1
|
Wanke MC, Lehmann O, Muller K, Wen Q, Stuke M. Laser Rapid Prototyping of Photonic Band-Gap Microstructures. Science 1997; 275:1284-6. [PMID: 9036847 DOI: 10.1126/science.275.5304.1284] [Citation(s) in RCA: 218] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three-dimensional periodic microstructures of aluminum oxide, which are important for creating photonic band-gap structures (PBGs), were fabricated by laser rapid prototyping by means of laser-induced direct-write deposition from the gas phase. The structures consisted of layers of parallel rods forming a face-centered tetragonal lattice with lattice constants of 66 and 133 micrometers. These structures showed transmission minima centered around 4 terahertz (75 micrometers) and 2 terahertz (150 micrometers), respectively. PBGs will allow precise control of the optical properties of materials, including lasers without threshold.
Collapse
|
|
28 |
218 |
2
|
Li Y, Kuang K, Yerxa B, Wen Q, Rosskothen H, Fischbarg J. Rabbit conjunctival epithelium transports fluid, and P2Y2(2) receptor agonists stimulate Cl(-) and fluid secretion. Am J Physiol Cell Physiol 2001; 281:C595-602. [PMID: 11443059 DOI: 10.1152/ajpcell.2001.281.2.c595] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rabbit conjunctival epithelium exhibits UTP-dependent Cl(-) secretion into the tears. We investigated whether fluid secretion also takes place. Short-circuit current (I(sc)) was 14.9 +/- 1.4 microA/cm(2) (n = 16). Four P2Y(2) purinergic receptor agonists [UTP and the novel compounds INS365, INS306, and INS440 (Inspire Pharmaceuticals)] added apically (10 microM) resulted in temporary (approximately 30 min) I(sc) increases (88%, 66%, 57%, and 28%, respectively; n = 4 each). Importantly, the conjunctiva transported fluid from serosa to mucosa at a rate of 6.5 +/- 0.7 microl x h(-1) x cm(-2) (range 2.1--15.3, n = 20). Fluid transport was stimulated by mucosal additions of 10 microM: 1) UTP, from 7.4 +/- 2.3 to 10.7 +/- 3.3 microl x h(-1) x cm(-2), n = 5; and 2) INS365, from 6.3 +/- 1.0 to 9.8 +/- 2.5 microl. h(-1) x cm(-2), n = 5. Fluid transport was abolished by 1 mM ouabain (n = 5) and was drastically inhibited by 300 microM quinidine (from 6.4 +/- 1.2 to 3.6 +/- 1.0 microl x h(-1) x cm(-2), n = 4). We conclude that this epithelium secretes fluid actively and that P2Y(2) agonists stimulate both Cl(-) and fluid secretions.
Collapse
|
|
24 |
113 |
3
|
Wen Q, Chen Z, Zhao Y, Zhang H, Feng Y. Biodegradation of polyacrylamide by bacteria isolated from activated sludge and oil-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2010; 175:955-959. [PMID: 19932560 DOI: 10.1016/j.jhazmat.2009.10.102] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/13/2009] [Accepted: 10/27/2009] [Indexed: 05/28/2023]
Abstract
Polyacrylamide (PAM), a linear water soluble polymeric compound with high molecular weight, is extensively used for oil production in China. Compared with the physico-chemical degradation of PAM, there is no acrylamide monomer, which causes peripheral neuropathy, released in the process of biodegradation. Unfortunately, few microorganisms have been isolated which can degrade PAM. In this study, two PAM-degrading bacterial strains, named HWBI and HWBII, were isolated from the activated sludge and soil in an oil field that had been contaminated by PAM for an extended period. These were subsequently identified as Bacillus cereus and Bacillus flexu, respectively. Both strains grew on a medium composed of 60 mg L(-1) PAM as the sole source of carbon. Although both strains degraded PAM in different rates, after 72 h cultivation more than 70% of the PAM was consumed. This degradation efficiency was much higher than previous studies. Both strains degraded a determinate proportion of PAM when 50-1000 mg L(-1) of the initial PAM was supplied. Glucose with a concentration lower than 200 mg L(-1) can be used as co-metabolism substrate with PAM. The Fourier Transform Infrared (FT-IR) spectrograms of the cultures before and after PAM degradation were also recorded. The result showed that amido groups of the PAM were picked off by the microorganisms from the main chain of the PAM, and metabolism products other than acrylamide were formed in the degradation.
Collapse
|
|
15 |
84 |
4
|
Wen Q, Yang L, Duan R, Chen Z. Monitoring and evaluation of antibiotic resistance genes in four municipal wastewater treatment plants in Harbin, Northeast China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:34-40. [PMID: 26840514 DOI: 10.1016/j.envpol.2016.01.043] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 05/29/2023]
Abstract
The development and proliferation of antibiotic resistance in pathogenic and environmental microorganisms is of great concern for public health. In this study, the distribution and removal efficiency of intI1 and eight subtypes of antibiotic resistance genes (ARGs) for tetracycline, sulfonamides, beta-lactams resistance in four municipal wastewater treatment plants (WWTPs) in Harbin, which locates in Songhua River basin in cold areas of China, were monitored by real-time fluorescent quantitative PCR. The results showed that intI1 and 6 ARGs except for blaTEM and blaSHV were detected in wastewater and sludge samples and 0.3-2.7 orders of magnitude of ARGs removal efficiency in the four WWTPs were observed. The investigation on the removal of ARGs of different treatment units in one WWTP showed that the biological treatment unit played the most important role in ARGs removal (1.2-1.8 orders of magnitude), followed by UV disinfection, while primary physical treatment units can hardly remove any ARGs. Although all the WWTPs can remove ARGs effectively, ARGs concentrations are still relatively high in the effluent, their further attenuation should be investigated.
Collapse
|
|
9 |
72 |
5
|
Yang S, Chen Z, Wen Q. Impacts of biochar on anaerobic digestion of swine manure: Methanogenesis and antibiotic resistance genes dissemination. BIORESOURCE TECHNOLOGY 2021; 324:124679. [PMID: 33445009 DOI: 10.1016/j.biortech.2021.124679] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 05/16/2023]
Abstract
This work aimed to study the effects of biochar on methanogenesis and antibiotic resistance genes (ARGs) fate during anaerobic digestion (AD) of swine manure (SM) was investigated. Under the optimal biochar dosage of 5-10%, methane yield was significantly improved by 25%, ascribing to the enhancement of direct interspecies electron transfer (DIET). Biochar addition alleviated the need of cytochrome-c as interspecies electron connection components and enriched the microbes involved in DIET. Defluviitoga, Thermovirga and Cloacibacillus were dominant with biochar addition and might participate in DIET together with Methanothrix. The abundance of parC, tetX, blaCTX-M, blaTEM, aac(6')-Ib-cr, ermB and tetW were significantly reduced in biochar treatments and intI1 removal increased by 15% in B-5% than the control. Structural equation models demonstrated that intI1 (λ = 0.59, P < 0.001) had the most standardized direct effects on ARGs, while biochar indirectly affected ARGs by changing intI1 (λ = 0.41, P < 0.01) and microbial structure (λ = -0.24, P < 0.05).
Collapse
|
|
4 |
72 |
6
|
Chen Z, Wang Y, Wen Q. Effects of chlortetracycline on the fate of multi-antibiotic resistance genes and the microbial community during swine manure composting. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:977-987. [PMID: 29137887 DOI: 10.1016/j.envpol.2017.11.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 06/07/2023]
Abstract
Excessive use of antibiotics in breeding industry leads to accumulation of antibiotic residuals and antibiotic resistance genes (ARGs) in environment from improperly treated livestock excrements. Four commonly used veterinary antibiotics including chlortetracycline (CTC), sulfamerazine (SMZ), enrofloxacin (ENR) and erythromycin (ERY) were monitored in the swine manure composting. Co-resistance and cross-resistance effects among relative ARGs, correlations between ARGs and bacterial community under multiple antibiotics residual during the composting were investigated in this research. With CTC addition up to 20 mg/kg, more than 99% of CTC removal was achieved after composting, and most of the other antibiotics can be thoroughly removed as well. The variations in ARGs during the composting were strongly correlated to the compositions of the microbial community, Bacteroides and Sporosarcina were main ARGs carriers in the thermophlic phase. Clostridium Ⅺ, Clostridium sensu stricto, and Pseudoxanthomonas, might spread ARGs in cooling and maturing stage. Most of the tested ARGs in swine manure can be effectively reduced through composting, thus makes the compost products safe for soil fertilization.
Collapse
|
|
7 |
68 |
7
|
Huang L, Chen Z, Wen Q, Zhao L, Lee DJ, Yang L, Wang Y. Insights into Feast-Famine polyhydroxyalkanoate (PHA)-producer selection: Microbial community succession, relationships with system function and underlying driving forces. WATER RESEARCH 2018; 131:167-176. [PMID: 29281810 DOI: 10.1016/j.watres.2017.12.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 06/07/2023]
Abstract
The Feast-Famine (FF) process has been frequently used to select polyhydroxyalkanoate (PHA)-accumulating mixed cultures (MCs), but there has been little insight into the ecophysiology of the microbial community during the selection process. In three FF systems with well-defined conditions, synchronized variations in higher-order properties of MCs and complicate microbial community succession mainly including enrichment and elimination of non-top competitors and unexpected turnover of top competitors, were observed. Quantification of PHA-accumulating function genes (phaC) revealed that the top competitors maintained the PHA synthesis by playing consecutive roles when the highly dynamic turnover occurred. Due to its specific physiological characteristics during the PHA-accumulating process, Thauera strain OTU 7 was found to be responsible for the fluctuating SVI, which threatened the robustness of the FF system. This trait was also responsible for its later competitive exclusion by the other PHA-producer, Paracoccus strain OTU 1. Deterministic processes dominated the entire FF system, resulting in the inevitable microbial community succession in the acclimation phase and maintenance of the stable PHA-accumulating function in the maturation phase. However, neutral processes, likely caused by predation from bacterial phages, also occurred, which led to the unpredictable temporal dynamics of the top competitors.
Collapse
|
|
7 |
67 |
8
|
Yang L, Zhang S, Chen Z, Wen Q, Wang Y. Maturity and security assessment of pilot-scale aerobic co-composting of penicillin fermentation dregs (PFDs) with sewage sludge. BIORESOURCE TECHNOLOGY 2016; 204:185-191. [PMID: 26799590 DOI: 10.1016/j.biortech.2016.01.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/31/2015] [Accepted: 01/05/2016] [Indexed: 05/05/2023]
Abstract
In this work, penicillin fermentation dregs (PFDs) and sewage sludge (SWS) were co-composted to analyze the possibility of recycling nutrients in PFDs. The temperature was maintained above 55°C for more than 3 days, and the final electrical conductivity (EC), pH and C/N all met the national standards in maturity. A nearly 100% removal of the residual penicillin was achieved, and the seed germination index (GI) increased from 0.02% to 83.54±3.1% by the end of the composting process. However, monitoring the quantity of antibiotic resistance genes (ARGs) showed that the logarithm of the number of copies of blaTEM increased from 4.17±0.19 at the initial phase to 8.92±0.27 by the end of the composting process, which means that there is a high risk for land use when using PFD compost products.
Collapse
|
|
9 |
59 |
9
|
Chen Z, Fu Q, Wen Q, Wu Y, Bao H, Guo J. Microbial community competition rather than high-temperature predominates ARGs elimination in swine manure composting. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127149. [PMID: 34530271 DOI: 10.1016/j.jhazmat.2021.127149] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Aerobic composting is commonly used in pig manure treatment, however, antibiotic resistance genes (ARGs) and their unclear transformation during composting process make the treated manure land using risky. The effects of enhanced thermophilic phase strategy (external heating (HTC) and thermophiles inoculation (MC)) on ARGs removal and the underlying mechanisms were investigated during swine manure composting. HTC increased the total relative abundance (RA) of ARGs by 32.38%, and MC decreased by 21.50% compared to CK by the end of the composting. Mantel test indicated that it was not temperature (P > 0.05), but environmental parameters (pH, Electric Conductivity (EC), etc.) and metabolic products (nitrogen forms) significantly affected the ARGs profile. Partial least-squares path modeling (PLS-PM) suggested that microbial community structure (bacterial abundance and diversities) was the main factor for ARGs evolution. Co-occurrence analysis revealed that HTC could promote the propagation of ARG hosts in later stage of the composting because the strong selection of thermophiles resulted in ecological niches vacancy, and MC enhanced the competition between hosts and nonhosts for ecological niches by increasing thermophiles diversities. These results suggested that competitive inhibition to potential ARGs hosts could be a helpful strategy in ARGs threaten elimination during composting.
Collapse
|
|
3 |
53 |
10
|
Sánchez JM, Li Y, Rubashkin A, Iserovich P, Wen Q, Ruberti JW, Smith RW, Rittenband D, Kuang K, Diecke FPJ, Fischbarg J. Evidence for a central role for electro-osmosis in fluid transport by corneal endothelium. J Membr Biol 2002; 187:37-50. [PMID: 12029376 DOI: 10.1007/s00232-001-0151-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2001] [Indexed: 10/27/2022]
Abstract
The mechanism of transepithelial fluid transport remains unclear. The prevailing explanation is that transport of electrolytes across cell membranes results in local concentration gradients and transcellular osmosis. However, when transporting fluid, the corneal endothelium spontaneously generates a locally circulating current of approximately 25 microA cm(-2), and we report here that electrical currents (0 to +/-15 microA cm(-2)) imposed across this layer induce fluid movements linear with the currents. As the imposed currents must be approximately 98% paracellular, the direction of induced fluid movements and the rapidity with which they follow current imposition (rise time < or =3 sec) is consistent with electro-osmosis driven by sodium movement across the paracellular pathway. The value of the coupling coefficient between current and fluid movements found here (2.37 +/- 0.11 microm cm(2) hr(-1) microA (-1), suggests that: 1) the local endothelial current accounts for spontaneous transendothelial fluid transport; 2) the fluid transported becomes isotonically equilibrated. Ca(++)-free solutions or endothelial damage eliminate the coupling, pointing to the cells and particularly their intercellular junctions as a main site of electro-osmosis. The polycation polylysine, which is expected to affect surface charges, reverses the direction of current-induced fluid movements. Fluid transport is proportional to the electrical resistance of the ambient medium. Taken together, the results suggest that electro-osmosis through the intercellular junctions is the primary process in a sequence of events that results in fluid transport across this preparation.
Collapse
|
|
23 |
53 |
11
|
Wen Q, Tutuka C, Keegan A, Jin B. Fate of pathogenic microorganisms and indicators in secondary activated sludge wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2009; 90:1442-7. [PMID: 18977580 DOI: 10.1016/j.jenvman.2008.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 08/07/2008] [Accepted: 09/18/2008] [Indexed: 05/10/2023]
Abstract
This study was undertaken to investigate the removal of pathogenic microorganisms and their indicators in a laboratory scale biological treatment system that simulated the secondary treatment process of a wastewater treatment plant (WWTP). Four groups of microorganisms including bacteria, viruses, protozoa and helminths as well as the selected indicators were employed in the investigation. The results demonstrated that approximately 2-3 log10 removal of the microbial indicators was achieved in the treatment process. The log removal of Clostridium perfringens spores was low due to their irreversible adsorption to sludge flocs. The laboratory treatment system demonstrated a similar removal capability for Escherichia coli and the bacterial indicators (total coliforms, enterococci and particles <2.73 microm/L). The MS-2 bacteriophage, measured as a viral indicator, showed a lower removal than poliovirus, which may be considered as a worst case scenario for virus removal. The results of using particle profiling as an indicator for protozoa and helminths appeared to be inaccurate. The removal performance for bacterial and protozoan pathogens and their indicators in a full scale WWTP and the laboratory treatment system was compared.
Collapse
|
|
16 |
51 |
12
|
Liu Y, Zhao R, Wang H, Luo Y, Wang X, Niu W, Zhou Y, Wen Q, Fan S, Li X, Xiong W, Ma J, Li X, Tan M, Li G, Zhou M. miR-141 is involved in BRD7-mediated cell proliferation and tumor formation through suppression of the PTEN/AKT pathway in nasopharyngeal carcinoma. Cell Death Dis 2016; 7:e2156. [PMID: 27010857 PMCID: PMC4823963 DOI: 10.1038/cddis.2016.64] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/24/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022]
Abstract
Bromodomain containing 7 (BRD7) was identified as a nuclear transcriptional regulatory factor. BRD7 functions as a tumor suppressor in multiple cancers, including nasopharyngeal carcinoma (NPC). In this study, we reported a novel mechanism of BRD7 in NPC progression. We demonstrated that the expression of miR-141 was remarkably increased in NPC tissues and was negatively correlated with the expression of BRD7 and the survival rate of NPC patients. Decreased expression levels of miR-141, including the primary, the precursor and the mature forms of miR-141, were found in BRD7-overexpressing HEK293, 5-8F and HNE1 cells compared the control cells, while there was no obvious effect on the expression levels of the two critical enzymes Drosha and Dicer. BRD7 can negatively regulate the promoter activity of miR-141, while no obvious binding site of BRD7 was found in the potential promoter region of miR-141. Moreover, ectopic expression of miR-141 can significantly promote cell proliferation and inhibit apoptosis in NPC, and rescuing the expression of miR-141 in BRD7-overexpressing NPC cells could partially reverse the tumor suppressive effect of BRD7 on cell proliferation and tumor growth in vitro and in vivo. Furthermore, the activation of the PTEN/AKT pathway mediated by the overexpression of BRD7 could be inhibited by rescuing the expression of miR-141, which accordingly results in the partial restoration of cell proliferation and tumor growth. Our findings demonstrate that the BRD7/miR-141/PTEN/AKT axis has critical roles in the progression of NPC and provide some promising targets for the diagnosis and treatment of NPC.
Collapse
|
Research Support, Non-U.S. Gov't |
9 |
49 |
13
|
Wen Q, Chen Z, Tian T, Chen W. Effects of phosphorus and nitrogen limitation on PHA production in activated sludge. J Environ Sci (China) 2010; 22:1602-1607. [PMID: 21235192 DOI: 10.1016/s1001-0742(09)60295-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The effects of phosphorus and nitrogen limitation on polyhydroxyalkanoate (PHA) production and accumulation by activated sludge biomass with acetate as a carbon source were investigated. Pre-selected influent carbon-phosphorus (C:P, W/W) of 100, 160, 250, 500 and 750, and carbon-nitrogen (C:N, W/W) of 20, 60, 100, 125 and 180 were applied in the phosphorus limitation experiments and the nitrogen limitation experiments, respectively. The maximum PHA accumulation up to 59% of the cell dry weight with a PHA productivity of 1.61 mg PHA/mg COD consumed was observed at the C:N 125 in the nitrogen limitation experiment. This value was much higher than that obtained in previous studies with a normal substrate feeding. The study showed that activated sludge biomass would produce more polyhydroxybutyrate than polyhydroxyvalerate under the stress of nutrient limitation, especially under phosphorus limitation conditions. The experimental result also indicated that both phosphorus and nitrogen limitation may cause sludge bulking.
Collapse
|
|
15 |
47 |
14
|
Wang S, He MF, Chen YH, Wang MY, Yu XM, Bai J, Zhu HY, Wang YY, Zhao H, Mei Q, Nie J, Ma J, Wang JF, Wen Q, Ma L, Wang Y, Wang XN. Rapid reuptake of granzyme B leads to emperitosis: an apoptotic cell-in-cell death of immune killer cells inside tumor cells. Cell Death Dis 2013; 4:e856. [PMID: 24113190 PMCID: PMC3824662 DOI: 10.1038/cddis.2013.352] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/07/2013] [Accepted: 08/05/2013] [Indexed: 01/17/2023]
Abstract
A cell-in-cell process refers to the invasion of one living cell into another homotypic or heterotypic cell. Different from non-apoptotic death processes of internalized cells termed entosis or cannibalism, we previously reported an apoptotic cell-in-cell death occurring during heterotypic cell-in-cell formation. In this study, we further demonstrated that the apoptotic cell-in-cell death occurred only in internalized immune killer cells expressing granzyme B (GzmB). Vacuole wrapping around the internalized cells inside the target cells was the common hallmark during the early stage of all cell-in-cell processes, which resulted in the accumulation of reactive oxygen species and subsequent mitochondrial injury of encapsulated killer or non-cytotoxic immune cells. However, internalized killer cells mediated rapid bubbling of the vacuoles with the subsequent degranulation of GzmB inside the vacuole of the target cells and underwent the reuptake of GzmB by killer cells themselves. The confinement of GzmB inside the vacuole surpassed the lysosome-mediated cell death occurring in heterotypic or homotypic entosis processes, resulting in a GzmB-triggered caspase-dependent apoptotic cell-in-cell death of internalized killer cells. On the contrary, internalized killer cells from GzmB-deficient mice underwent a typical non-apoptotic entotic cell-in-cell death similar to that of non-cytotoxic immune cells or tumor cells. Our results thus demonstrated the critical involvement of immune cells with cytotoxic property in apoptotic cell-in-cell death, which we termed as emperitosis taken from emperipolesis and apoptosis. Whereas entosis or cannibalism may serve as a feed-on mechanism to exacerbate and nourish tumor cells, emperitosis of immune killer cells inside tumor cells may serve as an in-cell danger sensation model to prevent the killing of target cells from inside, implying a unique mechanism for tumor cells to escape from immune surveillance.
Collapse
|
research-article |
12 |
46 |
15
|
Chen Z, Fu Q, Cao Y, Wen Q, Wu Y. Effects of lime amendment on the organic substances changes, antibiotics removal, and heavy metals speciation transformation during swine manure composting. CHEMOSPHERE 2021; 262:128342. [PMID: 33182112 DOI: 10.1016/j.chemosphere.2020.128342] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Aerobic composting has been used for a long time for bioconversion of manure wastes, however, its application has been limited due to slow transition of organic matters and influence of heavy metals and antibiotics residues. Compost with lime addition can speed up the composting process, while its effects on the evolution of organic matters, heavy metals and antibiotics need to be further investigated. In this research, the effects of lime amendment on organic substances changes was assessed by the spectroscopic characteristics. Besides, chlortetracycline (CTC) removal and Cu, Zn chemical speciation transformation were also evaluated. Results showed that the humic acid-like substances region of fluorescence regional integration (FRI-EEM) increased from 20.5% to 40.9% and 20.6%-32.6%, respectively, in lime addition treatment and control after 15 days of composting, indicating that the addition of lime remarkably improved the transition of organic matter and accelerated the maturity process. Besides, 94.04% of CTC in the manure was removed when lime was added, higher than 86.10% in the control group. The transformation of zinc from exchangeable and reducible into oxidizable and residual fractions was improved while the transformation of copper was affected slightly. Therefore, lime is a suitable amendment material for manure composting, which can accelerate the transition of organic matters due to the regulation of composting pH, as well as eliminate harmful CTC and bioavailable heavy metal, thus promoting the further utilizing of organic substance.
Collapse
|
|
4 |
43 |
16
|
Yang S, Wen Q, Chen Z. Impacts of Cu and Zn on the performance, microbial community dynamics and resistance genes variations during mesophilic and thermophilic anaerobic digestion of swine manure. BIORESOURCE TECHNOLOGY 2020; 312:123554. [PMID: 32460007 DOI: 10.1016/j.biortech.2020.123554] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 06/11/2023]
Abstract
In this work, fate of antibiotic resistance genes (ARGs), heavy metal resistance genes (MRGs) and intI1 were investigated during mesophilic (mAD) and thermophilic anaerobic digestion (tAD) of swine manure with presence of Cu and Zn. Results showed that metal reduced the lag phase time. Cu showed stronger inhibition than Zn on archaea community and metals inhibited the growth of acetoclastic methanogens during mAD. Although total concentration of metals increased after AD, they were transformed into stable state. The abundance of qnrS, sul1, sul2 and drfA7 increased 1.2-5.7 times after mAD, while reduced after tAD, showed that tAD was effective in ARGs removal. Structural equation model analysis suggested that intI1 had the most standardized direct effects on ARGs variation in mAD (R = 0.85, p < 0.01), while the co-occurrence of MRGs with ARGs showed significantly positive influences on ARGs variation in tAD (R = 0.82, p < 0.01).
Collapse
|
|
5 |
41 |
17
|
Wen Q, Yang L, Zhao Y, Huang L, Chen Z. Insight into effects of antibiotics on reactor performance and evolutions of antibiotic resistance genes and microbial community in a membrane reactor. CHEMOSPHERE 2018; 197:420-429. [PMID: 29366956 DOI: 10.1016/j.chemosphere.2018.01.067] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/03/2018] [Accepted: 01/14/2018] [Indexed: 06/07/2023]
Abstract
A lab-scale anoxic/oxic-membrane bioreactor was designed to treat antibiotics containing wastewater at different antibiotics concentrations (0.5 mg/L, 1 mg/L and 3 mg/L of each antibiotic). Overall COD and NH4+N removal (more than 90%) were not affected during the exposure to antibiotics and good TN removal was also achieved, while TP removal was significantly affected. The maximum removal efficiency of penicillin and chlorotetracycline reached 97.15% and 96.10% respectively due to strong hydrolysis, and sulfamethoxazole reached 90.07% by biodegradation. However, 63.87% of norfloxacin maximum removal efficiency was achieved mainly by sorption. The system had good ability to reduce ARGs, peaking to more than 4 orders of magnitude, which mainly depended on the biomass retaining of the membrane module. Antibiotics concentration influenced the evolution of ARGs and bacterial communities in the reactor. This research provides great implication to reduce ARGs and antibiotics in antibiotics containing wastewater using A/O-MBR.
Collapse
|
|
7 |
39 |
18
|
Wen Q, Ma L, Chen YP, Yang L, Luo W, Wang XN. Treatment of avascular necrosis of the femoral head by hepatocyte growth factor-transgenic bone marrow stromal stem cells. Gene Ther 2008; 15:1523-35. [PMID: 18633448 DOI: 10.1038/gt.2008.110] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The treatment of hormone-induced early-stage avascular necrosis of the femoral head (ANFH) with transplantation of hepatocyte growth factor (HGF)-transgenic bone marrow stromal stem cells (BMSCs) was examined. A rabbit model of hormone-induced early ANFH was first established. BMSCs were transplanted by core decompression under the guidance of computed tomography (CT). A supportive fibrinogen drug delivery mixture (FG) was tested for mechanical enhancement of stem cell delivery. Therapeutic efficacy was evaluated by CT, magnetic resonance imaging (MRI), CT perfusion imaging, ink artery infusion angiography, hematoxylin-and-eosin staining and immunohistochemical staining for extracellular signal-regulated kinase-1/2 of pathological sections. A regular arrangement of trabeculae and obvious bone regeneration were observed in the animals receiving transplanted transgenic BMSCs with FG. Newly generated capillaries were visible on the bone plates of the trabeculae, and the bone marrow was rich in hematopoietic tissue. These results demonstrate that the combination of core decompression and transplantation of HGF transgenic autologous BMSCs enhanced blood vessel regeneration and bone reconstruction in the ANFH model. This study provides experimental data that motivate possible clinical use of this therapeutic strategy.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
39 |
19
|
Shendi D, Marzi J, Linthicum W, Rickards A, Dolivo D, Keller S, Kauss M, Wen Q, McDevitt T, Dominko T, Schenke-Layland K, Rolle M. Hyaluronic acid as a macromolecular crowding agent for production of cell-derived matrices. Acta Biomater 2019; 100:292-305. [PMID: 31568877 DOI: 10.1016/j.actbio.2019.09.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022]
Abstract
Cell-derived matrices (CDMs) provide an exogenous source of human extracellular matrix (ECM), with applications as cell delivery vehicles, substrate coatings for cell attachment and differentiation, and as biomaterial scaffolds. However, commercial application of CDMs has been hindered due to the prolonged culture time required for sufficient ECM accumulation. One approach to increasing matrix deposition in vitro is macromolecular crowding (MMC), which is a biophysical phenomenon that limits the diffusion of ECM precursor proteins, resulting in increased ECM accumulation at the cell layer. Hyaluronic acid (HA), a natural MMC highly expressed in vivo during fetal development, has been shown to play a role in ECM production, but has not been investigated as a macromolecule for increasing cell-mediated ECM deposition in vitro. In the current study, we hypothesized that HA can act as a MMC, and increase cell-mediated ECM production. Human dermal fibroblasts were cultured for 3, 7, or 14 days with 0%, 0.05%, or 0.5% high molecular weight HA. Ficoll 70/400 was used as a positive control. SDS-PAGE, Sircol, and hydroxyproline assays indicated that 0.05% HA-treated cultures had significantly higher mean collagen deposition at 14 days, whereas Ficoll 70/400-treated cultures had significantly lower collagen production compared to the HA and untreated controls. However, fluorescent immunostaining of ECM proteins and quantification of mean gray values did not indicate statistically significant differences in ECM production in HA or Ficoll 70/400-treated cultures compared to untreated controls. Raman imaging (a marker-free spectral imaging method) indicated that HA increased ECM deposition in human dermal fibroblasts. These results are consistent with decreases in CDM stiffness observed in Ficoll 70/400-treated cultures by atomic force microscopy. Overall, these results indicate that there are macromolecule- and cell type- dependent effects on matrix assembly, turnover, and stiffness in cell-derived matrices. STATEMENT OF SIGNIFICANCE: Cell-derived matrices (CDMs) are versatile biomaterials with many regenerative medicine applications, including as cell and drug delivery vehicles and scaffolds for wound healing and tissue regeneration. While CDMs have several advantages, their commercialization has been limited due to the prolonged culture time required to achieve CDM synthesis in vitro. In this study, we explored the use of hyaluronic acid (HA) as a macromolecular crowder in human fibroblast cell cultures to support production of CDM biomaterials. Successful application of macromolecular crowding will allow development of human cell-derived, xeno-free biomaterials that re-capitulate the native human tissue microenvironment.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
6 |
35 |
20
|
Chen Z, Zhang S, Wen Q, Zheng J. Effect of aeration rate on composting of penicillin mycelial dreg. J Environ Sci (China) 2015; 37:172-178. [PMID: 26574101 DOI: 10.1016/j.jes.2015.03.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 06/05/2023]
Abstract
Pilot scale experiments with forced aeration were conducted to estimate effects of aeration rates on the performance of composting penicillin mycelial dreg using sewage sludge as inoculation. Three aeration rates of 0.15, 0.50 and 0.90L/(min·kg) organic matter (OM) were examined. The principal physicochemical parameters were monitored during the 32day composting period. Results showed that the higher aeration rate of 0.90L/(min·kg) did not corresponded to a longer thermophilic duration and higher rates of OM degradation; but the lower aeration rate of 0.15L/(min·kg) did induce an accumulation of NH4(+)-N contents due to the inhibition of nitrification. On the other hand, aeration rate has little effect on degradation of penicillin. The results show that the longest phase of thermophilic temperatures≥55°C, the maximum NO3(-)-N content and seed germination, and the minimum C/N ratio were obtained with 0.50L/(min·kg) OM. Therefore, aeration rates of 0.50L/(min·kg) OM can be recommended for composting penicillin mycelial dreg.
Collapse
|
|
10 |
35 |
21
|
Wen Q, Zhang H, Chen Z, Li Y, Nan J, Feng Y. Using bacterial catalyst in the cathode of microbial desalination cell to improve wastewater treatment and desalination. BIORESOURCE TECHNOLOGY 2012; 125:108-113. [PMID: 23026321 DOI: 10.1016/j.biortech.2012.08.140] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 06/01/2023]
Abstract
A microbial desalination cell (MDC) is able to desalinate salt water without energy consumption whilst generating bioenergy. Previously MDCs used abiotic cathodes, which are restricted in application by high operating costs and low levels of sustainability whereas, in the present study, an aerobic biocathode consisting of carbon felt and bacterial catalysts was tested. The biocathode MDC produced a maximum voltage of 609 mV, the value of which was 136 mV higher than that of an air cathode MDC operated under the same conditions. The salinity of 39 mL of salt water (35 g L(-1) NaCl) was reduced by 92% using 0.441 L of anode solution (11.3:1), with a coulombic efficiency of 96.2 ± 3.8% and a total desalination rate of 2.83 mg h(-1). The biocathode MDC proved to be a promising approach for efficient desalination of salt water.
Collapse
|
|
13 |
34 |
22
|
Yang S, Wen Q, Chen Z. Effect of KH 2PO 4-modified biochar on immobilization of Cr, Cu, Pb, Zn and as during anaerobic digestion of swine manure. BIORESOURCE TECHNOLOGY 2021; 339:125570. [PMID: 34303096 DOI: 10.1016/j.biortech.2021.125570] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 05/16/2023]
Abstract
In this study, the immobilization performance and mechanisms of heavy metals (HMs) in swine manure (SM) during anaerobic digestion (AD) with biochar (BC) and KH2PO4-modified biochar (BP) were investigated. BC and BP addition decreased DTPA-extractable Cr, Cu, Pb and Zn amount, transformed these HMs to more stable state, and decreased the ecological risks of these HMs by 2 grades accordingly. BP exhibited a higher passivation efficiency for Cr, Cu and Pb and 5% -10% biochar dosage showed the maximum passivation effects. Characterization results showed that Cr, Cu and Pb immobilization with BP were mainly attributed to the formation of phosphate precipitation. However, both DTPA extraction and mobility of As increased with biochar addition, because the release of phosphorus in biochar had negative effect on As immobilization. BP could serve as a novel remediation agent for Cr, Cu, Pb and Zn passivation but special attention should be paid with As presence.
Collapse
|
|
4 |
31 |
23
|
Chen Z, Li M, Wen Q. Comprehensive evaluation of three sets of advanced wastewater treatment trains for treating secondary effluent: Organic micro-pollutants and bio-toxicity. CHEMOSPHERE 2017; 189:426-434. [PMID: 28957760 DOI: 10.1016/j.chemosphere.2017.09.092] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/20/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
The environmental presence of organic micro-pollutants (OMPs) has posed increasing risks on aquatic organism and human health. The performance of three commonly used advanced wastewater treatment trains, coagulation-sand filter, coagulation-biological aerated filter (BAF) and ozonation-biological activated carbon (BAC), in removing fifteen residual contaminants and bio-toxicity of the effluent from a local municipal wastewater treatment plant (WWTP) were investigated. Relatively high level of OMPs (0.69-14.71 μg/L), genotoxicity (22.64 μg 4-NQO/L) and estrogenic activity (1.4 μg E2/L) were observed from the secondary effluent (SE). Limited OMPs and bio-toxicity reduction was achieved during coagulation with 20 mg/L of polymeric aluminium and sand filter. Ozonation exhibited high advantage in OMPs, genotoxicity and estrogenic activity reduction. More than 80% of removal was achieved for most OMPs after ozonation with normalized dose of 1.25 mg O3/mg DOC, and the removal of OMPs was consistent well with the second reaction kinetics constants of OMPs with ozone. Based on Pearson correlation analysis, spectroscopy indicators such as UV254 and total fluorescence (TF) exhibited a high positive correlation with genotoxicity reduction, while estrogenic activity was related well with OMPs variation. To sum up, spectroscopic indicators showed a high potential to indicate the OMPs and bio-toxicity of SE.
Collapse
|
Evaluation Study |
8 |
29 |
24
|
Wen Q, Gandhi K, Capel RA, Hao G, O'Shea C, Neagu G, Pearcey S, Pavlovic D, Terrar DA, Wu J, Faggian G, Camelliti P, Lei M. Transverse cardiac slicing and optical imaging for analysis of transmural gradients in membrane potential and Ca 2+ transients in murine heart. J Physiol 2018; 596:3951-3965. [PMID: 29928770 PMCID: PMC6117587 DOI: 10.1113/jp276239] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/12/2018] [Indexed: 11/18/2022] Open
Abstract
Key points
A robust cardiac slicing approach was developed for optical mapping of transmural gradients in transmembrane potential (Vm) and intracellular Ca2+ transient (CaT) of murine heart. Significant transmural gradients in Vm and CaT were observed in the left ventricle. Frequency‐dependent action potentials and CaT alternans were observed in all ventricular regions with rapid pacing, with significantly greater incidence in the endocardium than epicardium. The observations demonstrate the feasibility of our new approach to cardiac slicing for systematic analysis of intrinsic transmural and regional gradients in Vm and CaT. Abstract Transmural and regional gradients in membrane potential and Ca2+ transient in the murine heart are largely unexplored. Here, we developed and validated a robust approach which combines transverse ultra‐thin cardiac slices and high resolution optical mapping to enable systematic analysis of transmural and regional gradients in transmembrane potential (Vm) and intracellular Ca2+ transient (CaT) across the entire murine ventricles. The voltage dye RH237 or Ca2+ dye Rhod‐2 AM were loaded through the coronary circulation using a Langendorff perfusion system. Short‐axis slices (300 μm thick) were prepared from the entire ventricles (from the apex to the base) by using a high‐precision vibratome. Action potentials (APs) and CaTs were recorded with optical mapping during steady‐state baseline and rapid pacing. Significant transmural gradients in Vm and CaT were observed in the left ventricle, with longer AP duration (APD50 and APD75) and CaT duration (CaTD50 and CaTD75) in the endocardium compared with that in the epicardium. No significant regional gradients were observed along the apico‐basal axis of the left ventricle. Interventricular gradients were detected with significantly shorter APD50, APD75 and CaTD50 in the right ventricle compared with left ventricle and ventricular septum. During rapid pacing, AP and CaT alternans were observed in most ventricular regions, with significantly greater incidence in the endocardium in comparison with epicardium. In conclusion, these observations demonstrate the feasibility of our new approach to cardiac slicing for systematic analysis of intrinsic transmural and regional gradients in Vm and CaT in murine ventricular tissue.
A robust cardiac slicing approach was developed for optical mapping of transmural gradients in transmembrane potential (Vm) and intracellular Ca2+ transient (CaT) of murine heart. Significant transmural gradients in Vm and CaT were observed in the left ventricle. Frequency‐dependent action potentials and CaT alternans were observed in all ventricular regions with rapid pacing, with significantly greater incidence in the endocardium than epicardium. The observations demonstrate the feasibility of our new approach to cardiac slicing for systematic analysis of intrinsic transmural and regional gradients in Vm and CaT.
Collapse
|
Research Support, Non-U.S. Gov't |
7 |
28 |
25
|
Han Y, Wen Q, Chen Z, Li P. Review of Methods Used for Microalgal Lipid-Content Analysis. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.egypro.2011.10.124] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
|
14 |
28 |