1
|
Kubicka F, Nitschke L, Penzkofer T, Tan Q, Nickel MD, Wakonig KM, Fahlenkamp UL, Lerchbaumer M, Michallek F, Dommerich S, Hamm B, Wagner M, Walter-Rittel T. Dynamic contrast enhanced MRI of the head and neck region using a VIBE sequence with Cartesian undersampling and compressed sensing. Magn Reson Imaging 2024; 113:110220. [PMID: 39173963 DOI: 10.1016/j.mri.2024.110220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVES Compressed sensing allows for image reconstruction from sparsely sampled k-space data, which is particularly useful in dynamic contrast enhanced MRI (DCE-MRI). The aim of the study was to assess the diagnostic value of a volume-interpolated 3D T1-weighted spoiled gradient-echo sequence with variable density Cartesian undersampling and compressed sensing (CS) for head and neck MRI. METHODS Seventy-one patients with clinical indications for head and neck MRI were included in this study. DCE-MRI was performed at 3 Tesla magnet using CS-VIBE (variable density undersampling, temporal resolution 3.4 s, slice thickness 1 mm). Image quality was compared to standard Cartesian VIBE. Three experienced readers independently evaluated image quality and lesion conspicuity on a 5-point Likert scale and determined the DCE-derived time intensity curve (TIC) types. RESULTS CS-VIBE demonstrated higher image quality scores compared to standard VIBE with respect to overall image quality (4.3 ± 0.6 vs. 4.2 ± 0.7, p = 0.682), vessel contour (4.6 ± 0.4 vs. 4.4 ± 0.6, p < 0.001), muscle contour (4.4 ± 0.5 vs. 4.5 ± 0.6, p = 0.302), lesion conspicuity (4.5 ± 0.7 vs. 4.3 ± 0.9, p = 0.024) and showed improved fat saturation (4.8 ± 0.3 vs. 3.8 ± 0.4, p < 0.001) and movement artifacts were significantly reduced (4.6 ± 0.6 vs. 3.7 ± 0.7, p < 0.001). Standard VIBE outperformed CS-VIBE in the delineation of pharyngeal mucosa (4.2 ± 0.5 vs. 4.6 ± 0.6, p < 0.001). Lesion size in cases where a focal lesion was identified was similar for all readers for CS-VIBE and standard VIBE (p = 0.101). TIC curve assessment showed good interobserver agreement (k=0.717). CONCLUSION CS-VIBE with variable density Cartesian undersampling allows for DCE-MRI of the head and neck region with diagnostic, high image quality and high temporal resolution.
Collapse
|
2
|
Xue L, Tan Q, Xu J, Feng L, Li W, Yan L, Li Y. [MiR-6838-5p overexpression inhibits proliferation of breast cancer MCF-7 cells by downregulating DDR1 expression]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1677-1684. [PMID: 39505335 DOI: 10.12122/j.issn.1673-4254.2024.09.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
OBJECTIVE To explore the regulatory effect of miR-6838-5p on DDR1 gene expression and proliferation of breast cancer cells. METHODS The expression levels of miR-6838-5p in normal breast epithelial cells and breast cancer cells were detected using qRT-PCR, and the potential target genes of miR-6838-5p was predicted using TargetscanV 8.0. Double luciferase reporter gene experiment was performed to verify the binding between miR-6838-5p and DDR1. Breast cancer MCF-7 cells were transfected via liposome, miR-6838-5p mimic, miR-6838-5p inhibitor, DDR1 siRNA, DDR1-overexpresisng vector, or both miR-6838-5p mimic and DDR1-overexpressing vector, and the changes in cell proliferation were examined with CCK-8 and EdU assays; Western blotting was used to detect the expression of DDR1. The mediating role of DDR1 in miR-6838-5p overexpression-induced inhibition of MCF-7 cell proliferation was verified in a nude mouse model bearing MCF-7 cell xenografts. RESULTS The expression of miR-6838-5p was significantly lower in breast cancer cells than in normal breast epithelial cells. In MCF-7 cells, miR-6838-5p overexpression induced significant inhibition of cell proliferation. Dual luciferase reporter gene experiment demonstrated a binding relationship between miR-6838-5p and DDR1 (P < 0.01). Western blotting showed that miR-6838-5p overexpression significantly lowered DDR1 expression in MCF-7 cells, and DDR1 overexpression promoted proliferation of the cells; co-transfection of the cells with DDR1-overexpressing vector significantly attenuated the inhibitory effect of miR-6838-5p mimic on cell proliferation. In the tumor-bearing nude mice, the xenografts overexpressing miR-6838-5p showed a significantly smaller volum with obviously the expression of DDR1. CONCLUSION Overexpression of miR-6838-5p inhibits breast cancer cell proliferation by regulating DDR1 expression.
Collapse
|
3
|
Yang G, Feng XH, Zhao WH, Tan Q, Liu K, Hu XK, Mo SS, Xie YH, Mei HB, Zhu GH. [The clinical characteristics of 497 children with congenital pseudarthrosis of the tibia]. ZHONGHUA WAI KE ZA ZHI [CHINESE JOURNAL OF SURGERY] 2024; 62:864-869. [PMID: 39090065 DOI: 10.3760/cma.j.cn112139-20240328-00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Objective: To investigate the clinical and radiologic characteristics of children with congenital pseudarthrosis of the tibia (CPT) in a single center. Methods: This is a retrospective case series study. According to inclusion and exclusion criteria, clinical data of 497 children(507 limbs) with CPT who were treated at Department of Orthopedics, the Children's Hospital Affiliated to Xiangya School of Medicine, Central South University from January 2011 to December 2020 were collected. Baseline data included gender, age at initial visit, age at onset of symptoms, accompanying symptoms, domicile, whether first treated at our hospital, and treatment-related information such as surgical or conservative treatment, surgical complications, etc., were extracted and analyzed using the health information system. Imaging data of the children, including Crawford classification, bilateral leg lengths, presence of fibular pseudarthrosis, and location of pseudarthrosis along the tibia segment, were analyzed using the Picture Archiving and Communication System. Data were compared using independent sample t test or χ2 tests. Results: Among 497 children with CPT, there were 305 males (61.4%) and 192 females (38.6%). The age at initial visit was (3.6±3.2) years (range: 0.1 to 16.2 years). Neurofibromatosis type 1 (NF1) symptoms were positive in 340 children (68.4%), and negative in 157 children (31.6%). Among NF1-positive children, those with symptoms onset before 1 year of age were significantly more than NF1-negative children (74.1%(252/340) vs. 66.2%(104/157);χ2=9.24, P=0.001), and the proportion of fractures (92.9%,316/340) was significantly higher than that in the NF1-negative group (84.7%,133/157) (χ2=8.33, P=0.004). According to imaging data, Crawford type Ⅳ was the most common type, with 321 limbs (63.3%), followed by type Ⅱ in 100 limbs (19.7%), type Ⅲ in 54 limbs (10.7%) and type Ⅰ in 32 limbs (6.3%). Pseudarthrosis occurred in the proximal third of the tibia in 14 limbs (2.8%), in the middle third in 185 limbs (36.5%), and in the distal third in 308 limbs (60.8%). Seventy-four children (14.9 %) had associated fibular pseudarthrosis. The lateral proximal tibial angle was 86.91°±5.21°(range: 72.17° to 102.08°), and the lateral distal tibial angle was 87.27°±10.73°(range: 51.07° to 128.17°). A total of 421 children (84.7%) underwent surgical treatment with (3.1±2.4) surgeries performed per child (range:0 to 12 surgeries); 76 children (15.3%) received conservative treatment. Postoperative complications mainly included ankle valgus (77 cases), leg length discrepancy (71 cases),refracture (48 cases), osteomyelitis (11 cases), and hardware failure (10 cases). NF1-positive children underwent more surgeries than NF1-negative children ((5.1±2.2)times vs.(2.1±1.8)times;t=14.93,P<0.01). Conclusions: Crawford type Ⅳ is the most common type of CPT in children in this study. CPT predominantly occurs in the middle or distal third of the tibia. The majority of children with CPT experienced symptoms and were seen at outpatient clinics before the age of 3 years. The main surgical complications currently associated with CPT treatment are ankle valgus and leg length discrepancy. Compared with CPT without NF1, children with NF1-positive CPT tend to have earlier symptom onset and may require more frequent treatments.
Collapse
|
4
|
Ijaz M, Hasan I, Chaudhry TH, Huang R, Zhang L, Hu Z, Tan Q, Guo B. Bacterial derivatives mediated drug delivery in cancer therapy: a new generation strategy. J Nanobiotechnology 2024; 22:510. [PMID: 39182109 PMCID: PMC11344338 DOI: 10.1186/s12951-024-02786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
Cancer is measured as a major threat to human life and is a leading cause of death. Millions of cancer patients die every year, although a burgeoning number of researchers have been making tremendous efforts to develop cancer medicine to fight against cancer. Owing to the complexity and heterogeneity of cancer, lack of ability to treat deep tumor tissues, and high toxicity to the normal cells, it complicates the therapy of cancer. However, bacterial derivative-mediated drug delivery has raised the interest of researchers in overcoming the restrictions of conventional cancer chemotherapy. In this review, we show various examples of tumor-targeting bacteria and bacterial derivatives for the delivery of anticancer drugs. This review also describes the advantages and limitations of delivering anticancer treatment drugs under regulated conditions employing these tumor-targeting bacteria and their membrane vesicles. This study highlights the substantial potential for clinical translation of bacterial-based drug carriers, improve their ability to work with other treatment modalities, and provide a more powerful, dependable, and distinctive tumor therapy.
Collapse
|
5
|
Tan Q, Joshua AM, Saggar JK, Yu M, Wang M, Kanga N, Zhang JY, Chen X, Wouters BG, Tannock IF. Retraction Note: Effect of pantoprazole to enhance activity of docetaxel against human tumour xenografts by inhibiting autophagy. Br J Cancer 2024; 130:1232. [PMID: 38509357 PMCID: PMC10991281 DOI: 10.1038/s41416-024-02660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
|
6
|
Dong Z, Liu X, Low W, Riaz M, Tan Q, Sun X, Yan X, Hu C. Abnormal cell wall structure caused by boron nutrient imbalance in orchards could affect psyllid feeding behaviour, resulting in epidemic variation of Asian citrus psyllid. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:282-291. [PMID: 38194355 DOI: 10.1111/plb.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/09/2023] [Indexed: 01/10/2024]
Abstract
The control of Huanglongbing (HLB), one of the most destructive pests of citrus, relies heavily on the reduction of Asian citrus psyllid (ACP), Diaphorina citri Kuwayama. An in-depth understanding of ACP feeding behaviours among citrus plants is urgent for comprehensive management of orchards. An investigation was conducted in 37 citrus orchards in HLB epidemic areas, sampling shoots in the area with aggregation feeding of ACP (ACPf) and shoots in a neighbouring area without ACP feeding (CK), to study the interaction between leaf chemical composition and ACP psyllid feeding behaviours. Results of FTIR showed a strong absorption peak intensity, mainly representing functional groups originating from cell wall components in the leaf with ACP feeding. As compared with the control, cell wall components, such as alkali-soluble pectin, water-soluble pectin, total soluble pectin, cellulose, and hemicellulose, of the cell wall of ACPf increased by 134.0%, 14.0%, 18.0%, 12.5%, and 20.35%, respectively. These results suggest that cell wall mechanical properties significantly decreased in the term of decreases in pectin performance and cellulose mechanical properties. In addition, there was a remarkably lower boron (B) content in leaves and cell wall components with ACP feeding. Further analysis indicated that leaf B content significantly affected leaf cell wall components. Taken together, we provide evidence to demonstrate that the regional distribution of nutrient imbalance in orchards could affect psyllid feeding behaviour by weakening the cell wall structure, resulting in epidemic variation in ACP. This could help us to understand the management of psyllid infections in orchards with unbalanced nutrition.
Collapse
|
7
|
Chen GL, Tan Q, Feng YJ, Lan HJ, Yang XW, Zhou XQ. [Determination of 4-methyl-2-pentanol in workplace air by solvent desorption-gas chromatography]. ZHONGHUA LAO DONG WEI SHENG ZHI YE BING ZA ZHI = ZHONGHUA LAODONG WEISHENG ZHIYEBING ZAZHI = CHINESE JOURNAL OF INDUSTRIAL HYGIENE AND OCCUPATIONAL DISEASES 2023; 41:859-862. [PMID: 37935555 DOI: 10.3760/cma.j.cn121094-20230103-000001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Objective: To establish a method for the determination of 4-methyl-2-pentanol in the air of workplace by gas chromatography. Methods: In January 2022, 4-methyl-2-pentanol in the air of workplace was collected by activated carbontube, eluted with dichloromethane-methanol (95∶5, V/V), separated by capillary column and determined by gas chromatogram. Results: The limit of detection for 4-methyl-2-pentanol was 0.04 μg/ml. The linear range of 4-methyl-2-pentanol was 0.16-1616.60 μg/ml, with the regression equation of y=1.94x-5.48, and the coefficient correlation was 0.99958, and the minimum detection concentration was 0.03 mg/m(3) (collected sample volume was 1.50 L). The within-run precisions were 1.08%-1.75% and the between-run precisions were 1.41%-2.52%. The desorption rates were 95.15%-99.91%. The samples could be stored at least 3 days at room temperature and 7 days at 4 ℃ without significant loss. Conclusion: The method has the advantages of good precision, high sensitivity and simple operation. It is suitable for the determination of 4-methyl-2-pentanol in the air of workplace.
Collapse
|
8
|
Rodriguez J, Tan Q, Šikić H, Taber LA, Bassnett S. The effect of fibre cell remodelling on the power and optical quality of the lens. J R Soc Interface 2023; 20:20230316. [PMID: 37727073 PMCID: PMC10509584 DOI: 10.1098/rsif.2023.0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/22/2023] [Indexed: 09/21/2023] Open
Abstract
Vertebrate eye lenses are uniquely adapted to form a refractive index gradient (GRIN) for improved acuity, and to grow slowly in size despite constant cell proliferation. The mechanisms behind these adaptations remain poorly understood. We hypothesize that cell compaction contributes to both. To test this notion, we examined the relationship between lens size and shape, refractive characteristics and the cross-sectional areas of constituent fibre cells in mice of different ages. We developed a block-face imaging method to visualize cellular cross sections and found that the cross-sectional areas of fibre cells rose and then decreased over time, with the most significant reduction occurring in denucleating cells in the adult lens cortex, followed by cells in the embryonic nucleus. These findings help reconcile differences between the predictions of lens growth models and empirical data. Biomechanical simulations suggested that compressive forces generated from continuous deposition of fibre cells could contribute to cellular compaction. However, optical measurements revealed that the GRIN did not mirror the pattern of cellular compaction, implying that compaction alone cannot account for GRIN formation and that additional mechanisms are likely to be involved.
Collapse
|
9
|
Liu YX, Yang G, Hu XK, Tan Q, Pan H, Liu K, Huang YY, Yan A, Zhu GH, Mei HB. [Long term follow-up evaluation of combined surgery for congenital tibial pseudarthrosis in children]. ZHONGHUA WAI KE ZA ZHI [CHINESE JOURNAL OF SURGERY] 2023; 61:675-680. [PMID: 37400210 DOI: 10.3760/cma.j.cn112139-20230205-00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Objective: To explore the long-term effect of combined surgery for the treatment of congenital tibial pseudarthrosis in children. Methods: The clinical data of 44 children with congenital tibial pseudarthrosis who underwent combined surgery (tibial pseudarthrosis tissue resection, intramedullary rod fixation, Ilizarov external fixator fixation, wrapped autologous iliac bone graft) from August 2007 to October 2011 at the Department of Pediatric Orthopedics, Hunan Children's Hospital were collected retrospectively. There were 33 males and 11 females. The age at the time of surgery was (3.7±2.2)years (range:0.6 to 12.4 years), including 25 cases under 3 years old and 19 cases above 3 years old.Among them, 37 cases were complicated with neurofibromatosis type 1.The operation status, postoperative complications and follow-up results were recorded. Results: The follow-up time after surgery was (10.9±0.7)years (range:10 to 11 years).Thirty-nine out of 44 patients (88.6%) achieved initial healing of tibial pseudarthrosis, with an average healing time of (4.3±1.1)months (range:3 to 10months).In the last follow-up, 36 cases (81.8%) had unequal tibial length, 20 cases (45.4%) had refractures, 18 cases (40.9%) had ankle valgus, 9 cases (20.4%) had proximal tibial valgus, and 11 cases (25.0%) had high arched feet.Nine cases (20.4%) developed distal tibial epiphyseal plate bridging.17 cases (38.6%) had abnormal tibial mechanical axis.Seven cases (15.9%) developed needle infection, and one case (2.3%) developed tibial osteomyelitis. 21 patients (47.7%) had excessive growth of the affected femur.Five patients (11.3%) had ankle stiffness, and 34 patients (77.2%) had intramedullary rod displacement that was not in the center of the tibial medullary cavity.Among them, 8 cases (18.1%) protruded the tibial bone cortex and underwent intramedullary rod removal.18 children have reached skeletal maturity, while 26 children have not been followed up until skeletal maturity. Conclusion: Combined surgery for the treatment of congenital pseudarthrosis of the tibia in children has a high initial healing rate, but complications such as unequal tibia length, refracture, and ankle valgus occur during long-term follow-up, requiring multiple surgical treatments.
Collapse
|
10
|
Tan Q, Chen Z, Liu L, Huang X. Functionalized Rhodium Nanoparticles as Antimicrobial Agents for Treatment of Drug-Resistant Skin and Soft Tissue Infections. Adv Healthc Mater 2023:e2203200. [PMID: 36944074 DOI: 10.1002/adhm.202203200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Skin and soft tissue infections (SSTIs) are among the most common bacterial infections reported in outpatients. Drug-resistant bacteria are the major cause of treatment failure and increased mortality rate in patients with SSTIs, posing significant challenges to human health. In this study, new-generation rhodium nanoplates (RhNPs) and glycol chitosan- and polydopamine-functionalized RhNPs (Rh@GCS) were developed for the treatment of drug-resistant SSTIs. RhNPs exhibited favorable antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and Ag-resistant MRSA. The modified Rh@GCS exhibited enhanced antibacterial activity and could directly kill various drug-resistant bacteria by increasing the permeability of cell membranes, including gram-positive MRSA and gram-negative multidrug-resistant Escherichia coli and Pseudomonas aeruginosa. Moreover, Rh@GCS effectively inhibited bacterial growth and promoted the healing of skin lesions in MRSA-induced SSTI mouse models. These results suggest that Rh@GCS is a promising non-antibiotic antimicrobial agent for the treatment of drug-resistant SSTIs. This article is protected by copyright. All rights reserved.
Collapse
|
11
|
Tan Q, Ji Y, Wang XL, Wang ZW, Qi XW, Liu YK. [Clinicopathological features of patients with RET fusion-positive non-small cell lung cancer]. ZHONGHUA BING LI XUE ZA ZHI = CHINESE JOURNAL OF PATHOLOGY 2023; 52:124-128. [PMID: 36748131 DOI: 10.3760/cma.j.cn112151-20220717-00614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objective: To investigate the clinicopathological features, treatment and prognosis of patients with RET fusion positive non-small cell lung cancer (NSCLC). Methods: A total of 1 089 NSCLCs were retrieved at Affiliated Hospital of Jiangnan University from August 2018 to April 2020. In all cases, multiple gene fusion detection kits (fluorescent PCR method) were used to detect the gene status of RET, EGFR, ALK, ROS1, KRAS, BRAF and HER2; and immunohistochemical method was used to detect the expression of PD-L1 and mismatch repair related proteins. The correlation between RET-fusion and patients' age, gender, smoking history, tumor stage, grade, pathologic type, and PD-L1, mismatch repair related protein expression was analyzed. Results: There were 22 cases (2.02%) detected with RET fusion-positive in 1 089 NSCLC patients, in which 11 males and 11 females; and the median age was 63.5 years. There were 20 adenocarcinomas, including 11 acinar predominant adenocarcinoma (APA), five solid predominant adenocarcinoma (SPA) and four lepidic predominant adenocarcinoma (LPA); There were one case each of squamous cell carcinoma (non-keratinizing type) and sarcomatoid carcinoma (pleomorphic carcinoma). There were 6 and 16 patients with RET fusion-positive who were in stage Ⅰ-Ⅱ and Ⅲ-Ⅳ respectively, and 16 cases with lymph node metastasis, 11 cases with distant metastasis. Among RET fusion-positive cases, one was detected with HER2 co-mutation. The tumor proportion score of PD-L1≥1% in patients with RET fusion positive lung cancer was 54.5% (12/22). Defects in mismatch repair protein expression were not found in patients with RET fusion positive NSCLC. Four patients with RET fusions positive (two cases of APA and two cases of SPA) received pratinib-targeted therapy, and two showed benefits from this targeted therapy. Conclusions: The histological subtypes of RET fusions positive NSCLC are more likely to be APA or SPA. RET fusion-positive NSCLC patients are associated with advanced clinical stage, lymph node metastases, and they may benefit from targeted therapy with RET-specific inhibitors.
Collapse
|
12
|
Xiao Y, Zhu T, Zeng Q, Tan Q, Jiang G, Huang X. Functionalized biomimetic nanoparticles combining programmed death-1/programmed death-ligand 1 blockade with photothermal ablation for enhanced colorectal cancer immunotherapy. Acta Biomater 2023; 157:451-466. [PMID: 36442821 DOI: 10.1016/j.actbio.2022.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/03/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Immune checkpoint blockade therapy targeting programmed death-1 (PD-1) or its major ligand programmed death-ligand 1 (PD-L1) has achieved remarkable success in the treatment of several tumors, including colorectal cancer. However, the efficacy of PD-1/PD-L1 inhibitors is limited in some colorectal cancers within the immunosuppressive tumor microenvironment (such as when there is a lack of immune cell infiltration). Herein, anti-PD-L1 functionalized biomimetic polydopamine-modified gold nanostar nanoparticles (PDA/GNS@aPD-L1 NPs) were developed for synergistic anti-tumor treatment by combining PD-1/PD-L1 blockade with photothermal ablation. PDA/GNS@aPD-L1 NPs were prepared by encapsulating photothermal nanoparticles (polydopamine-modified gold nanostar, PDA-GNS) with cell membrane isolated from anti-PD-L1 single-chain variable fragment (scFv) over-expressing cells. In addition to disrupting PD-1/PD-L1 immunosuppressive signals, the anti-PD-L1 scFv on the membrane of PDA/GNS@aPD-L1 NPs was conducive to the accumulation of PDA-GNS at tumor sites. Importantly, the tumor photothermal ablation induced by PDA-GNS could reverse the immunosuppressive tumor microenvironment, thereby further improving the efficiency of PD-1/PD-L1 blockade therapy. In this study, the synthetized PDA/GNS@aPD-L1 NPs exhibited good biocompatibility, efficient photothermal conversion ability, and enhanced tumor-targeting ability. In vivo studies revealed that a PDA/GNS@aPD-L1 NP-based therapeutic strategy significantly inhibited tumor growth, and prolonged overall survival by further promoting the maturation of dendritic cells (DCs), increasing the infiltration of CD8+T cells, and decreasing the number of immunosuppressive cells (such as regulatory T cells and myeloid-derived suppressive cells). Collectively, the developed PDA/GNS@aPD-L1 NP-based therapeutic strategy combines PD-1/PD-L1 blockade with photothermal ablation, which could remodel the tumor microenvironment for effective clinical colorectal cancer therapy. STATEMENT OF SIGNIFICANCE: Immunosuppressive tumor microenvironment is the main challenge facing programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) blockade therapy. By encapsulating photothermal nanoparticles (polydopamine-modified gold nanostar, PDA-GNS) with cell membrane over-expressing anti-PD-L1 single-chain variable fragment, we constructed anti-PD-L1 functionalized biomimetic nanoparticles (PDA/GNS@aPD-L1 NPs). By specific binding to the PD-L1 present on tumor cells, PDA/GNS@aPD-L1 NPs could disrupt PD-1/PD-L1 immunosuppression signaling, and effectively deliver PDA-GNS targeting to tumor sites. Additionally, PDA-GNS-mediated local photothermal ablation of tumors promoted the release of tumor-associated antigens and thus activated anti-tumor immune responses. Meanwhile, hyperthermia facilitates immune cell infiltration by increasing tumor vascular permeability. Therefore, PDA/GNS@aPD-L1 NPs could sensitize tumors to PD-1/PD-L1 blockade therapy by remodeling the immunosuppressive tumor microenvironment, which provides a new strategy for tumor treatment.
Collapse
|
13
|
Jiang A, Xu P, Yang Z, Zhao Z, Tan Q, Li W, Song C, Dai H, Leng H. Increased Sparc release from subchondral osteoblasts promotes articular chondrocyte degeneration under estrogen withdrawal. Osteoarthritis Cartilage 2023; 31:26-38. [PMID: 36241137 DOI: 10.1016/j.joca.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/08/2022] [Accepted: 08/04/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The incidence of osteoarthritis (OA) in menopausal women is significantly higher than in same-aged men. Investigating the role of subchondral osteoblasts in estrogen deficiency-induced OA may help elucidate the pathological mechanism, providing new insights for the diagnosis and treatment of menopausal OA. METHODS A classical ovariectomy-induced OA (OVX-OA) rat model was utilized to isolate primary articular chondrocytes and subchondral osteoblasts, which were identified and then cocultured in Transwell. The expression of chondrocyte anabolic and catabolic indicators was evaluated. The differentially expressed proteins in the conditioned medium (CM) of osteoblasts were identified by Liquid Chromatograph-Mass Spectrometer (LC-MS/MS). Normal chondrocytes were treated with osteoblast CM, and then RNA sequencing was performed on the treated chondrocytes. KEGG was used to identify significant enrichment of signaling pathways, and Simple Western was used to verify the expression of related proteins in the signaling pathways. RESULTS Coculture of OVX-OA subchondral osteoblasts with chondrocytes significantly downregulated the expression of the anabolic indicators and upregulated the expression of the catabolic indicators in chondrocytes. 1,601 proteins were identified in both normal and OVX osteoblast culture supernatants. Protein-protein interaction network analysis revealed that Sparc was one of the hub proteins. The AMPK/Foxo3a signaling pathway of chondrocytes was downregulated by OVX-OA osteoblasts CM. AICAR, the AMPK agonist, partially reversed the catabolic effect of OVX-OA osteoblasts on chondrocytes. CONCLUSIONS Sparc secreted by OVX-OA subchondral osteoblasts can downregulate the AMPK/Foxo3a signaling pathway of chondrocytes, thereby promoting chondrocyte degeneration.
Collapse
|
14
|
O'Malley D, Jin F, Ramos J, Tan Q, Monk B. 19TiP SGNTUC-019 phase II basket study of tucatinib and trastuzumab in solid tumors with human epidermal growth factor receptor 2 alterations: Uterine and cervical cancer cohorts. Ann Oncol 2022. [DOI: 10.1016/j.annonc.2022.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
15
|
Tan Q, Wang J, Zeng Q, Ding X, Bai S, Peng H, Xuan Y, Zhang K. Effects of rapeseed meal on laying performance and egg quality in laying ducks. Poult Sci 2022; 101:101678. [PMID: 35065343 PMCID: PMC8784318 DOI: 10.1016/j.psj.2021.101678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 11/06/2022] Open
Abstract
This study was conducted to investigate the effect of different varieties of rapeseed meal (RSM) with different concentrations of glucosinolates (Gls) and erucic acid (EA) on performance and egg quality of laying ducks. A total of 576 twenty eight-wk-old laying ducks were randomly allocated to 4 treatments. Each treatment had 8 replicates of 18 laying ducks raised in 6 adjacent cages with 3 laying ducks per cage. The control diet was corn soybean meal based without RSM. Three varieties of RSM varying in Gls concentrations were supplemented to the base diet at 10% by substituting soybean meal to formulate the three RSM diets. The experiment lasted 12 wk. Diets with 10% RSM decreased average egg weight (P < 0.01) and feed intake (P = 0.07) compared with the control diet, but there was no significant difference in laying performance among the 3 RSM diets. RSM increased color value (P < 0.05) and crude protein (CP) content (P < 0.05) of yolk compared with the control diet, but had no significant effects on the other egg quality indexes including eggshell strength, albumen height, Haugh unit, and the composition ratio of eggshell, albumen and yolk. RSM decreased total monounsaturated fatty acids (MUFA) (P < 0.01) and increased total polyunsaturated fatty acids (PUFA) (P < 0.01) of yolk, but total saturated fatty acids (SFA) proportions and UFA/SFA ratio of egg yolk were not significantly affected by RSM. RSM increased deposition of trimethylamine (TMA) and 5-vinyl-1,3-oxazolidine-2-thione (5-VOT) in yolk (P < 0.01); moreover, the high Gls RSM increased deposition of TMA (P < 0.01) and 5-VOT in yolk (P < 0.01) compared with the RSM varieties low in Gls. These results suggested that dietary inclusion of 10% RSM decreased egg weight of laying ducks, and affected yolk quality especially yolk color, fatty acid profile, CP, TMA, and 5-VOT content of yolk. Moreover, RSM with higher Gls concentration resulted in higher deposition of TMA and 5-VOT in egg yolk.
Collapse
|
16
|
Li T, Stefano G, Raza GS, Sommerer I, Riederer B, Römermann D, Tan X, Tan Q, Pallagi P, Hollenbach M, Herzig K, Seidler U. Hydrokinetic pancreatic function and insulin secretion are moduled by Cl - uniporter Slc26a9 in mice. Acta Physiol (Oxf) 2022; 234:e13729. [PMID: 34525257 DOI: 10.1111/apha.13729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 11/29/2022]
Abstract
AIM Slc26a9 is a member of the Slc26 multifunctional anion transporter family. Polymorphisms in Slc26a9 are associated with an increased incidence of meconium ileus and diabetes in cystic fibrosis patients. We investigated the expression of Slc26a9 in the murine pancreatic ducts, islets and parenchyma, and elucidated its role in pancreatic ductal electrolyte and fluid secretion and endocrine function. METHODS Pancreatic Slc26a9 and CFTR mRNA expression, fluid and bicarbonate secretion were assessed in slc26a9-/- mice and their age- and sex-matched wild-type (wt) littermates. Glucose and insulin tolerance tests were performed. RESULTS Compared with stomach, the mRNA expression of Slc26a9 was low in pancreatic parenchyma, 20-fold higher in microdissected pancreatic ducts than parenchyma, and very low in islets. CFTR mRNA was ~10 fold higher than Slc26a9 mRNA expression in each pancreatic cell type. Significantly reduced pancreatic fluid secretory rates and impaired glucose tolerance were observed in female slc26a9-/- mice, whereas alterations in male mice did not reach statistical significance. No significant difference was observed in peripheral insulin resistance in slc26a9-/- compared to sex- and aged-matched wt controls. In contrast, isolated slc26a9-/- islets in short term culture displayed no difference in insulin content, but a significantly reduced glucose-stimulated insulin secretion compared to age- and sex-matched wt islets, suggesting that the impaired glucose tolerance in the absence of Slc26a9 expression these is a pancreatic defect. CONCLUSIONS Deletion of Slc26a9 is associated with a reduction in pancreatic fluid secretion and impaired glucose tolerance in female mice. The results underline the importance of Slc26a9 in pancreatic physiology.
Collapse
|
17
|
Zuo Z, Li Y, Peng K, Li X, Tan Q, Mo Y, Lan Y, Zeng W, Qi W. CT texture analysis-based nomogram for the preoperative prediction of visceral pleural invasion in cT1N0M0 lung adenocarcinoma: an external validation cohort study. Clin Radiol 2021; 77:e215-e221. [PMID: 34916048 DOI: 10.1016/j.crad.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022]
Abstract
AIM To develop a nomogram based on computed tomography (CT) texture analysis for the preoperative prediction of visceral pleural invasion in patients with cT1N0M0 lung adenocarcinoma. MATERIALS AND METHODS A dataset of chest CT containing lung nodules was collected from two institutions, and all surgically resected nodules were classified pathologically based on the presence of visceral pleural invasion. Each nodule on the CT image was segmented automatically by artificial-intelligence software and its CT texture features were extracted. The dataset was divided into training and external validation cohorts according to the institution, and a nomogram for predicting visceral pleural invasion was developed and validated. RESULTS Of a total of 313 patients enrolled from two independent institutions, 63 were diagnosed with visceral pleural invasion. Three-dimensional (3D) CT long diameter, skewness, and sphericity, and chronic obstructive pulmonary disease were identified as independent predictors for visceral pleural invasion by multivariable logistic regression. The nomogram based on multivariable logistic regression showed great discriminative ability, as indicated by a C-index of 0.890 (95% confidence interval [CI]: 0.867-0.914) and 0.864 (95% CI: 0.817-0.911) for the training and external validation cohorts, respectively. Additionally, calibration of the nomogram revealed good predictive ability, as indicated by the Brier score (0.108 and 0.100 for the training and external validation cohorts, respectively). CONCLUSIONS A nomogram was developed that could compute the probability of visceral pleural invasion in patients with cT1N0M0 lung adenocarcinoma with good calibration and discrimination. The nomogram has potential as a reliable tool for clinical evaluation and decision-making.
Collapse
|
18
|
Guo YJ, Wang ZY, Wang YS, Chen B, Huang YQ, Li P, Tan Q, Zhang HY, Chen W. Impact of drinking water supplemented 2-hydroxy-4-methylthiobutyric acid in combination with acidifier on performance, intestinal development, and microflora in broilers. Poult Sci 2021; 101:101661. [PMID: 35042180 PMCID: PMC8777144 DOI: 10.1016/j.psj.2021.101661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022] Open
Abstract
In addition to offering methionine, 2-hydroxy-4-methylthiobutyric acid (HMTBa) is also an organic acid and shows excellent bacteriostasis. Therefore, 3 experiments were conducted to determine the influence of drinking water supplemented HMTBa in combination with acidifier on performance, intestinal development, and microflora in broilers. The addition of different concentration (0.02–0.20%) of the blend of HMTBa and other acids significantly reduced the pH of water and exerted antimicrobial activity in dose-dependent manner in vitro. The outcomes from animal trial consisting of the drinking water with blended acidifier at 0.00, 0.05, 0.10, 0.15, and 0.20% indicated that the water with 0.15 or 0.20% acidifier resulted in linear and quadratic higher body weight at 42 d, gain and water consumption during 1 to 42 d (P < 0.05). In experiment 3, responding to graded blended acidifier in drinking water, birds receiving 0.10, 0.15, and 0.20% acidifier decreased the internal pH of gastrointestinal tract and muscle, and exhibited increased duodenal weight, length, villus high, and the ratio of villus high to crypt depth. Drinking water with 0.2% blended acidifier increased the abundance of probiotics (Bacteroidaceae, Ruminococcaceae, and Lachnospiraceae) and decreased the account of pathogenic bacteria such as Desulfovibrionaceae. Alternations in gut microflora were closely related to the metabolism of carbohydrate, amino acid, and vitamins. These findings, therefore, suggest that drinking water with 0.10 to 0.13% the combination HMTBa with acidifier might benefit to intestinal development and gut microbiota, and the subsequent produce a positive effect on the performance of broilers.
Collapse
|
19
|
Zhu T, Xiao Y, Meng X, Tang L, Li B, Zhao Z, Tan Q, Shan H, Liu L, Huang X. Nanovesicles derived from bispecific CAR-T cells targeting the spike protein of SARS-CoV-2 for treating COVID-19. J Nanobiotechnology 2021; 19:391. [PMID: 34823562 PMCID: PMC8614633 DOI: 10.1186/s12951-021-01148-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/16/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Considering the threat of the COVID-19 pandemic, caused by SARS-CoV-2, there is an urgent need to develop effective treatments. At present, neutralizing antibodies and small-molecule drugs such as remdesivir, the most promising compound to treat this infection, have attracted considerable attention. However, some potential problems need to be concerned including viral resistance to antibody-mediated neutralization caused by selective pressure from a single antibody treatment, the unexpected antibody-dependent enhancement (ADE) effect, and the toxic effect of small-molecule drugs. RESULTS Here, we constructed a type of programmed nanovesicle (NV) derived from bispecific CAR-T cells that express two single-chain fragment variables (scFv), named CR3022 and B38, to target SARS-CoV-2. Nanovesicles that express both CR3022 and B38 (CR3022/B38 NVs) have a stronger ability to neutralize Spike-pseudovirus infectivity than nanovesicles that express either CR3022 or B38 alone. Notably, the co-expression of CR3022 and B38, which target different epitopes of spike protein, could reduce the incidence of viral resistance. Moreover, the lack of Fc fragments on the surface of CR3022/B38 NVs could prevent ADE effects. Furthermore, the specific binding ability to SARS-CoV-2 spike protein and the drug loading capacity of CR3022/B38 NVs can facilitate targeted delivery of remdesiver to 293 T cells overexpressing spike protein. These results suggest that CR3022/B38 NVs have the potential ability to target antiviral drugs to the main site of viral infection, thereby enhancing the antiviral ability by inhibiting intracellular viral replication and reducing adverse drug reactions. CONCLUSIONS In summary, we demonstrate that nanovesicles derived from CAR-T cells targeting the spike protein of SARS-COV-2 have the ability to neutralize Spike-pseudotyped virus and target antiviral drugs. This novel therapeutic approach may help to solve the dilemma faced by neutralizing antibodies and small-molecule drugs in the treatment of COVID-19.
Collapse
|
20
|
Hu H, Tan Q, Wang J, Liu Y, Yang Y, Zhao J. Drug-coated balloon angioplasty for failing haemodialysis access: meta-analysis of randomized clinical trials. Br J Surg 2021; 108:1293-1303. [PMID: 34595522 PMCID: PMC10364885 DOI: 10.1093/bjs/znab301] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/09/2021] [Accepted: 07/25/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Arteriovenous fistulas, a major treatment for end-stage kidney disease, frequently require endovascular reinterventions to maintain haemodialysis function. Drug-coated angioplasty balloons (DCBs) were developed with the intention of reducing reintervention rates. The aim of this study was to perform a systematic review and meta-analysis of DCBs in the treatment of failing haemodialysis access. METHODS Electronic databases were searched systematically to identify all relevant RCTs and any follow-up studies from RCTs. Pooled estimates of dichotomous outcomes were calculated using the odds ratio (OR) and 95 per cent confidence interval. Effect data are presented as summary hazard ratio and 95 per cent confidence interval. RESULTS Some 19 studies from 18 RCTs and comprising 1898 patients were included in the meta-analysis. Compared with plain balloon angioplasty (PBA), DCB use was associated with higher target-lesion primary patency (HR 0.60, 95 per cent c.i. 0.45 to 0.79), access-circuit primary patency (HR 0.67, 0.56 to 0.80), and less target-lesion revascularization (TLR) within 6 months (OR 0.33, 0.23 to 0.47). No difference was observed between DCB and PBA in 12-month TLR (OR 0.62, 0.28 to 1.37). Mortality after DCB use was similar to that associated with PBA use at 6 months (OR 1.20, 0.65 to 2.21) and 12 months (OR 0.99, 0.66 to 1.49), and was higher at 24 months (23.1 versus 16.6 per cent), although the difference was not statistically significant (OR 1.53, 0.92 to 2.53). CONCLUSION Drug-coated balloon angioplasty of haemodialysis fistulas is associated with higher patency rates and lower rates of reintervention in the short to mid term. Although mortality rates appeared to be higher with drug-coated angioplasty at 24 months, this did not reach statistical significance.
Collapse
|
21
|
Li B, Wang D, Lee MMS, Wang W, Tan Q, Zhao Z, Tang BZ, Huang X. Fabrics Attached with Highly Efficient Aggregation-Induced Emission Photosensitizer: Toward Self-Antiviral Personal Protective Equipment. ACS NANO 2021; 15:13857-13870. [PMID: 34313425 DOI: 10.1021/acsnano.1c06071] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Personal protective equipment (PPE) is vital for the prevention and control of SARS-CoV-2. However, conventional PPEs lack virucidal capabilities and arbitrarily discarding used PPEs may cause a high risk for cross-contamination and environmental pollution. Recently reported photothermal or photodynamic-mediated self-sterilizing masks show bactericidal-virucidal abilities but have some inherent disadvantages, such as generating unbearable heat during the photothermal process or requiring additional ultraviolet light irradiation to inactivate pathogens, which limit their practical applications. Here, we report the fabrication of a series of fabrics (derived from various PPEs) with real-time self-antiviral capabilities, on the basis of a highly efficient aggregation-induced emission photosensitizer (namely, ASCP-TPA). ASCP-TPA possesses facile synthesis, excellent biocompatibility, and extremely high reactive oxygen species generation capacity, which significantly outperforms the traditional photosensitizers. Meanwhile, the ASCP-TPA-attached fabrics (ATaFs) show tremendous photodynamic inactivation effects against MHV-A59, a surrogate coronavirus of SARS-CoV-2. Upon ultralow-power white light irradiation (3.0 mW cm-2), >99.999% virions (5 log) on the ATaFs are eliminated within 10 min. Such ultralow-power requirement and rapid virus-killing ability enable ATaFs-based PPEs to provide real-time protection for the wearers under indoor light irradiation. ATaFs' virucidal abilities are retained after 100 washings or continuous exposure to office light for 2 weeks, which offers the benefits of reusability and long-term usability. Furthermore, ATaFs show no toxicity to normal skin, even upon continuous high-power light illumination. This self-antiviral ATaFs-based strategy may also be applied to fight against other airborne pathogens and holds huge potential to alleviate global PPE supply shortages.
Collapse
|
22
|
Tan Q, He L, Meng X, Wang W, Pan H, Yin W, Zhu T, Huang X, Shan H. Macrophage biomimetic nanocarriers for anti-inflammation and targeted antiviral treatment in COVID-19. J Nanobiotechnology 2021; 19:173. [PMID: 34112203 PMCID: PMC8190731 DOI: 10.1186/s12951-021-00926-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The worldwide pandemic of COVID-19 remains a serious public health menace as the lack of efficacious treatments. Cytokine storm syndrome (CSS) characterized with elevated inflammation and multi-organs failure is closely correlated with the bad outcome of COVID-19. Hence, inhibit the process of CSS by controlling excessive inflammation is considered one of the most promising ways for COVID-19 treatment. RESULTS Here, we developed a biomimetic nanocarrier based drug delivery system against COVID-19 via anti-inflammation and antiviral treatment simultaneously. Firstly, lopinavir (LPV) as model antiviral drug was loaded in the polymeric nanoparticles (PLGA-LPV NPs). Afterwards, macrophage membranes were coated on the PLGA-LPV NPs to constitute drugs loaded macrophage biomimetic nanocarriers (PLGA-LPV@M). In the study, PLGA-LPV@M could neutralize multiple proinflammatory cytokines and effectively suppress the activation of macrophages and neutrophils. Furthermore, the formation of NETs induced by COVID-19 patients serum could be reduced by PLGA-LPV@M as well. In a mouse model of coronavirus infection, PLGA-LPV@M exhibited significant targeted ability to inflammation sites, and superior therapeutic efficacy in inflammation alleviation and tissues viral loads reduction. CONCLUSION Collectively, such macrophage biomimetic nanocarriers based drug delivery system showed favorable anti-inflammation and targeted antiviral effects, which may possess a comprehensive therapeutic value in COVID-19 treatment.
Collapse
|
23
|
Zhao Z, Xiao Y, Xu L, Liu Y, Jiang G, Wang W, Li B, Zhu T, Tan Q, Tang L, Zhou H, Huang X, Shan H. Glycyrrhizic Acid Nanoparticles as Antiviral and Anti-inflammatory Agents for COVID-19 Treatment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20995-21006. [PMID: 33930273 PMCID: PMC8117399 DOI: 10.1021/acsami.1c02755] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/20/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 has been diffusely pandemic around the world, characterized by massive morbidity and mortality. One of the remarkable threats associated with mortality may be the uncontrolled inflammatory processes, which were induced by SARS-CoV-2 in infected patients. As there are no specific drugs, exploiting safe and effective treatment strategies is an instant requirement to dwindle viral damage and relieve extreme inflammation simultaneously. Here, highly biocompatible glycyrrhizic acid (GA) nanoparticles (GANPs) were synthesized based on GA. In vitro investigations revealed that GANPs inhibit the proliferation of the murine coronavirus MHV-A59 and reduce proinflammatory cytokine production caused by MHV-A59 or the N protein of SARS-CoV-2. In an MHV-A59-induced surrogate mouse model of COVID-19, GANPs specifically target areas with severe inflammation, such as the lungs, which appeared to improve the accumulation of GANPs and enhance the effectiveness of the treatment. Further, GANPs also exert antiviral and anti-inflammatory effects, relieving organ damage and conferring a significant survival advantage to infected mice. Such a novel therapeutic agent can be readily manufactured into feasible treatment for COVID-19.
Collapse
|
24
|
Li B, Wang W, Song W, Zhao Z, Tan Q, Zhao Z, Tang L, Zhu T, Yin J, Bai J, Dong X, Tan S, Hu Q, Tang BZ, Huang X. Antiviral and Anti‐Inflammatory Treatment with Multifunctional Alveolar Macrophage‐Like Nanoparticles in a Surrogate Mouse Model of COVID‐19. ADVANCED SCIENCE 2021; 8:2003556. [PMCID: PMC8209923 DOI: 10.1002/advs.202003556] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The pandemic of coronavirus disease 2019 (COVID‐19) is continually worsening. Clinical treatment for COVID‐19 remains primarily supportive with no specific medicines or regimens. Here, the development of multifunctional alveolar macrophage (AM)‐like nanoparticles (NPs) with photothermal inactivation capability for COVID‐19 treatment is reported. The NPs, made by wrapping polymeric cores with AM membranes, display the same surface receptors as AMs, including the coronavirus receptor and multiple cytokine receptors. By acting as AM decoys, the NPs block coronavirus from host cell entry and absorb various proinflammatory cytokines, thus achieving combined antiviral and anti‐inflammatory treatment. To enhance the antiviral efficiency, an efficient photothermal material based on aggregation‐induced emission luminogens is doped into the NPs for virus photothermal disruption under near‐infrared (NIR) irradiation. In a surrogate mouse model of COVID‐19 caused by murine coronavirus, treatment with multifunctional AM‐like NPs with NIR irradiation decreases virus burden and cytokine levels, reduces lung damage and inflammation, and confers a significant survival advantage to the infected mice. Crucially, this therapeutic strategy may be clinically applied for the treatment of COVID‐19 at early stage through atomization inhalation of the NPs followed by NIR irradiation of the respiratory tract, thus alleviating infection progression and reducing transmission risk.
Collapse
|
25
|
Shi Y, Jones W, Beatty W, Tan Q, Mecham RP, Kumra H, Reinhardt DP, Gibson MA, Reilly MA, Rodriguez J, Bassnett S. Latent-transforming growth factor beta-binding protein-2 (LTBP-2) is required for longevity but not for development of zonular fibers. Matrix Biol 2020; 95:15-31. [PMID: 33039488 DOI: 10.1016/j.matbio.2020.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/04/2020] [Accepted: 10/04/2020] [Indexed: 01/06/2023]
Abstract
Latent-transforming growth factor beta-binding protein 2 (LTBP-2) is a major component of arterial and lung tissue and of the ciliary zonule, the system of extracellular fibers that centers and suspends the lens in the eye. LTBP-2 has been implicated previously in the development of extracellular microfibrils, although its exact role remains unclear. Here, we analyzed the three-dimensional structure of the ciliary zonule in wild type mice and used a knockout model to test the contribution of LTBP-2 to zonule structure and mechanical properties. In wild types, zonular fibers had diameters of 0.5-1.0 micrometers, with an outer layer of fibrillin-1-rich microfibrils and a core of fibrillin-2-rich microfibrils. LTBP-2 was present in both layers. The absence of LTBP-2 did not affect the number of fibers, their diameters, nor their coaxial organization. However, by two months of age, LTBP-2-depleted fibers began to rupture, and by six months, a fully penetrant ectopia lentis phenotype was present, as confirmed by in vivo imaging. To determine whether the seemingly normal fibers of young mice were compromised mechanically, we compared zonule stress/strain relationships of wild type and LTBP-2-deficient mice and developed a quasi-linear viscoelastic engineering model to analyze the resulting data. In the absence of LTBP-2, the ultimate tensile strength of the zonule was reduced by about 50%, and the viscoelastic behavior of the fibers was altered significantly. We developed a harmonic oscillator model to calculate the forces generated during saccadic eye movement. Model simulations suggested that mutant fibers are prone to failure during rapid rotation of the eyeball. Together, these data indicate that LTBP-2 is necessary for the strength and longevity of zonular fibers, but not necessarily for their formation.
Collapse
|