1
|
Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, deJonge BL, Carmel G, Tummino PJ, Caruso A, Uria-Nickelsen M, Mills DM, Ives C, Gibson R, Merberg D, Mills SD, Jiang Q, Taylor DE, Vovis GF, Trust TJ. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 1999; 397:176-80. [PMID: 9923682 DOI: 10.1038/16495] [Citation(s) in RCA: 1353] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori, one of the most common bacterial pathogens of humans, colonizes the gastric mucosa, where it appears to persist throughout the host's life unless the patient is treated. Colonization induces chronic gastric inflammation which can progress to a variety of diseases, ranging in severity from superficial gastritis and peptic ulcer to gastric cancer and mucosal-associated lymphoma. Strain-specific genetic diversity has been proposed to be involved in the organism's ability to cause different diseases or even be beneficial to the infected host and to participate in the lifelong chronicity of infection. Here we compare the complete genomic sequences of two unrelated H. pylori isolates. This is, to our knowledge, the first such genomic comparison. H. pylori was believed to exhibit a large degree of genomic and allelic diversity, but we find that the overall genomic organization, gene order and predicted proteomes (sets of proteins encoded by the genomes) of the two strains are quite similar. Between 6 to 7% of the genes are specific to each strain, with almost half of these genes being clustered in a single hypervariable region.
Collapse
|
Comparative Study |
26 |
1353 |
2
|
Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, Bruggen NV, Chopp M. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 2000; 106:829-38. [PMID: 11018070 PMCID: PMC517814 DOI: 10.1172/jci9369] [Citation(s) in RCA: 992] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2000] [Accepted: 08/28/2000] [Indexed: 01/09/2023] Open
Abstract
VEGF is a secreted mitogen associated with angiogenesis and is also a potent vascular permeability factor. The biological role of VEGF in the ischemic brain remains unknown. This study was undertaken to investigate whether VEGF enhances cerebral microvascular perfusion and increases blood-brain barrier (BBB) leakage in the ischemic brain. Using magnetic resonance imaging (MRI), three-dimensional laser-scanning confocal microscope, and functional neurological tests, we measured the effects of administrating recombinant human VEGF(165) (rhVEGF(165)) on angiogenesis, functional neurological outcome, and BBB leakage in a rat model of focal cerebral embolic ischemia. Late (48 hours) administration of rhVEGF(165) to the ischemic rats enhanced angiogenesis in the ischemic penumbra and significantly improved neurological recovery. However, early postischemic (1 hour) administration of rhVEGF(165) to ischemic rats significantly increased BBB leakage, hemorrhagic transformation, and ischemic lesions. Administration of rhVEGF(165) to ischemic rats did not change BBB leakage and cerebral plasma perfusion in the contralateral hemisphere. Our results indicate that VEGF can markedly enhance angiogenesis in the ischemic brain and reduce neurological deficits during stroke recovery and that inhibition of VEGF at the acute stage of stroke may reduce the BBB permeability and the risk of hemorrhagic transformation after focal cerebral ischemia.
Collapse
|
research-article |
25 |
992 |
3
|
Jiang Q, Christen S, Shigenaga MK, Ames BN. gamma-tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am J Clin Nutr 2001; 74:714-22. [PMID: 11722951 DOI: 10.1093/ajcn/74.6.714] [Citation(s) in RCA: 494] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
gamma-tocopherol is the major form of vitamin E in many plant seeds and in the US diet, but has drawn little attention compared with alpha-tocopherol, the predominant form of vitamin E in tissues and the primary form in supplements. However, recent studies indicate that gamma-tocopherol may be important to human health and that it possesses unique features that distinguish it from alpha-tocopherol. gamma-Tocopherol appears to be a more effective trap for lipophilic electrophiles than is alpha-tocopherol. gamma-Tocopherol is well absorbed and accumulates to a significant degree in some human tissues; it is metabolized, however, largely to 2,7,8-trimethyl-2-(beta-carboxyethyl)-6-hydroxychroman (gamma-CEHC), which is mainly excreted in the urine. gamma-CEHC, but not the corresponding metabolite derived from alpha-tocopherol, has natriuretic activity that may be of physiologic importance. Both gamma-tocopherol and gamma-CEHC, but not alpha-tocopherol, inhibit cyclooxygenase activity and, thus, possess antiinflammatory properties. Some human and animal studies indicate that plasma concentrations of gamma-tocopherol are inversely associated with the incidence of cardiovascular disease and prostate cancer. These distinguishing features of gamma-tocopherol and its metabolite suggest that gamma-tocopherol may contribute significantly to human health in ways not recognized previously. This possibility should be further evaluated, especially considering that high doses of alpha-tocopherol deplete plasma and tissue gamma-tocopherol, in contrast with supplementation with gamma-tocopherol, which increases both. We review current information on the bioavailability, metabolism, chemistry, and nonantioxidant activities of gamma-tocopherol and epidemiologic data concerning the relation between gamma-tocopherol and cardiovascular disease and cancer.
Collapse
|
Review |
24 |
494 |
4
|
Micu I, Jiang Q, Coderre E, Ridsdale A, Zhang L, Woulfe J, Yin X, Trapp BD, McRory JE, Rehak R, Zamponi GW, Wang W, Stys PK. NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 2005; 439:988-92. [PMID: 16372019 DOI: 10.1038/nature04474] [Citation(s) in RCA: 381] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2005] [Accepted: 11/29/2005] [Indexed: 11/09/2022]
Abstract
Central nervous system myelin is a specialized structure produced by oligodendrocytes that ensheaths axons, allowing rapid and efficient saltatory conduction of action potentials. Many disorders promote damage to and eventual loss of the myelin sheath, which often results in significant neurological morbidity. However, little is known about the fundamental mechanisms that initiate myelin damage, with the assumption being that its fate follows that of the parent oligodendrocyte. Here we show that NMDA (N-methyl-d-aspartate) glutamate receptors mediate Ca2+ accumulation in central myelin in response to chemical ischaemia in vitro. Using two-photon microscopy, we imaged fluorescence of the Ca2+ indicator X-rhod-1 loaded into oligodendrocytes and the cytoplasmic compartment of the myelin sheath in adult rat optic nerves. The AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)/kainate receptor antagonist NBQX completely blocked the ischaemic Ca2+ increase in oligodendroglial cell bodies, but only modestly reduced the Ca2+ increase in myelin. In contrast, the Ca2+ increase in myelin was abolished by broad-spectrum NMDA receptor antagonists (MK-801, 7-chlorokynurenic acid, d-AP5), but not by more selective blockers of NR2A and NR2B subunit-containing receptors (NVP-AAM077 and ifenprodil). In vitro ischaemia causes ultrastructural damage to both axon cylinders and myelin. NMDA receptor antagonism greatly reduced the damage to myelin. NR1, NR2 and NR3 subunits were detected in myelin by immunohistochemistry and immunoprecipitation, indicating that all necessary subunits are present for the formation of functional NMDA receptors. Our data show that the mature myelin sheath can respond independently to injurious stimuli. Given that axons are known to release glutamate, our finding that the Ca2+ increase was mediated in large part by activation of myelinic NMDA receptors suggests a new mechanism of axo-myelinic signalling. Such a mechanism may represent a potentially important therapeutic target in disorders in which demyelination is a prominent feature, such as multiple sclerosis, neurotrauma, infections (for example, HIV encephalomyelopathy) and aspects of ischaemic brain injury.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
381 |
5
|
Jiang Q, Elson-Schwab I, Courtemanche C, Ames BN. gamma-tocopherol and its major metabolite, in contrast to alpha-tocopherol, inhibit cyclooxygenase activity in macrophages and epithelial cells. Proc Natl Acad Sci U S A 2000; 97:11494-9. [PMID: 11005841 PMCID: PMC17228 DOI: 10.1073/pnas.200357097] [Citation(s) in RCA: 367] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cyclooxygenase-2 (COX-2)-catalyzed synthesis of prostaglandin E(2) (PGE(2)) plays a key role in inflammation and its associated diseases, such as cancer and vascular heart disease. Here we report that gamma-tocopherol (gammaT) reduced PGE(2) synthesis in both lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and IL-1beta-treated A549 human epithelial cells with an apparent IC(50) of 7.5 and 4 microM, respectively. The major metabolite of dietary gammaT, 2,7,8-trimethyl-2-(beta-carboxyethyl)-6-hydroxychroman (gamma-CEHC), also exhibited an inhibitory effect, with an IC(50) of approximately 30 microM in these cells. In contrast, alpha-tocopherol at 50 microM slightly reduced (25%) PGE(2) formation in macrophages, but had no effect in epithelial cells. The inhibitory effects of gammaT and gamma-CEHC stemmed from their inhibition of COX-2 activity, rather than affecting protein expression or substrate availability, and appeared to be independent of antioxidant activity. gamma-CEHC also inhibited PGE(2) synthesis when exposed for 1 h to COX-2-preinduced cells followed by the addition of arachidonic acid (AA), whereas under similar conditions, gammaT required an 8- to 24-h incubation period to cause the inhibition. The inhibitory potency of gammaT and gamma-CEHC was diminished by an increase in AA concentration, suggesting that they might compete with AA at the active site of COX-2. We also observed a moderate reduction of nitrite accumulation and suppression of inducible nitric oxide synthase expression by gammaT in lipopolysaccharide-treated macrophages. These findings indicate that gammaT and its major metabolite possess anti-inflammatory activity and that gammaT at physiological concentrations may be important in human disease prevention.
Collapse
|
research-article |
25 |
367 |
6
|
|
|
17 |
360 |
7
|
Huang XJ, Liu DH, Liu KY, Xu LP, Chen H, Han W, Chen YH, Wang JZ, Gao ZY, Zhang YC, Jiang Q, Shi HX, Lu DP. Haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion for the treatment of hematological malignancies. Bone Marrow Transplant 2006; 38:291-7. [PMID: 16883312 DOI: 10.1038/sj.bmt.1705445] [Citation(s) in RCA: 345] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many patients who require allogeneic hematopoietic stem cell transplantation (allo-HSCT) lack a human leukocyte antigen (HLA)-matched donor. Here, we report a protocol for haploidentical allo-HSCT that combines granulocyte-colony stimulating factor primed bone marrow (G-BM) and peripheral blood stem cells (PBSC) without in vitro T-cell depletion (TCD). In this study, 171 patients, including 86 in high-risk group, underwent transplantation from haploidentical family donors. All patients achieved sustained, full donor chimerism. One hundred and eleven patients were alive in remission at a median of 682 (253-1502) days. The cumulative incidence of grade III-IV acute graft-versus-host disease (GVHD) was 23% and that of extensive chronic GVHD, 47%; these were not influenced by HLA disparity. Patients younger than 15 years had less grade III-IV acute GVHD than older patients (P=0.044). The 2-year probability of relapse was 12% for standard-risk disease and 39% for high-risk disease. The 2-year probability of leukemia-free survival (LFS) was 68% for standard-risk patients and 42% for high-risk patients (P=0.0009). Grade III-IV acute GVHD was associated with better LFS (P=0.0017). The results require confirmation and show that G-BM combined with PBSC from haploidentical family donors, without in vitro TCD, may be used as a good source of stem cells for allo-HSCT.
Collapse
|
|
19 |
345 |
8
|
Howard AD, Wang R, Pong SS, Mellin TN, Strack A, Guan XM, Zeng Z, Williams DL, Feighner SD, Nunes CN, Murphy B, Stair JN, Yu H, Jiang Q, Clements MK, Tan CP, McKee KK, Hreniuk DL, McDonald TP, Lynch KR, Evans JF, Austin CP, Caskey CT, Van der Ploeg LH, Liu Q. Identification of receptors for neuromedin U and its role in feeding. Nature 2000; 406:70-4. [PMID: 10894543 DOI: 10.1038/35017610] [Citation(s) in RCA: 310] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuromedin U (NMU) is a neuropeptide with potent activity on smooth muscle which was isolated first from porcine spinal cord and later from other species. It is widely distributed in the gut and central nervous system. Peripheral activities of NMU include stimulation of smooth muscle, increase of blood pressure, alteration of ion transport in the gut, control of local blood flow and regulation of adrenocortical function. An NMU receptor has not been molecularly identified. Here we show that the previously described orphan G-protein-coupled receptor FM-3 (ref. 15) and a newly discovered one (FM-4) are cognate receptors for NMU. FM-3, designated NMU1R, is abundantly expressed in peripheral tissues whereas FM-4, designated NMU2R, is expressed in specific regions of the brain. NMU is expressed in the ventromedial hypothalamus in the rat brain, and its level is significantly reduced following fasting. Intracerebroventricular administration of NMU markedly suppresses food intake in rats. These findings provide a molecular basis for the biochemical activities of NMU and may indicate that NMU is involved in the central control of feeding.
Collapse
|
|
25 |
310 |
9
|
Si L, Winzenberg TM, Jiang Q, Chen M, Palmer AJ. Projection of osteoporosis-related fractures and costs in China: 2010-2050. Osteoporos Int 2015; 26:1929-37. [PMID: 25761729 DOI: 10.1007/s00198-015-3093-2] [Citation(s) in RCA: 301] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
UNLABELLED A state-transition microsimulation model was used to project the substantial economic burden to the Chinese healthcare system of osteoporosis-related fractures. Annual number and costs of osteoporosis-related fractures were estimated to double by 2035 and will increase to 5.99 (95 % CI 5.44, 6.55) million fractures costing $25.43 (95 % CI 23.92, 26.95) billion by 2050. Consequently, cost-effective intervention policies must urgently be identified in an attempt to minimize the impact of fractures. INTRODUCTION The aim of the study was to project the osteoporosis-related fractures and costs for the Chinese population aged ≥50 years from 2010 to 2050. METHODS A state-transition microsimulation model was used to simulate the annual incident fractures and costs. The simulation was performed with a 1-year cycle length and from the Chinese healthcare system perspective. Incident fractures and annual costs were estimated from 100 unique patient populations for year 2010, by multiplying the age- and sex-specific annual fracture risks and costs of fracture by the corresponding population totals in each of the 100 categories. Projections for 2011-2050 were performed by multiplying the 2010 risks and costs of fracture by the respective annual population estimates. Costs were presented in 2013 US dollars. RESULTS Approximately 2.33 (95 % CI 2.08, 2.58) million osteoporotic fractures were estimated to occur in 2010, costing $9.45 (95 % CI 8.78, 10.11) billion. Females sustained approximately three times more fractures than males, accounting for 76 % of the total costs from 1.85 (95 % CI 1.68, 2.01) million fractures. The annual number and costs of osteoporosis-related fractures were estimated to double by 2035 and will increase to 5.99 (95 % CI 5.44, 6.55) million fractures costing $25.43 (95 % CI 23.92, 26.95) billion by 2050. CONCLUSIONS Our study demonstrated that osteoporosis-related fractures cause a substantial economic burden which will markedly increase over the coming decades. Consequently, healthcare resource planning must consider these increasing costs, and cost-effective screening and intervention policies must urgently be identified in an attempt to minimize the impact of fractures on the health of the burgeoning population as well as the healthcare budget.
Collapse
|
|
10 |
301 |
10
|
Abstract
We developed a new model of embolic cerebral ischemia in the rat which provides a reproducible and predictable infarct volume within the territory supplied by the middle cerebral artery (MCA). The MCA was occluded by an embolus in Wistar rats (n = 71). An additional three non-embolized rats were used as a control. Cerebral blood flow (CBF) was measured by means of laser Doppler flowmetry (LDF) and perfusion weighted imaging (PWI) before and after embolization. The evolution of the lesion was monitored by diffusion weighted imaging (DWI). Cerebral vascular perfusion patterns were examined using laser scanning confocal microscopy. Infarct volumes were measured on hematoxylin and eosin (H&E) stained coronal sections. The lodgment of the clot at the origin of the MCA and the ischemic cell damage were examined using light microscopy. Regional CBF in the ipsilateral parietal cortex decreased to 43 +/- 4.1% (P < 0.05) of preischemic levels (n = 10). Confocal microscopic examination revealed a reduction of cerebral plasma perfusion in the ipsilateral MCA territory (n = 6). MRI measurements showed a reduction in CBF and a hyperintensity DWI encompassing the territory supplied by the MCA (n = 4). An embolus was found in all rats at 24 h after embolization. The infarct volume as a percentage of the contralateral hemisphere was 32.5 +/- 3.31% at 24 h (n = 20), 33.0 +/- 3.6% at 48 h (n = 13), and 34.5 +/- 4.74% at 168 h (n = 12) after embolization. This model of embolic focal cerebral ischemia results in ischemic cell damage and provides a reproducible and predictable infarct volume. This model is relevant to thromboembolic stroke in humans and may be useful in documenting the safety and efficacy of fibrinolytic intervention and in investigating therapies complementary to antithrombotic therapy.
Collapse
|
|
28 |
270 |
11
|
Paul R, Zhang ZG, Eliceiri BP, Jiang Q, Boccia AD, Zhang RL, Chopp M, Cheresh DA. Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. Nat Med 2001; 7:222-7. [PMID: 11175854 DOI: 10.1038/84675] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vascular endothelial growth factor (VEGF), an angiogenic factor produced in response to ischemic injury, promotes vascular permeability (VP). Evidence is provided that Src kinase regulates VEGF-mediated VP in the brain following stroke and that suppression of Src activity decreases VP thereby minimizing brain injury. Mice lacking pp60c-src are resistant to VEGF-induced VP and show decreased infarct volumes after stroke whereas mice deficient in pp59c-fyn, another Src family member, have normal VEGF-mediated VP and infarct size. Systemic application of a Src-inhibitor given up to six hours following stroke suppressed VP protecting wild-type mice from ischemia-induced brain damage without influencing VEGF expression. This was associated with reduced edema, improved cerebral perfusion and decreased infarct volume 24 hours after injury as measured by magnetic resonance imaging and histological analysis. Thus, Src represents a key intermediate and novel therapeutic target in the pathophysiology of cerebral ischemia where it appears to regulate neuronal damage by influencing VEGF-mediated VP.
Collapse
|
|
24 |
269 |
12
|
Jiang Q, Akashi S, Miyake K, Petty HR. Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:3541-4. [PMID: 11034352 DOI: 10.4049/jimmunol.165.7.3541] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CD14, a GPI-linked protein, plays a pivotal role in LPS-mediated signaling by potentiating leukocyte adherence, activation, and cytokine production. Recent studies have identified the Toll-like receptor 4 (TLR4) as a membrane cofactor in LPS-mediated transmembrane signaling in cytokine induction, although the mechanism responsible for this cooperation is unknown. Using fluorescence resonance energy transfer (RET) techniques, we demonstrate that LPS triggers a physical association between CD14 and TLR4. Because LPS stimulation upregulates CD14 and TLR4 expression, it was necessary to control for the possibility that these newly expressed molecules were associated with one another independent of LPS stimulation. Although the calcium ionophore A23187 increased the expression of CD14 and TLR4, they did not exhibit energy transfer. However, following A23187 treatment, LPS promoted physical proximity between CD14 and TLR4. Therefore, we suggest that a close interaction between CD14 and TLR4 participates in LPS signaling, leading to nuclear translocation of NF-kappaB.
Collapse
|
|
25 |
259 |
13
|
Lymar SV, Jiang Q, Hurst JK. Mechanism of carbon dioxide-catalyzed oxidation of tyrosine by peroxynitrite. Biochemistry 1996; 35:7855-61. [PMID: 8672486 DOI: 10.1021/bi960331h] [Citation(s) in RCA: 258] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Peroxynitrite ion (ONO2-) reacted rapidly with CO2 to form a short-lived intermediate provisionally identified as the ONO2CO2- adduct. This adduct was more reactive in tyrosine oxidation than ONO2- itself and produced 3-nitrotyrosine and 3,3'-dityrosine as the major oxidation products. With tyrosine in excess, the rate of 3-nitrotyrosine formation was independent of the tyrosine concentration and was determined by the rate of formation of the ONO2CO2- adduct. The overall yield of oxidation products was also independent of the concentration of tyrosine and medium acidity; approximately 19% of the added ONO2- was converted to products under all reaction conditions. However, the 3-nitrotyrosine/3,3'-dityrosine product ratio depended upon the pH, tyrosine concentration, and absolute reaction rate. These data are in quantitative agreement with a reaction mechanism in which the one-electron oxidation of tyrosine by ONO2CO2- generates tyrosyl and NO2 radicals as intermediary species, but are inconsistent with mechanisms that invoke direct electrophilic attack on the tyrosine aromatic ring by the adduct. Based upon its reactivity characteristics, ONO2CO2- has a lifetime shorter than 3 ms and a redox potential in excess of 1 V, and oxidizes tyrosine with a bimolecular rate constant greater than 2 x 10(5) M-1 s-1. In comparison, in CO2-free solutions, oxidation of tyrosine by peroxynitrite was much slower and gave significantly lower yields (approximately 8%) of the same products. When tyrosine was the limiting reactant, 3,5-dinitrotyrosine was found among the reaction products of the CO2-catalyzed reaction, but this compound was not detected in the uncatalyzed reaction.
Collapse
|
Comparative Study |
29 |
258 |
14
|
Nuechterlein KH, Parasuraman R, Jiang Q. Visual sustained attention: image degradation produces rapid sensitivity decrement over time. Science 1983; 220:327-9. [PMID: 6836276 DOI: 10.1126/science.6836276] [Citation(s) in RCA: 235] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Perceptual sensitivity to a visual target presented in a random continuous sequence of targets and nontargets decreased rapidly over time when stimuli were highly degraded visually but not when moderately degraded or undegraded. Large declines in sensitivity, independent of changes in response criterion, were found after only 5 minutes of observation. These rapid decrements of sensitivity to degraded targets seem to result from demands on the limited capacity of visual attention.
Collapse
|
|
42 |
235 |
15
|
|
|
26 |
235 |
16
|
Liu Q, Guan XM, Martin WJ, McDonald TP, Clements MK, Jiang Q, Zeng Z, Jacobson M, Williams DL, Yu H, Bomford D, Figueroa D, Mallee J, Wang R, Evans J, Gould R, Austin CP. Identification and characterization of novel mammalian neuropeptide FF-like peptides that attenuate morphine-induced antinociception. J Biol Chem 2001; 276:36961-9. [PMID: 11481330 DOI: 10.1074/jbc.m105308200] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two mammalian neuropeptides NPFF and NPAF have been shown to have important roles in nociception, anxiety, learning and memory, and cardiovascular reflex. Two receptors (FF1 and FF2) have been molecularly identified for NPFF and NPAF. We have now characterized a novel gene designated NPVF that encodes two neuropeptides highly similar to NPFF. NPVF mRNA was detected specifically in a region between the dorsomedial and ventromedial hypothalamic nuclei. NPVF-derived peptides displayed higher affinity for FF1 than NPFF-derived peptides, but showed poor agonist activity for FF2. Following intracerebral ventricular administration, a NPVF-derived peptide blocked morphine-induced analgesia more potently than NPFF in both acute and inflammatory models of pain. In situ hybridization analysis revealed distinct expression patterns of FF1 and FF2 in the rat central nervous system. FF1 was broadly distributed, with the highest levels found in specific regions of the limbic system and the brainstem where NPVF-producing neurons were shown to project. FF2, in contrast, was mostly expressed in the spinal cord and some regions of the thalamus. These results indicate that the endogenous ligands for FF1 and FF2 are NPVF- and NPFF-derived peptides, respectively, and suggest that the NPVF/FF1 system may be an important part of endogenous anti-opioid mechanism.
Collapse
|
|
24 |
223 |
17
|
Jiang Q, Liang LH, Zhao DS. Lattice Contraction and Surface Stress of fcc Nanocrystals. J Phys Chem B 2001. [DOI: 10.1021/jp010995n] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
|
24 |
215 |
18
|
Sailer AW, Sano H, Zeng Z, McDonald TP, Pan J, Pong SS, Feighner SD, Tan CP, Fukami T, Iwaasa H, Hreniuk DL, Morin NR, Sadowski SJ, Ito M, Ito M, Bansal A, Ky B, Figueroa DJ, Jiang Q, Austin CP, MacNeil DJ, Ishihara A, Ihara M, Kanatani A, Van der Ploeg LH, Howard AD, Liu Q. Identification and characterization of a second melanin-concentrating hormone receptor, MCH-2R. Proc Natl Acad Sci U S A 2001; 98:7564-9. [PMID: 11404457 PMCID: PMC34708 DOI: 10.1073/pnas.121170598] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2001] [Accepted: 04/05/2001] [Indexed: 11/18/2022] Open
Abstract
Melanin-concentrating hormone (MCH) is a 19-aa cyclic neuropeptide originally isolated from chum salmon pituitaries. Besides its effects on the aggregation of melanophores in fish several lines of evidence suggest that in mammals MCH functions as a regulator of energy homeostasis. Recently, several groups reported the identification of an orphan G protein-coupled receptor as a receptor for MCH (MCH-1R). We hereby report the identification of a second human MCH receptor termed MCH-2R, which shares about 38% amino acid identity with MCH-1R. MCH-2R displayed high-affinity MCH binding, resulting in inositol phosphate turnover and release of intracellular calcium in mammalian cells. In contrast to MCH-1R, MCH-2R signaling is not sensitive to pertussis toxin and MCH-2R cannot reduce forskolin-stimulated cAMP production, suggesting an exclusive G(alpha)q coupling of the MCH-2R in cell-based systems. Northern blot and in situ hybridization analysis of human and monkey tissue shows that expression of MCH-2R mRNA is restricted to several regions of the brain, including the arcuate nucleus and the ventral medial hypothalamus, areas implicated in regulation of body weight. In addition, the human MCH-2R gene was mapped to the long arm of chromosome 6 at band 6q16.2-16.3, a region reported to be associated with cytogenetic abnormalities of obese patients. The characterization of a second mammalian G protein-coupled receptor for MCH potentially indicates that the control of energy homeostasis in mammals by the MCH neuropeptide system may be more complex than initially anticipated.
Collapse
|
research-article |
24 |
198 |
19
|
Wopereis J, Pajuelo E, Dazzo FB, Jiang Q, Gresshoff PM, De Bruijn FJ, Stougaard J, Szczyglowski K. Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 23:97-114. [PMID: 10929105 DOI: 10.1046/j.1365-313x.2000.00799.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Legume plants carefully control the extent of nodulation in response to rhizobial infection. To examine the mechanism underlying this process we conducted a detailed analysis of the Lotus japonicus hypernodulating mutants, har1-1, 2 and 3 that define a new locus, HYPERNODULATION ABERRANT ROOT FORMATION (Har1), involved in root and symbiotic development. Mutations in the Har1 locus alter root architecture by inhibiting root elongation, diminishing root diameter and stimulating lateral root initiation. At the cellular level these developmental alterations are associated with changes in the position and duration of root cell growth and result in a premature differentiation of har1-1 mutant root. No significant differences between har1-1 mutant and wild-type plants were detected with respect to root growth responses to 1-aminocyclopropane1-carboxylic acid, the immediate precursor of ethylene, and auxin; however, cytokinin in the presence of AVG (aminoetoxyvinylglycine) was found to stimulate root elongation of the har1-1 mutant but not the wild-type. After inoculation with Mesorhizobium loti, the har1 mutant lines display an unusual hypernodulation (HNR) response, characterized by unrestricted nodulation (hypernodulation), and a concomitant drastic inhibition of root and shoot growth. These observations implicate a role for the Har1 locus in both symbiotic and non-symbiotic development of L. japonicus, and suggest that regulatory processes controlling nodule organogenesis and nodule number are integrated in an overall mechanism governing root growth and development.
Collapse
|
|
25 |
185 |
20
|
Jiang Q, Cross AS, Singh IS, Chen TT, Viscardi RM, Hasday JD. Febrile core temperature is essential for optimal host defense in bacterial peritonitis. Infect Immun 2000; 68:1265-70. [PMID: 10678936 PMCID: PMC97277 DOI: 10.1128/iai.68.3.1265-1270.2000] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Fever, a nonspecific acute-phase response, has been associated with improved survival and shortened disease duration in infections, but the mechanisms of these beneficial responses are poorly understood. We previously reported that increasing core temperature of bacterial endotoxin (LPS)-challenged mice to the normal febrile range modified expression of tumor necrosis factor alpha (TNF-alpha), interleukin 1beta (IL-1beta), and IL-6, three cytokines critical to mounting an initial defense against microbial pathogens, but survival was not improved in the warmer animals. We speculated that our inability to show a survival benefit of optimized cytokine expression in the warmer animals reflected our use of LPS, a nonreplicating agonist, rather than an infection with viable pathogens. The objective of this study was to determine if increasing murine core temperature altered cytokine expression and improved survival in an experimental bacterial peritonitis model. We showed that housing mice at 35.5 degrees C rather than 23 degrees C increased core temperature from 36.5 to 37.5 degrees C to 39.2 to 39.7 degrees C, suppressed plasma TNF-alpha expression for the initial 48 h, delayed gamma interferon expression, improved survival, and reduced the bacterial load in mice infected with Klebsiella pneumoniae peritonitis. We showed that the reduced bacterial load was not caused by a direct effect on bacterial proliferation and probably reflected enhanced host defense. These data suggest that the increase in core temperature that occurs during bacterial infections is essential for optimal antimicrobial host defense.
Collapse
|
research-article |
25 |
174 |
21
|
Campbell SB, Walker R, Tai SS, Jiang Q, Russ GR. Randomized controlled trial of sirolimus for renal transplant recipients at high risk for nonmelanoma skin cancer. Am J Transplant 2012; 12:1146-56. [PMID: 22420843 DOI: 10.1111/j.1600-6143.2012.04004.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Sirolimus has antineoplastic effects and may reduce skin cancer rates in kidney transplant patients. This prospective, multicenter, randomized, open-label, controlled trial randomized 86 kidney transplant recipients (≥1 year posttransplant) with history of nonmelanoma skin cancer (NMSC) to continue calcineurin inhibitor (CNI) or convert to sirolimus. Patients were stratified by number of NMSC lesions (0-5, 6-20) in previous year. Primary end point was number of biopsy-confirmed new NMSC lesions per patient-year. Yearly NMSC rate was significantly lower with sirolimus (1.31 vs. 2.48 lesions/patient-year; p = 0.022). Squamous cell carcinoma occurred at a lower rate in the sirolimus versus CNI group (p = 0.038); basal cell carcinoma rate was similar in both. A lower proportion of patients receiving sirolimus developed new or recurrent NMSC (56.4% vs. 80.9%; p = 0.015) or new squamous cell carcinoma (41.0% vs. 70.2%; p = 0.006). No sirolimus patients and one CNI continuation patient experienced acute rejection. Incidence of treatment-emergent adverse events was similar between groups; however, discontinuation rates related to adverse events were significantly higher with sirolimus (46.2% vs. 0%; p < 0.001). In kidney transplant recipients with history of NMSC, conversion from CNI to sirolimus reduced rates of NMSC, without increasing acute rejection risk.
Collapse
|
Multicenter Study |
13 |
165 |
22
|
Zhang Z, Zhang RL, Jiang Q, Raman SB, Cantwell L, Chopp M. A new rat model of thrombotic focal cerebral ischemia. J Cereb Blood Flow Metab 1997; 17:123-35. [PMID: 9040491 DOI: 10.1097/00004647-199702000-00001] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We developed a fibrin-rich thrombotic focal cerebral ischemic model with reproducible and predictable infarct volume in rats. In male Wistar rats (n = 77), a thrombus was induced at the origin of the middle cerebral artery (MCA) by injection of thrombin via an intraluminal catheter placed in the intracranial segment of the internal carotid artery (ICA). Thrombus induction and consequent ischemic cell damage were examined by histopathological analysis and neurological deficit scoring, and by measuring changes in cerebral blood flow (CBF) using laser-Doppler flowmetery (LDF), perfusion-weighted imaging (PWI), and by diffusion weighted imaging (DWI). Histopathology revealed that a fibrin-rich thrombus localized to the origin of the right MCA. Regional cerebral blood flow (rCBF) in the right parietal cortex was reduced by 34-58% of preinjection levels after injection of thrombin in rats administered 30 U of thrombin (n = 10). Magnetic resonance imaging (MRI) showed a reduction in CBF and a hyperintensity DWI encompassing the territory supplied by the right MCA. The infarct volume in rats administered 80 U of thrombin was 31.29 +/- 12.9% of the contralateral hemisphere at 24 h (n = 13), and 34.7 +/- 16.4% of the contralateral hemisphere at 168 h (n = 6). Rats administered 30 U of thrombin exhibited a hemispheric infarct volume of 34.0 +/- 14.5% (n = 9) at 24 h and 29.7 +/- 13.9% (n = 8) at 168 h. In addition, thrombotic rats (n = 3) treated with recombinant tissue plasminogen activator (rt-PA) (10 mg/kg) 2 h after thrombosis showed that CBF rapidly returned towards preischemic values as measured by PWI. This model of thrombotic ischemia is relevant to thromboembolic stroke in humans and may be useful in documenting the safety and efficacy of thrombolytic intervention as well as for investigating therapies complementary to antithrombotic therapy.
Collapse
|
|
28 |
158 |
23
|
|
|
21 |
137 |
24
|
Lv M, Zhang X, Jia H, Li D, Zhang B, Zhang H, Hong M, Jiang T, Jiang Q, Lu J, Huang X, Huang B. An oncogenic role of miR-142-3p in human T-cell acute lymphoblastic leukemia (T-ALL) by targeting glucocorticoid receptor-α and cAMP/PKA pathways. Leukemia 2011; 26:769-77. [PMID: 21979877 DOI: 10.1038/leu.2011.273] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are a family of 19-24 nucleotide non-coding RNAs with posttranscriptional regulatory functions. The involvement of miRNAs in normal hematopoiesis implies that deregulated miRNAs might contribute to leukemogenesis. To date, although certain miRNAs have been established a clear oncogenic role in hematological malignancies, other individual miRNAs potentially involved in human leukemogenesis still remain elusive. In this report, we showed that miR-142-3p was upregulated in human T-leukemic cell lines and primary T-leukemic cells isolated from T-cell acute lymphoblastic leukemia (T-ALL) patients and its expressive levels were correlated with patients' prognosis. Such an oncogenic role of miR-142-3p could be explained by its targeting cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and glucocorticoid receptor alpha (GRα). High levels of miR-142-3p resulted in low levels of cAMP and weak activity of PKA, thus relieving the inhibitory effect of PKA on T-leukemic cell proliferation. Meanwhile, miR-142-3p decreased GRα protein expression by directly targeting the 3'-untranslational region of GRα mRNA, leading to glucocorticoid resistance. Transfection of the miR-142-3p inhibitor effectively converted glucocorticoid resistance, because of the resultant increase of GRα expression and PKA activity. These findings suggest that miR-142-3p is critical in T-cell leukemogenesis and may serve as a potential therapeutic target in T-ALL patients.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
131 |
25
|
|
|
23 |
124 |