurons from the degenerative process in this disease.
Collapse
|
|
26 |
217 |
18
|
Ruit KG, Elliott JL, Osborne PA, Yan Q, Snider WD. Selective dependence of mammalian dorsal root ganglion neurons on nerve growth factor during embryonic development. Neuron 1992; 8:573-87. [PMID: 1550679 DOI: 10.1016/0896-6273(92)90284-k] [Citation(s) in RCA: 203] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have investigated the NGF dependence of dorsal root ganglion (DRG) neurons in mammals using a paradigm of multiple in utero injections of a high titer anti-NGF antiserum. We have determined the specificity of our antiserum in relation to other members of the NGF neurotrophin family and found no cross-reactivity with brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3). To identify various classes of DRG neurons, we have stained their characteristic central projections with Dil. We show here that the NGF dependence of DRG neurons is strikingly selective. Although a majority of DRG neurons are lost after NGF deprivation during embryonic life, these are almost exclusively small diameter neurons that project to laminae I and II of the dorsal horn and presumably subserve nociception and thermoreception. Larger neurons that project to more ventral spinal laminae and subserve other sensory modalities do not require NGF for survival. These NGF-independent DRG neurons likely require one of the more recently identified neurotrophins, BDNF or NT-3.
Collapse
|
|
33 |
203 |
19
|
Yan Q, Matheson C, Sun J, Radeke MJ, Feinstein SC, Miller JA. Distribution of intracerebral ventricularly administered neurotrophins in rat brain and its correlation with trk receptor expression. Exp Neurol 1994; 127:23-36. [PMID: 8200435 DOI: 10.1006/exnr.1994.1076] [Citation(s) in RCA: 179] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To assess the potential effectiveness by which injected neurotrophins can diffuse throughout the brain, we used autoradiographic and immunohistochemical techniques to examine the brain distributions of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) after a single injection into the lateral cerebral ventricle (ICV) in rats. As described previously, ICV-injected NGF labeled cholinergic neurons in the basal forebrain. Injection of BDNF resulted in few or no labeled neurons in the basal forebrain or in the substantia nigra. However, very intense labeling was associated with the ventricular walls and immediate parenchyma. The distribution of NT-3 after ICV injection was intermediate between that of NGF and BDNF. In the basal forebrain, similar neurotrophin distributions were observed in neonate versus adult animals. Our in situ hybridization analysis has shown that mRNA encoding the BDNF receptor(s) (trkB) is highly expressed by ependymal cells as well as by many neurons and glia. On the other hand, expression of the high-affinity NGF receptor (trkA) is restricted to cholinergic neurons in basal forebrain and striatum. In addition, staining with antisera specific for the trkA or trkB receptors demonstrated that their expression patterns closely reflect their mRNA distributions. Taken together, these data suggest that the presence of the trkB receptor on the ependymal layer of the ventricle and its expression throughout the brain parenchyma represents a significant impediment to the adequate diffusion of ICV-injected BDNF into the brain for delivery to target neurons.
Collapse
MESH Headings
- Animals
- Brain/drug effects
- Brain/metabolism
- Brain-Derived Neurotrophic Factor
- Cerebral Ventricles/drug effects
- Cerebral Ventricles/physiology
- Gene Expression/drug effects
- Humans
- Immunohistochemistry
- Injections, Intraventricular
- Nerve Growth Factors/administration & dosage
- Nerve Growth Factors/pharmacology
- Nerve Tissue Proteins/administration & dosage
- Nerve Tissue Proteins/pharmacology
- Neurons/drug effects
- Neurons/metabolism
- Neurotrophin 3
- Prosencephalon/metabolism
- Proto-Oncogene Proteins/analysis
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogenes
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptor Protein-Tyrosine Kinases/analysis
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor, Ciliary Neurotrophic Factor
- Receptor, trkA
- Receptors, Growth Factor/analysis
- Receptors, Growth Factor/biosynthesis
- Receptors, Nerve Growth Factor/analysis
- Receptors, Nerve Growth Factor/biosynthesis
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/pharmacology
- Substantia Nigra/metabolism
Collapse
|
|
31 |
179 |
20
|
Szekely B, Bossuyt V, Li X, Wali V, Patwardhan G, Frederick C, Silber A, Park T, Harigopal M, Pelekanou V, Zhang M, Yan Q, Rimm D, Bianchini G, Hatzis C, Pusztai L. Immunological differences between primary and metastatic breast cancer. Ann Oncol 2018; 29:2232-2239. [DOI: 10.1093/annonc/mdy399] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
|
7 |
162 |
21
|
Yan Q, Elliott JL, Matheson C, Sun J, Zhang L, Mu X, Rex KL, Snider WD. Influences of neurotrophins on mammalian motoneurons in vivo. JOURNAL OF NEUROBIOLOGY 1993; 24:1555-77. [PMID: 8301265 DOI: 10.1002/neu.480241202] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Several recently reported investigations have shown that a member of the neurotrophin family of neuronal growth factors, brain-derived neurotrophic factor (BDNF), supports motoneurons in vitro and rescues motoneurons from naturally occurring and axotomy-induced cell death (Oppenheim et al., 1992b; Sendtner et al., 1992b; Yan et al., 1992; Koliatsos et al., 1993; Henderson et al., 1993). In the current study, we have explored the issue of whether BDNF and other neurotrophins act to regulate motoneuron survival during development and asked whether synthesis of motoneuron transmitter enzymes is also regulated. We first examined whether spinal motoneurons in newborn animals could retrogradely transport iodinated neurotrophins from their targets in a specific, receptor-mediated manner. We found that motoneurons readily transported NGF, BDNF, and neurotrophin-3 (NT-3). The retrograde transport of one factor could be completely or largely blocked by excess of unlabeled homologous factor, but only partially blocked by excess of unlabeled heterologous factors. Since previous studies have shown that these three neurotrophins bind to the low-affinity NGF receptor, p75NGFR, with similar affinity, our data suggest that the retrograde transport of neurotrophins by motoneurons may be mediated by additional components, such as the trk family of proto-oncogenes. Consistent with this hypothesis, we demonstrate here that motoneurons express mRNA for two members of the trk family, trkB and trkC. Furthermore, both trkB and trkC were expressed by E13, consistent with a role for BDNF and NT-3 in regulating important developmental events involving motoneurons such as naturally occurring cell death. In order to determine which members of the neurotrophin family influence motoneuron survival and to assess the generality of their effects, we evaluated the abilities of NGF, BDNF, and NT-3 to save both spinal and cranial motoneurons after neonatal axotomy. Locally applied BDNF saved 40-70% of motoneurons which would ordinarily die after axotomy in lumbar and cranial motor pools, depending on the treatment protocol employed. NT-3 also exhibited some ability to rescue motoneurons and saved 20-25% of motoneurons which would die in the absence of treatment. Finally, we asked whether neurotrophins could influence synthesis of transmitter enzymes by motoneurons as well as their survival after axotomy. Locally applied BDNF and NT-3 could partially prevent the decrease of protein contents in L4 and L5 ventral roots which normally follows sciatic nerve transection. However, treatment with these neurotrophins did not prevent the decrease in choline acetyltransferase (ChAT) activity in L4 and L5 ventral roots which results from this procedure.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
|
32 |
161 |
22
|
Snider WD, Elliott JL, Yan Q. Axotomy-induced neuronal death during development. JOURNAL OF NEUROBIOLOGY 1992; 23:1231-46. [PMID: 1469386 DOI: 10.1002/neu.480230913] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
Review |
33 |
151 |
23
|
Michael GJ, Averill S, Shortland PJ, Yan Q, Priestley JV. Axotomy results in major changes in BDNF expression by dorsal root ganglion cells: BDNF expression in large trkB and trkC cells, in pericellular baskets, and in projections to deep dorsal horn and dorsal column nuclei. Eur J Neurosci 1999; 11:3539-51. [PMID: 10564362 DOI: 10.1046/j.1460-9568.1999.00767.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Brain derived neurotrophic factor (BDNF) is normally expressed by a small number of predominantly trkA-expressing dorsal root ganglion cells. Using immunocytochemistry and in situ hybridization, we have examined the effect of sciatic nerve section on the expression of BDNF in the adult rat. Following axotomy there was a long lasting (4-week) increase in BDNF mRNA and protein in large-diameter, trkB- and trkC-expressing dorsal root ganglion cells. By 2 days postaxotomy, expression of BDNF mRNA had increased from 2% of trkB cells to 50%, and from 18% of trkC cells to 56%. In contrast, BDNF expression in most trkA cells was unchanged, although was increased in the small population of medium- and large-sized trkA cells. Following axotomy, BDNF-immunoreactive terminals appeared in the central axonal projections of large-diameter cells, including the deep dorsal horn and gracile nucleus. Neuropeptide Y was also upregulated following axotomy and was coexpressed with BDNF in the cell bodies and central terminals of the large cells. Ultrastructural analysis in lamina IV of the spinal cord revealed that BDNF terminals in these central projections establish synaptic contacts. Immunoreactivity at 4 weeks was also observed in pericellular baskets that contained calcitonin gene-related peptide (CGRP) and surrounded trkA- and trkB-expressing cells in L4 and L5 lumbar ganglia. These baskets are likely to arise from local, highly immunoreactive, BDNF/CGRP/trkA-expressing cells. Our results identify several novel targets for BDNF and imply that it acts locally in both autocrine and paracrine modes, as well as centrally in a synaptic mode, to modulate the response of somatosensory pathways in nerve injury.
Collapse
|
|
26 |
140 |
24
|
Cheng Y, Gidday JM, Yan Q, Shah AR, Holtzman DM. Marked age-dependent neuroprotection by brain-derived neurotrophic factor against neonatal hypoxic-ischemic brain injury. Ann Neurol 1997; 41:521-9. [PMID: 9124810 DOI: 10.1002/ana.410410416] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hypoxic-ischemic brain injury in survivors of perinatal asphyxia is a frequently encountered clinical problem for which there is currently no effective therapy. Neurotrophins, such as brain-derived neurotrophic factor (BDNF), can protect responsive neurons against cell death in some injury paradigms. While the role of BDNF in hypoxic-ischemic brain injury is not clear, evidence suggests that BDNF may have different effects in the developing, as opposed to the adult, brain. We found that a single intracerebroventricular (ICV) injection of BDNF resulted in rapid and robust phosphorylation of trk receptors in multiple brain regions in the postnatal day (PD) 7 rat brain. BDNF also markedly protected against hypoxic-ischemic brain injury at PD7. It protected against 90% of tissue loss due to hypoxic-ischemia when given just prior to the insult and against 50% of tissue loss when give after the insult. In contrast, ICV injection of BDNF in PD21 and adult rats resulted in little trk phosphorylation and less dramatic protection against unilateral hypoxic-ischemic injury at PD21. Because of its potent neuroprotective actions in the developing brain, BDNF may be a potential treatment for asphyxia and other forms of acute injury in the perinatal period.
Collapse
|
|
28 |
139 |
25
|
Murer MG, Boissiere F, Yan Q, Hunot S, Villares J, Faucheux B, Agid Y, Hirsch E, Raisman-Vozari R. An immunohistochemical study of the distribution of brain-derived neurotrophic factor in the adult human brain, with particular reference to Alzheimer's disease. Neuroscience 1999; 88:1015-32. [PMID: 10336117 DOI: 10.1016/s0306-4522(98)00219-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Brain-derived neurotrophic factor is a member of the family of neuronal differentiation and survival-promoting molecules called neurotrophins. Neuronal populations known to show responsiveness to the action of brain-derived neurotrophic factor include the cholinergic forebrain, mesencephalic dopaminergic, cortical, hippocampal and striatal neurons. This fact has aroused considerable interest in the possible contribution of an abnormal brain-derived neurotrophic factor function to the aetiology and physiopathology of different neurodegenerative disorders, such as Alzheimer's disease. This report describes the cellular and regional distribution of brain-derived neurotrophic factor in post mortem control human brain and in limited regions of the brain in patients with Alzheimer's disease, as was revealed by immunohistochemistry. Brain-derived neurotrophic factor is widely expressed in the control human brain, both by neurons and glia. In neurons, brain-derived neurotrophic factor was localized in the cell body, dendrites and axons. Among the structures showing the most intense immunohistochemical labeling were the hippocampus, claustrum, amygdala, bed nucleus of the stria terminalis, septum and the nucleus of the solitary tract. In the striatum, immunoreactivity was more intense in striosomes than in the matrix. Many labeled neurons were found in the substantia nigra pars compacta. The large putatively cholinergic neurons in the basal forebrain showed no immunoreactivity. The general pattern of labeling was similar in individuals with Alzheimer's disease. Brain-derived neurotrophic factor-immunoreactive material was found in senile plaques, and some immunoreactive cortical pyramidal neurons showed neurofibrillary tangles, suggesting that brain-derived neurotrophic factor may be involved in the process of neuronal degeneration and/or compensatory mechanisms which occur in this illness.
Collapse
|
|
26 |
135 |