1
|
Abstract
Apoptosis is a conserved homeostatic process critical for organ and tissue morphogenesis, development, and senescence. This form of programmed cell death also participates in the etiology of several human diseases including cancer, neurodegenerative, and autoimmune disorders. Although the signaling pathways leading to the progression of apoptosis have been extensively characterized, recent studies highlight the regulatory role of changes in the intracellular milieu (permissive apoptotic environment) in the efficient activation of the cell death machinery. In particular, glutathione (GSH) depletion is a common feature of apoptotic cell death triggered by a wide variety of stimuli including activation of death receptors, stress, environmental agents, and cytotoxic drugs. Although initial studies suggested that GSH depletion was only a byproduct of oxidative stress generated during cell death, recent discoveries suggest that GSH depletion and post-translational modifications of proteins through glutathionylation are critical regulators of apoptosis. Here, we reformulate these emerging paradigms into our current understanding of cell death mechanisms.
Collapse
|
Research Support, N.I.H., Extramural |
16 |
536 |
2
|
Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI. The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 2007; 113:234-58. [PMID: 18158646 DOI: 10.1080/13813450701661198] [Citation(s) in RCA: 373] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reduced glutathione (L-gamma-glutamyl-L-cysteinyl-glycine, GSH) is the prevalent low-molecular-weight thiol in mammalian cells. It is formed in a two-step enzymatic process including, first, the formation of gamma-glutamylcysteine from glutamate and cysteine, by the activity of the gamma-glutamylcysteine synthetase; and second, the formation of GSH by the activity of GSH synthetase which uses gamma-glutamylcysteine and glycine as substrates. While its synthesis and metabolism occur intracellularly, its catabolism occurs extracellularly by a series of enzymatic and plasma membrane transport steps. Glutathione metabolism and transport participates in many cellular reactions including: antioxidant defense of the cell, drug detoxification and cell signaling (involved in the regulation of gene expression, apoptosis and cell proliferation). Alterations in its concentration have also been demonstrated to be a common feature of many pathological conditions including diabetes, cancer, AIDS, neurodegenerative and liver diseases. Additionally, GSH catabolism has been recently reported to modulate redox-sensitive components of signal transduction cascades. In this manuscript, we review the current state of knowledge on the role of GSH in the pathogenesis of human diseases with the aim to underscore its relevance in translational research for future therapeutic treatment design.
Collapse
|
Research Support, N.I.H., Intramural |
18 |
373 |
3
|
Ginés S, Hillion J, Torvinen M, Le Crom S, Casadó V, Canela EI, Rondin S, Lew JY, Watson S, Zoli M, Agnati LF, Verniera P, Lluis C, Ferré S, Fuxe K, Franco R. Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci U S A 2000; 97:8606-11. [PMID: 10890919 PMCID: PMC26995 DOI: 10.1073/pnas.150241097] [Citation(s) in RCA: 328] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The possible molecular basis for the previously described antagonistic interactions between adenosine A(1) receptors (A(1)R) and dopamine D(1) receptors (D(1)R) in the brain have been studied in mouse fibroblast Ltk(-) cells cotransfected with human A(1)R and D(1)R cDNAs or with human A(1)R and dopamine D(2) receptor (long-form) (D(2)R) cDNAs and in cortical neurons in culture. A(1)R and D(1)R, but not A(1)R and D(2)R, were found to coimmunoprecipitate in cotransfected fibroblasts. This selective A(1)R/D(1)R heteromerization disappeared after pretreatment with the D(1)R agonist, but not after combined pretreatment with D(1)R and A(1)R agonists. A high degree of A(1)R and D(1)R colocalization, demonstrated in double immunofluorescence experiments with confocal laser microscopy, was found in both cotransfected fibroblast cells and cortical neurons in culture. On the other hand, a low degree of A(1)R and D(2)R colocalization was observed in cotransfected fibroblasts. Pretreatment with the A(1)R agonist caused coclustering (coaggregation) of A(1)R and D(1)R, which was blocked by combined pretreatment with the D(1)R and A(1)R agonists in both fibroblast cells and in cortical neurons in culture. Combined pretreatment with D(1)R and A(1)R agonists, but not with either one alone, substantially reduced the D(1)R agonist-induced accumulation of cAMP. The A(1)R/D(1)R heteromerization may be one molecular basis for the demonstrated antagonistic modulation of A(1)R of D(1)R receptor signaling in the brain. The persistence of A(1)R/D(1)R heteromerization seems to be essential for the blockade of A(1)R agonist-induced A(1)R/D(1)R coclustering and for the desensitization of the D(1)R agonist-induced cAMP accumulation seen on combined pretreatment with D(1)R and A(1)R agonists, which indicates a potential role of A(1)R/D(1)R heteromers also in desensitization mechanisms and receptor trafficking.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Animals
- Cell Line
- Cells, Cultured
- Cerebral Cortex/cytology
- Cyclic AMP/metabolism
- Dimerization
- Dopamine Agonists/pharmacology
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Humans
- Mice
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Precipitin Tests
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/metabolism
- Receptors, Purinergic P1/genetics
- Receptors, Purinergic P1/metabolism
- Receptors, Purinergic P1/physiology
Collapse
|
research-article |
25 |
328 |
4
|
Glass CK, Franco R, Weinberger C, Albert VR, Evans RM, Rosenfeld MG. A c-erb-A binding site in rat growth hormone gene mediates trans-activation by thyroid hormone. Nature 1987; 329:738-41. [PMID: 3313046 DOI: 10.1038/329738a0] [Citation(s) in RCA: 287] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The substance 3,5,3-triiodothyronine (T3) stimulates growth hormone gene transcription in rat pituitary tumour cells. This stimulation is thought to be mediated by the binding of nuclear T3 receptors to regulatory elements 5' to the transcriptional start site. Understanding of the mechanism by which thyroid hormone activates gene transcription has been limited by failure to purify nuclear T3 receptors because of their low abundance, and by the absence of defined T3 receptor-DNA binding sites affecting T3 regulation. Recently, human and avian c-erb-A gene products have been shown to bind thyroid hormone with high affinity and to have a molecular weight and nuclear association characteristic of the thyroid hormone receptor. In the present report, we describe the development of an avidin-biotin complex DNA-binding assay which can detect specific, high-affinity binding of rat pituitary cell T3 receptors to the sequence 5'CAGGGACGTGACCGCA3', located 164 base pairs 5' to the transcriptional start site of the rat growth hormone gene. An oligonucleotide containing this sequence transferred T3 regulation to the herpes simplex virus thymidine kinase promoter in transfected rat pituitary GC2 cells, and specifically bound an in vitro translation product of the human placental c-erb-A gene. The data provide supporting evidence that the human c-erb-A gene product mediates the transcriptional effects of T3 and also that GC2 cell nuclear extracts contain additional factors that modify the binding of pituitary T3 receptors to the rat growth hormone gene T3 response element.
Collapse
|
|
38 |
287 |
5
|
Fuxe K, Agnati LF, Jacobsen K, Hillion J, Canals M, Torvinen M, Tinner-Staines B, Staines W, Rosin D, Terasmaa A, Popoli P, Leo G, Vergoni V, Lluis C, Ciruela F, Franco R, Ferré S. Receptor heteromerization in adenosine A2A receptor signaling: relevance for striatal function and Parkinson's disease. Neurology 2004; 61:S19-23. [PMID: 14663004 DOI: 10.1212/01.wnl.0000095206.44418.5c] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recently evidence has been presented that adenosine A2A and dopamine D2 receptors form functional heteromeric receptor complexes as demonstrated in human neuroblastoma cells and mouse fibroblast Ltk- cells. These A2A/D2 heteromeric receptor complexes undergo coaggregation, cointernalization, and codesensitization on D2 or A2A receptor agonist treatments and especially after combined agonist treatment. It is hypothesized that the A2A/D2 receptor heteromer represents the molecular basis for the antagonistic A2A/D2 receptor interactions demonstrated at the biochemical and behavioral levels. Functional heteromeric complexes between A2A and metabotropic glutamate 5 receptors (mGluR5) have also recently been demonstrated in HEK-293 cells and rat striatal membrane preparations. The A2A/mGluR5 receptor heteromer may account for the synergism found after combined agonist treatments demonstrated in different in vitro and in vivo models. D2, A2A, and mGluR5 receptors are found together in the dendritic spines of the striatopallidal GABA neurons. Therefore, possible D2/A2A/mGluR5 multimeric receptor complexes and the receptor interactions within them may have a major role in controlling the dorsal and ventral striatopallidal GABA neurons involved in Parkinson's disease and in schizophrenia and drug addiction, respectively.
Collapse
|
Review |
21 |
206 |
6
|
Franco R, Casadó V, Ciruela F, Saura C, Mallol J, Canela EI, Lluis C. Cell surface adenosine deaminase: much more than an ectoenzyme. Prog Neurobiol 1997; 52:283-94. [PMID: 9247966 DOI: 10.1016/s0301-0082(97)00013-0] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
During the last 10 years, adenosine deaminase (ADA), an enzyme considered to be cytosolic, has been found on the cell surface of many cells, therefore it can be considered an ectoenzyme. EctoADA, which seems to be identical to intracellular ADA and has a globular structure, does not interact with membranes but with membrane proteins. Two of these cell surface receptors for ectoADA have been identified: CD26 and A1 adenosine receptors (A1R). Apart from degradation of extracellular adenosine another functional role of ectoADA has been assigned. EctoADA is able to transmit signals when interacting with either CD26 or A1R. In this way, it acts as a co-stimulatory molecule which facilitates a variety of specific signalling events in different cell types. The heterogeneous distribution of the enzyme in the nervous system indicates that ectoADA may be a neuroregulatory molecule. On the other hand, ectoADA might act as a bridge between two different cells thus raising the possibility that it may be important for the development of the nervous system.
Collapse
|
Review |
28 |
196 |
7
|
Pacheco R, Martinez-Navio JM, Lejeune M, Climent N, Oliva H, Gatell JM, Gallart T, Mallol J, Lluis C, Franco R. CD26, adenosine deaminase, and adenosine receptors mediate costimulatory signals in the immunological synapse. Proc Natl Acad Sci U S A 2005; 102:9583-8. [PMID: 15983379 PMCID: PMC1172240 DOI: 10.1073/pnas.0501050102] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Adenosine deaminase (ADA), a protein whose deficit leads to severe combined immunodeficiency, binds to the cell surface by means of either CD26, A(1) adenosine receptors, or A(2B) adenosine receptors. The physiological role of these interactions is not well understood. Our results show that by a 3-fold reduction in the EC(50) for the antigen, ADA potentiated T cell proliferation in autologous cocultures with antigen-pulsed immature or mature dendritic cells. Costimulation was not due to the enzymatic activity but to the interaction of ADA-CD26 complexes in T cells with an ADA-anchoring protein in dendritic cells. From colocalization studies, it is deduced that ADA colocalizing with adenosine receptors on dendritic cells interact with CD26 expressed on lymphocytes. This costimulatory signal in the immunological synapse leads to a marked increase (3- to 34-fold) in the production of the T helper 1 and proimmflamatory cytokines IFN-gamma, TNF-alpha, and IL-6.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
189 |
8
|
Visciano C, Liotti F, Prevete N, Cali' G, Franco R, Collina F, de Paulis A, Marone G, Santoro M, Melillo RM. Mast cells induce epithelial-to-mesenchymal transition and stem cell features in human thyroid cancer cells through an IL-8-Akt-Slug pathway. Oncogene 2015; 34:5175-86. [PMID: 25619830 DOI: 10.1038/onc.2014.441] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/21/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022]
Abstract
There is increasing evidence that mast cells (MCs) and their mediators are involved in the remodeling of the tumor microenvironment and promote tumor growth, angiogenesis and metastasis. We have found that an increased density of MCs in thyroid cancer (TC) correlates with enhanced invasiveness. However, the MC-derived factors responsible for this activity and the mechanisms by which they enhance TC invasiveness remain unidentified. Here, we report that MCs, when activated by TC cells, produce soluble factors that induce epithelial-to-mesenchymal transition (EMT) and stemness features of TC cells. We identified CXCL8/interleukin (IL)-8 as the main mediator contained in activated MC conditioned media (CM) capable of inducing both EMT and stemness of TC cells. Mechanistically, MC CM or exogenous IL-8 stimulated Akt phosphorylation and Slug expression in TC cells. The inhibition of the Akt pathway or depletion of the Slug transcription factor by RNA interference, reverted EMT and stemness responses. TC cells stably transfected with exogenous IL-8 underwent EMT, displayed increased stemness and enhanced tumorigenicity with respect to control cells. The analysis of TC surgical specimens by immunohistochemical analysis demonstrated a positive correlation between MC density (Tryptase(+) cells) and stemness features (OCT4 staining). Taken together, our data identify an MC-dependent IL-8-Akt-Slug pathway that sustains EMT/stemness of TC cells. The blockade of this circuit might be exploited for the therapy of advanced TC.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
177 |
9
|
Otsuka AJ, Jeyaprakash A, García-Añoveros J, Tang LZ, Fisk G, Hartshorne T, Franco R, Born T. The C. elegans unc-104 gene encodes a putative kinesin heavy chain-like protein. Neuron 1991; 6:113-22. [PMID: 1846075 DOI: 10.1016/0896-6273(91)90126-k] [Citation(s) in RCA: 167] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mutations in the unc-104 gene of the nematode C. elegans result in uncoordinated and slow movement. Transposon insertions in three unc-104 alleles (e2184, rh1016, and rh1017) were used as physical markers to clone the unc-104 gene. DNA sequence analysis of unc-104 cDNAs revealed an open reading frame capable of encoding a 1584 amino acid protein with similarities to kinesin heavy chain. The similarities are greatest in the amino-terminal ATPase and microtubule-binding domains. Although the primary sequence relatedness to kinesin is weak in the remainder of the molecule, the predicted secondary structure and regional isoelectric points are similar to kinesin heavy chain.
Collapse
|
|
34 |
167 |
10
|
Costa M, Cuello AC, Furness JB, Franco R. Distribution of enteric neurons showing immunoreactivity for substance P in the guinea-pig ileum. Neuroscience 1980; 5:323-31. [PMID: 6154904 DOI: 10.1016/0306-4522(80)90108-6] [Citation(s) in RCA: 163] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
|
45 |
163 |
11
|
Cuadrado-Tejedor M, Hervias I, Ricobaraza A, Puerta E, Pérez-Roldán JM, García-Barroso C, Franco R, Aguirre N, García-Osta A. Sildenafil restores cognitive function without affecting β-amyloid burden in a mouse model of Alzheimer's disease. Br J Pharmacol 2012; 164:2029-41. [PMID: 21627640 DOI: 10.1111/j.1476-5381.2011.01517.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND PURPOSE Inhibitors of phosphodiesterase 5 (PDE5) affect signalling pathways by elevating cGMP, which is a second messenger involved in processes of neuroplasticity. In the present study, the effects of the PDE5 inhibitor, sildenafil, on the pathological features of Alzheimer's disease and on memory-related behaviour were investigated. EXPERIMENTAL APPROACH Sildenafil was administered to the Tg2576 transgenic mouse model of Alzheimer's disease and to age-matched negative littermates (controls). Memory function was analysed using the Morris water maze test and fear conditioning tasks. Biochemical analyses were performed in brain lysates from animals treated with saline or with sildenafil. KEY RESULTS Treatment of aged Tg2576 animals with sildenafil completely reversed their cognitive impairment. Such changes were accompanied in the hippocampus by a reduction of tau hyperphosphorylation and a decrease in the activity of glycogen synthase kinase 3β (GSK3β) and of cyclin-dependent kinase 5 (CDK5) (p25/p35 ratio). Moreover, sildenafil also increased levels of brain-derived neurotrophic factor (BDNF) and the activity-regulated cytoskeletal-associated protein (Arc) in the hippocampus without any detectable modification of brain amyloid burden. CONCLUSIONS AND IMPLICATIONS Sildenafil improved cognitive functions in Tg2576 mice and the effect was not related to changes in the amyloid burden. These data further strengthen the potential of sildenafil as a therapeutic agent for Alzheimer's disease.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
158 |
12
|
Franco R, Costa M, Furness JB. Evidence for the release of endogenous substance P from intestinal nerves. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1979; 306:195-201. [PMID: 224322 DOI: 10.1007/bf00507103] [Citation(s) in RCA: 157] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The desensitization of receptors for substance P in the longitudinal muscle of the guinea-pig ileum has been studied. Receptors for substance P in the muscle became desensitized in the presence of relatively large concentrations of synthetic substance P; a desensitizing concentration of substance P of 7.5 x 10(-9) M shifted the concentration-response curve for substance P about 20-fold to the right, while a desensitizing concentration of 7.5 x 10(-8) M shifted the curve about 300-fold to the right. This desensitization appeared specific; concentration-response curves for carbachol, DMPP, 5-HT and bradykinin were not significantly affected by substance P, 7.5 x 10(-8) M. Furthermore, substance P in concentrations up to 7.5 x 10(-8) M did not modify transmission from either cholinergic nerves or enteric inhibitory nerves when these were stimulated electrically. However, hyoscine-resistant contractions produced by stimulation of nerves in the ileum at 10 Hz were abolished by exposure to concentrations of substance P of 7.5 x 10(-9) M or greater, suggesting that these nerves release a substance similar to or identical with substance P. DMPP evoked small hyoscine-resistant contractions of the ileum. These contractions were also antagonised by desensitization of receptors for substance P. Immunohistochemical studies showed substance P-like immunoreactivity in nerve terminals of both the myenteric and submucous plexuses.
Collapse
|
|
46 |
157 |
13
|
Ciruela F, Escriche M, Burgueno J, Angulo E, Casado V, Soloviev MM, Canela EI, Mallol J, Chan WY, Lluis C, McIlhinney RA, Franco R. Metabotropic glutamate 1alpha and adenosine A1 receptors assemble into functionally interacting complexes. J Biol Chem 2001; 276:18345-51. [PMID: 11278325 DOI: 10.1074/jbc.m006960200] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, evidence has emerged that seven transmembrane G protein-coupled receptors may be present as homo- and heteromers in the plasma membrane. Here we describe a new molecular and functional interaction between two functionally unrelated types of G protein-coupled receptors, namely the metabotropic glutamate type 1alpha (mGlu(1alpha) receptor) and the adenosine A1 receptors in cerebellum, primary cortical neurons, and heterologous transfected cells. Co-immunoprecipitation experiments showed a close and subtype-specific interaction between mGlu(1alpha) and A1 receptors in both rat cerebellar synaptosomes and co-transfected HEK-293 cells. By using transiently transfected HEK-293 cells a synergy between mGlu(1alpha) and A1 receptors in receptor-evoked [Ca(2+)](i) signaling has been shown. In primary cultures of cortical neurons we observed a high degree of co-localization of the two receptors, and excitotoxicity experiments in these cultures also indicate that mGlu(1alpha) and A1 receptors are functionally related. Our results provide a molecular basis for adenosine/glutamate receptors cross-talk and open new perspectives for the development of novel agents to treat neuropsychiatric disorders in which abnormal glutamatergic neurotransmission is involved.
Collapse
|
|
24 |
149 |
14
|
Tan SY, Shapiro R, Franco R, Stockard H, Mulrow PJ. Indomethacin-induced prostaglandin inhibition with hyperkalemia. A reversible cause of hyporeninemic hypoaldosteronism. Ann Intern Med 1979; 90:783-5. [PMID: 434681 DOI: 10.7326/0003-4819-90-5-783] [Citation(s) in RCA: 143] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hyporeninemic hypoaldosteronism was diagnosed in a young woman with glomerulonephritis who was receiving indomethacin therapy. Despite only mildly abnormal renal function, serum K+ was elevated to 6.2 meq/L, and plasma renin activity (0.12 ng/mL h) and aldosterone (4.4 ng/dL) failed to respond to the combined stimuli of furosemide and posture. Urinary prostaglandin E2 (PGE2) was suppressed (70 ng/24 h). When indomethacin was withdrawn, significant kaliuresis occurred, accompanied by normalization of serum K+ and PGE2 and a supranormal rebound in renin and aldosterone levels. Challenge with indomethacin resulted in antikaliuresis and resuppression of PGE2, renin, and aldosterone. This case study documents for the first time that indomethacin can cause the syndrome of hyporeninemic hypoaldosteronism, probably by inhibiting prostaglandin biosynthesis.
Collapse
|
Case Reports |
46 |
143 |
15
|
Nelson C, Crenshaw EB, Franco R, Lira SA, Albert VR, Evans RM, Rosenfeld MG. Discrete cis-active genomic sequences dictate the pituitary cell type-specific expression of rat prolactin and growth hormone genes. Nature 1986; 322:557-62. [PMID: 3736673 DOI: 10.1038/322557a0] [Citation(s) in RCA: 141] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The anterior pituitary gland, which is derived from a common primordium originating in Rathke's pouch, contains phenotypically distinct cell types, each of which express discrete trophic hormones: adrenocorticotropic hormone (ACTH), thyroid-stimulating hormone (TSH), prolactin, growth hormone, and follicle stimulating hormone (FSH)/luteinizing hormone (LH). The structurally related prolactin and growth hormone genes, which are evolutionarily derived from a single primordial gene, are expressed in discrete cell types--lactotrophs and somatotrophs, respectively--with their expression virtually limited to the pituitary gland. The pituitary hormones exhibit a temporal pattern of developmental expression with rat growth hormone and prolactin characteristically being the last hormones expressed. The reported co-expression of these two structurally related neuroendocrine genes within single cells prior to the appearance of mature lactotrophs, in a subpopulation of mature anterior pituitary cells, and in many pituitary adenomas raises the possibility that the prolactin and growth hormone genes are developmentally controlled by a common factor(s). We now report the identification and characterization of nucleotide sequences in the 5'-flanking regions of the rat prolactin and growth hormone genes, respectively, which act in a position- and orientation-independent fashion to transfer cell-specific expression to heterologous genes. At least one putative trans-acting factor required for the growth hormone genomic sequence to exert its effects is apparently different from those modulating the corresponding enhancer element(s) of the prolactin gene because a pituitary 'lactotroph' cell line producing prolactin but not growth hormone selectively fails to express fusion genes containing the growth hormone enhancer sequence.
Collapse
|
|
39 |
141 |
16
|
Ciruela F, Saura C, Canela EI, Mallol J, Lluis C, Franco R. Adenosine deaminase affects ligand-induced signalling by interacting with cell surface adenosine receptors. FEBS Lett 1996; 380:219-23. [PMID: 8601428 DOI: 10.1016/0014-5793(96)00023-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Adenosine deaminase (ADA) is not only a cytosolic enzyme but can be found as an ecto-enzyme. At the plasma membrane, an adenosine deaminase binding protein (CD26, also known as dipeptidylpeptidase IV) has been identified but the functional role of this ADA/CD26 complex is unclear. Here by confocal microscopy, affinity chromatography and coprecipitation experiments we show that A1 adenosine receptor (A1R) is a second ecto-ADA binding protein. Binding of ADA to A1R increased its affinity for the ligand thus suggesting that ADA was needed for an effective coupling between A1R and heterotrimeric G proteins. This was confirmed by the fact that ASA, independently of its catalytic behaviour, enhanced the ligand-induced second messenger production via A1R. These findings demonstrate that, apart from the cleavage of adenosine, a further role of ecto-adenosine deaminase on the cell surface is to facilitate the signal transduction via A1R.
Collapse
|
|
29 |
138 |
17
|
Franco R, Valenzuela A, Lluis C, Blanco J. Enzymatic and extraenzymatic role of ecto-adenosine deaminase in lymphocytes. Immunol Rev 1998; 161:27-42. [PMID: 9553762 DOI: 10.1111/j.1600-065x.1998.tb01569.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Adenosine deaminase (ADA, EC 3.5.4.4) is an enzyme of the purine metabolism which has been the object of considerable interest mainly because the congenital defect causes severe combined immunodeficiency (SCID). In the last 10 years, ADA, which was considered to be cytosolic, has been found on the cell surface of many cells and, therefore, it can be considered an ecto-enzyme. There is recent evidence about a specific role of ecto-ADA, which is different from that of intracellular ADA. Apart from degrading extracellular adenosine (Ado) or 2'-deoxyadenosine (dAdo), which are toxic for lymphocytes, ecto-ADA has an extraenzymatic function via its interaction with CD26. ADA/CD26 interaction results in co-stimulatory signals in T cells. This co-stimulation is blocked by HIV-1, thus evidencing a role for ecto-ADA in the pathophysiology of AIDS. The fact that, besides CD26, ADA can interact with different cell-surface proteins opens new perspectives in the research for a role of ecto-ADA in the function of the immune system and in the interactions that take place between different cells in the development of the immune system. The most interesting aspect is the possible participation of the ecto-enzyme in cell-to-cell contacts during ontogenesis and maturation of immunocompetent cells.
Collapse
|
Review |
27 |
132 |
18
|
DiMauro S, Hartwig GB, Hays A, Eastwood AB, Franco R, Olarte M, Chang M, Roses AD, Fetell M, Schoenfeldt RS, Stern LZ. Debrancher deficiency: neuromuscular disorder in 5 adults. Ann Neurol 1979; 5:422-36. [PMID: 288318 DOI: 10.1002/ana.410050504] [Citation(s) in RCA: 128] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Five patients, 4 men and 1 woman, had adult-onset and slowly progressive weakness. There was distal wasting in 2, hepatomegaly in 3, and congestive heart failure in 2. Electromyography showed a mixed pattern with abundant fibrillations. Serum creatine phosphokinase was increased 5- to 45-fold. Blood glucose failed to respond to epinephrine or glucagon, and venous lactate did not rise after ischemic exercise. Muscle biopsy showed vacuolar myopathy affecting both fiber types. By electron microscopy the vacuoles corresponded to large pools of glycogen not limited by a membrane. Glycogen concentration was 3 to 5 times normal in muscle and 7 to 21 times normal in erythrocytes. In the presence of iodine, muscle glycogen showed a spectrum characteristic of phosphorylase-limit-dextrin. Debrancher activity was measured by a spectrophotometric assay and by a radioactive reverse reaction. The activity was lacking in muscle and erythrocytes of 4 patients according to both assays; in 1 patient the reverse reaction was not impaired. Though previously reported in only 5 patients, debrancher deficiency myopathy may not be rare and should be considered in the differential diagnosis of adult-onset hereditary myopathies.
Collapse
|
|
46 |
128 |
19
|
Franco R, Ferré S, Agnati L, Torvinen M, Ginés S, Hillion J, Casadó V, Lledó P, Zoli M, Lluis C, Fuxe K. Evidence for adenosine/dopamine receptor interactions: indications for heteromerization. Neuropsychopharmacology 2000; 23:S50-9. [PMID: 11008067 DOI: 10.1016/s0893-133x(00)00144-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Evidence has been obtained for adenosine/dopamine interactions in the central nervous system. There exists an anatomical basis for the existence of functional interactions between adenosine A(1)R and dopamine D(1)R and between adenosine A(2A) and dopamine D(2) receptors in the same neurons. Selective A(1)R agonists affect negatively the high affinity binding of D(1) receptors. Activation of A(2A) receptors leads to a decrease in receptor affinity for dopamine agonists acting on D(2) receptors, specially of the high-affinity state. These interactions have been reproduced in cell lines and found to be of functional significance. Adenosine/dopamine interactions at the behavioral level probably reflect those found at the level of dopamine receptor binding and transduction. All these findings suggest receptor subtype-specific interactions between adenosine and dopamine receptors that may be achieved by molecular interactions (e.g., receptor heterodimerization). At the molecular level adenosine receptors can serve as a model for homomeric and heteromeric protein-protein interactions. A1R forms homodimers in membranes and also form high-order molecular structures containing also heterotrimeric G-proteins and adenosine deaminase. The occurrence of clustering also clearly suggests that G-protein- coupled receptors form high-order molecular structures, in which multimers of the receptors and probably other interacting proteins form functional complexes. In view of the occurrence of homodimers of adenosine and of dopamine receptors it is speculated that heterodimers between these receptors belonging to two different families of G-protein-coupled receptors can be formed. Evidence that A1/D1 can form heterodimers in cotransfected cells and in primary cultures of neurons has in fact been obtained. In the central nervous system direct and indirect receptor-receptor interactions via adaptor proteins participate in neurotransmission and neuromodulation and, for example, in the establishment of high neural functions such as learning and memory.
Collapse
|
Review |
25 |
120 |
20
|
Ciruela F, Casadó V, Mallol J, Canela EI, Lluis C, Franco R. Immunological identification of A1 adenosine receptors in brain cortex. J Neurosci Res 1995; 42:818-28. [PMID: 8847743 DOI: 10.1002/jnr.490420610] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The A1 adenosine receptor from pig brain cortex has been identified by means of two antipeptide antibodies against two domains of the receptor molecule: PC/10 antiserum was raised against a part of the third intracellular loop, and PC/20 antiserum was raised against a part of the second extracellular loop. PC/10 antibody was able to recognize a 39-kDa band that corresponded to the A1 receptor, as demonstrated by immunoblotting and by immunoprecipitation of the molecule cross-linked to [125I](R)-2-azido-N2-p-hydroxy(phenylisopropyl)adenosine. Besides the 39-kDa band, PC/20 also recognized a 74-kDa form that does not seem to correspond to a receptor-G protein complex. The occurrence of the two bands was detected and analyzed in samples from different species and tissues showing a heterogeneous distribution of both. The 74-kDa form can be converted into the 39-kDa form by treatment with agonists or antagonists of A1 adenosine receptors. These results suggest that A1 adenosine receptor can occur in dimers and that the dimer-monomer conversion might be regulated by adenosine as the physiological ligand. Since the 74-kDa aggregates were not recognized by PC/10, it is likely that part of the third intracellular loop participates in the protein-protein interaction.
Collapse
|
|
30 |
111 |
21
|
Aghaloo TL, Chaichanasakul T, Bezouglaia O, Kang B, Franco R, Dry SM, Atti E, Tetradis S. Osteogenic potential of mandibular vs. long-bone marrow stromal cells. J Dent Res 2010; 89:1293-8. [PMID: 20811069 DOI: 10.1177/0022034510378427] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Although fundamentally similar to other bones, the jaws demonstrate discrete responses to developmental, mechanical, and homeostatic regulatory signals. Here, we hypothesized that rat mandible vs. long-bone marrow-derived cells possess different osteogenic potential. We established a protocol for rat mandible and long-bone marrow stromal cell (BMSC) isolation and culture. Mandible BMSC cultures formed more colonies, suggesting an increased CFU-F population. Both mandible and long-bone BMSCs differentiated into osteoblasts. However, mandible BMSCs demonstrated augmented alkaline phosphatase activity, mineralization, and osteoblast gene expression. Importantly, upon implantation into nude mice, mandible BMSCs formed 70% larger bone nodules containing three-fold more mineralized bone compared with long-bone BMSCs. Analysis of these data demonstrates an increased osteogenic potential and augmented capacity of mandible BMSCs to induce bone formation in vitro and in vivo. Our findings support differences in the mechanisms underlying mandible homeostasis and the pathophysiology of diseases unique to the jaws.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
110 |
22
|
Herrera N, Franco R, Herrera L, Partidas A, Rolando R, Fagerström KO. Nicotine gum, 2 and 4 mg, for nicotine dependence. A double-blind placebo-controlled trial within a behavior modification support program. Chest 1995; 108:447-51. [PMID: 7634882 DOI: 10.1378/chest.108.2.447] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The effectiveness of nicotine gum in combination with a behavior modification program was studied. The nicotine dependence of participating smokers (N = 322) was assessed. One hundred sixty-eight smokers were labeled as high nicotine dependent and 154 as moderate to low dependent. In a randomized double-blind procedure, the high-dependent smokers were given gum containing 4 mg of nicotine (87) or 2 mg of nicotine (81) and the smokers with medium or low dependence were given gum containing 2 mg (76) or a placebo gum (78). The smokers were also randomized to familiarizing themselves with the medication a week before quit day (112) or to regular use, that is starting gum use on the quit day (122). In the high-dependent group, sustained and chemically verified nonsmoking rates at 6 weeks, 1 year, and 2 years were, respectively, 60%, 39%, and 34% in the subjects given the 4-mg dose compared with 41%, 16%, and 16% for those using the 2-mg dose. In the group with medium or low dependence, the success rates at the same time periods were 70%, 49%, and 39% for the subjects given the 2-mg dose and 38%, 22%, and 17% for those given placebo gum. The differences in success rates were significant at least at the p < 0.02% level for all comparisons. Familiarizing with the gum as compared with regular use gave fewer reports of side effects, 15% vs 34%, p < 0.001. A trend toward better success rates at 6 weeks, although not statistically significant, was observed for the familiarization group, 61% vs 52%. The study shows that high nicotine-dependent smokers need higher doses of nicotine replacement, in this case the 4-mg dose rather than the 2-mg dose, whereas 2 mg is superior to placebo among less dependent smokers. These results compare favorably with those reported from the more recent nicotine patch therapy.
Collapse
|
Clinical Trial |
30 |
97 |
23
|
Murdoch GH, Franco R, Evans RM, Rosenfeld MG. Polypeptide hormone regulation of gene expression. Thyrotropin-releasing hormone rapidly stimulates both transcription of the prolactin gene and the phosphorylation of a specific nuclear protein. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(17)43810-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
|
42 |
96 |
24
|
Balenga NA, Martínez-Pinilla E, Kargl J, Schröder R, Peinhaupt M, Platzer W, Bálint Z, Zamarbide M, Dopeso-Reyes IG, Ricobaraza A, Pérez-Ortiz JM, Kostenis E, Waldhoer M, Heinemann A, Franco R. Heteromerization of GPR55 and cannabinoid CB2 receptors modulates signalling. Br J Pharmacol 2014; 171:5387-406. [PMID: 25048571 DOI: 10.1111/bph.12850] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 07/01/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Heteromerization of GPCRs is key to the integration of extracellular signals and the subsequent cell response via several mechanisms including heteromer-selective ligand binding, trafficking and/or downstream signalling. As the lysophosphatidylinositol GPCR 55 (GPR55) has been shown to affect the function of the cannabinoid receptor subtype 2 (CB2 receptor) in human neutrophils, we investigated the possible heteromerization of CB2 receptors with GPR55. EXPERIMENTAL APPROACH The direct interaction of human GPR55 and CB2 receptors heterologously expressed in HEK293 cells was assessed by co-immunoprecipitation and bioluminescence resonance energy transfer assays. The effect of cross-talk on signalling was investigated at downstream levels by label-free real-time methods (Epic dynamic mass redistribution and CellKey impedance assays), ERK1/2-MAPK activation and gene reporter assays. KEY RESULTS GPR55 and CB2 receptors co-localized on the surface of HEK293 cells, co-precipitated in membrane extracts and formed heteromers in living HEK293 cells. Whereas heteromerization led to a reduction in GPR55-mediated activation of transcription factors (nuclear factor of activated T-cells, NF-κB and cAMP response element), ERK1/2-MAPK activation was potentiated in the presence of CB2 receptors. CB2 receptor-mediated signalling was also affected by co-expression with GPR55. Label-free assays confirmed cross-talk between the two receptors. CONCLUSIONS AND IMPLICATIONS Heteromers, unique signalling units, form in HEK293 cells expressing GPR55 and CB2 receptors. The signalling by agonists of either receptor was governed (i) by the presence or absence of the partner receptors (with the consequent formation of heteromers) and (ii) by the activation state of the partner receptor.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
96 |
25
|
Franco R, Costa M, Furness JB. Evidence that axons containing substance P in the guinea-pig ileum are of intrinsic origin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1979; 307:57-63. [PMID: 481610 DOI: 10.1007/bf00506552] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
|
46 |
95 |