1
|
Garnier A, Fortin D, Deloménie C, Momken I, Veksler V, Ventura-Clapier R. Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J Physiol 2003; 551:491-501. [PMID: 12824444 PMCID: PMC2343221 DOI: 10.1113/jphysiol.2003.045104] [Citation(s) in RCA: 327] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Congestive heart failure (CHF) induces alterations in energy metabolism and mitochondrial function that span cardiac as well as skeletal muscles. Whether these defects originate from altered mitochondrial DNA copy number and/or mitochondrial gene transcription is not known at present, nor are the factors that control mitochondrial capacity in different muscle types completely understood. We used an experimental model of CHF induced by aortic banding in the rat and investigated mitochondrial respiration and enzyme activity of biochemical mitochondrial markers in cardiac, slow and fast skeletal muscles. We quantified mitochondrial DNA (mtDNA), expression of nuclear (COX IV) and mitochondrial (COX I) encoded cytochrome c oxidase subunits as well as nuclear factors involved in mitochondrial biogenesis and in the necessary coordinated interplay between nuclear and mitochondrial genomes in health and CHF. CHF induced a decrease in oxidative capacity and mitochondrial enzyme activities with a parallel decrease in the mRNA level of COX I and IV, but no change in mtDNA content. The expression of the peroxisome proliferator activated receptor gamma co-activator 1 alpha (PGC-1 alpha) gene was downregulated in CHF, as well as nuclear respiratory factor 2 and mitochondrial transcription factor A, which act downstream from PGC-1 alpha. Most interestingly, only the level of PGC-1 alpha expression was strongly correlated with muscle oxidative capacity in cardiac and skeletal muscles, both in healthy and CHF rats. Mitochondrial gene transcription is reduced in CHF, and PGC-1 alpha appears as a potential modulator of muscle oxidative capacity under these experimental conditions.
Collapse
MESH Headings
- Animals
- Blotting, Southern
- Body Weight/physiology
- Citrate (si)-Synthase/biosynthesis
- Citrate (si)-Synthase/genetics
- DNA Primers
- DNA, Mitochondrial/biosynthesis
- Gene Expression Regulation, Enzymologic/genetics
- Gene Expression Regulation, Enzymologic/physiology
- Heart/physiology
- Heart Failure/enzymology
- Heart Failure/metabolism
- Kinetics
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/metabolism
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/metabolism
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/metabolism
- Myocardium/enzymology
- Myocardium/metabolism
- Organ Size/physiology
- Oxidation-Reduction
- Oxidative Phosphorylation
- Prostaglandin-Endoperoxide Synthases/biosynthesis
- Prostaglandin-Endoperoxide Synthases/genetics
- RNA, Messenger/biosynthesis
- Rats
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/biosynthesis
- Transcription, Genetic/physiology
Collapse
|
research-article |
22 |
327 |
2
|
Kaasik A, Veksler V, Boehm E, Novotova M, Minajeva A, Ventura-Clapier R. Energetic crosstalk between organelles: architectural integration of energy production and utilization. Circ Res 2001; 89:153-9. [PMID: 11463722 DOI: 10.1161/hh1401.093440] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cells with high and fluctuating energy demands such as cardiomyocytes need efficient systems to link energy production to energy utilization. This is achieved in part by compartmentalized energy transfer enzymes such as creatine kinase (CK). However, hearts from CK-deficient mice develop normal cardiac function under conditions of moderate workload. We have therefore investigated whether a direct functional interplay exists between mitochondria and sarcoplasmic reticulum or between mitochondria and myofilaments in cardiac cells that catalyzes direct energy and signal channeling between organelles. We used the selective permeabilization of sarcolemmal membranes with saponin to study the functional interactions between organelles within the cellular architecture. We measured contractile kinetics, oxygen consumption, and caffeine-induced tension transients. The results show that in hearts of normal mice, ATP produced by mitochondria (supplied with substrates, oxygen, and adenine nucleotides) was able to sustain calcium uptake and contractile speed. Moreover, direct mitochondrially supplied ATP was nearly as effective as CK-supplied ATP and much more effective than externally supplied ATP, suggesting that a direct ATP/ADP channeling exists between the sites of energy production (mitochondria) and energy utilization (sarcoplasmic reticulum and myofilaments). On the other hand, in cardiac cells of mice deficient in mitochondrial and cytosolic CK, marked cytoarchitectural modifications were observed, and direct adenine nucleotide channeling between mitochondria and organelles was still effective for sarcoplasmic reticulum and myofilaments. Such direct crosstalk between organelles may explain the preserved cardiac function of CK-deficient mice under moderate workloads.
Collapse
|
|
24 |
193 |
3
|
Veksler VI, Kuznetsov AV, Anflous K, Mateo P, van Deursen J, Wieringa B, Ventura-Clapier R. Muscle creatine kinase-deficient mice. II. Cardiac and skeletal muscles exhibit tissue-specific adaptation of the mitochondrial function. J Biol Chem 1995; 270:19921-9. [PMID: 7650007 DOI: 10.1074/jbc.270.34.19921] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Functional properties of in situ mitochondria and of mitochondrial creatine kinase were studied in saponin-skinned fibers taken from normal and M-creatine kinase-deficient mice. In control animals, apparent Km values of mitochondrial respiration for ADP in cardiac (ventricular) and slow-twitch (soleus) muscles (137 +/- 16 microM and 209 +/- 10 microM, respectively) were manyfold higher than that in fast-twitch (gastrocnemius) muscle (7.5 +/- 0.5 microM). Creatine substantially decreased the Km values only in cardiac and slow-twitch muscles (73 +/- 11 microM and 131 +/- 21 microM, respectively). As compared to control, in situ mitochondria in transgenic ventricular and slow-twitch muscles showed two times lower Km values for ADP, and the presence of creatine only slightly decreased the Km values. In mutant fast-twitch muscle, a decrease rather than increase in mitochondrial sensitivity to ADP occurred, but creatine still had no effect. Furthermore, in these muscles, relatively low oxidative capacity was considerably elevated. It is suggested that in the mutant mice, impairment of energy transport function in ventricular and slow-twitch muscles is compensated by a facilitation of adenine nucleotide transportation between mitochondria and cellular ATPases; in fast-twitch muscle, mainly energy buffering function is depressed, and that is overcome by an increase in energy-producing potential.
Collapse
MESH Headings
- Adaptation, Physiological
- Adenosine Diphosphate/pharmacology
- Adenylate Kinase/metabolism
- Animals
- Creatine Kinase/deficiency
- Creatine Kinase/genetics
- Female
- In Vitro Techniques
- Isoenzymes
- Kinetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/enzymology
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/enzymology
- Models, Biological
- Muscle Fibers, Fast-Twitch/enzymology
- Muscle Fibers, Slow-Twitch/enzymology
- Muscle, Skeletal/enzymology
- Myocardium/enzymology
- Oxygen Consumption
- Tissue Distribution
Collapse
|
|
30 |
144 |
4
|
Zoll J, Sanchez H, N'Guessan B, Ribera F, Lampert E, Bigard X, Serrurier B, Fortin D, Geny B, Veksler V, Ventura-Clapier R, Mettauer B. Physical activity changes the regulation of mitochondrial respiration in human skeletal muscle. J Physiol 2002; 543:191-200. [PMID: 12181291 PMCID: PMC2290497 DOI: 10.1113/jphysiol.2002.019661] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study explores the importance of creatine kinase (CK) in the regulation of muscle mitochondrial respiration in human subjects depending on their level of physical activity. Volunteers were classified as sedentary, active or athletic according to the total activity index as determined by the Baecke questionnaire in combination with maximal oxygen uptake values (peak V(O2), expressed in ml min(-1) kg(-1)). All volunteers underwent a cyclo-ergometric incremental exercise test to estimate their peak V(O2) and V(O2) at the ventilatory threshold (VT). Muscle biopsy samples were taken from the vastus lateralis and mitochondrial respiration was evaluated in an oxygraph cell on saponin permeabilised muscle fibres in the absence (V(0)) or in the presence (V(max)) of saturating [ADP]. While V(0) was similar, V(max) differed among groups (sedentary, 3.7 +/- 0.3, active, 5.9 +/- 0.9 and athletic, 7.9 +/- 0.5 micromol O2 min(-1) (g dry weight)(-1)). V(max) was correlated with peak V(O2) (P < 0.01, r = 0.63) and with V(T) (P < 0.01, r = 0.57). There was a significantly greater degree of coupling between oxidation and phosphorylation (V(max)/V(0)) in the athletic individuals. The mitochondrial K(m) for ADP was significantly higher in athletic subjects (P < 0.01). Mitochondrial CK (mi-CK) activation by addition of creatine induced a marked decrease in K(m) in athletic individuals only, indicative of an efficient coupling of mi-CK to ADP rephosphorylation in the athletic subjects only. It is suggested that increasing aerobic performance requires an enhancement of both muscle oxidative capacity and mechanisms of respiratory control, attesting to the importance of temporal co-ordination of energy fluxes by CK for higher efficacy.
Collapse
|
research-article |
23 |
140 |
5
|
Bigard X, Sanchez H, Zoll J, Mateo P, Rousseau V, Veksler V, Ventura-Clapier R. Calcineurin Co-regulates contractile and metabolic components of slow muscle phenotype. J Biol Chem 2000; 275:19653-60. [PMID: 10777482 DOI: 10.1074/jbc.m000430200] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the transcription factor nuclear factor of activated T cells by the calcium-sensitive serine/threonine phosphatase calcineurin has been proposed as one of the molecular mechanisms by which motor nerve activity establishes the slow muscle phenotype. To investigate whether the calcineurin pathway can regulate the large spectrum of slow muscle characteristics in vivo, we treated rats for three weeks with cyclosporin A (an inhibitor of calcineurin). In soleus (slow muscle), but not in plantaris (fast muscle), the proportion of slow myosin heavy chain (MHC-1) and slow sarcoplasmic reticulum ATPase (SERCA2a) was decreased, whereas that of fast MHC (MHC-2A) and fast SERCA1 increased, indicating a slow to fast contractile phenotype transition. Cytosolic isoforms of creatine kinase and lactate dehydrogenase (most abundant in fast fibers), as well as mitochondrial creatine kinase and citrate synthase activities (elevated in fast/oxidative fibers) were dose dependently increased by cyclosporin A treatment in soleus muscle, with no change in plantaris. Calcineurin catalytic subunit was more abundant in soleus muscle fibers compared with plantaris. Taken together these results suggest that the calcineurin pathway co-regulates a set of multigenic protein families involved in the transition between slow oxidative (type I) to fast oxidative (type IIa) phenotype in soleus muscle.
Collapse
|
|
25 |
117 |
6
|
De Sousa E, Veksler V, Minajeva A, Kaasik A, Mateo P, Mayoux E, Hoerter J, Bigard X, Serrurier B, Ventura-Clapier R. Subcellular creatine kinase alterations. Implications in heart failure. Circ Res 1999; 85:68-76. [PMID: 10400912 DOI: 10.1161/01.res.85.1.68] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have tested the hypothesis that decreased functioning of creatine kinase (CK) at sites of energy production and utilization may contribute to alterations in energy fluxes and calcium homeostasis in congestive heart failure (CHF). Heart failure was induced by aortic banding in 3-week-old rats. Myofilaments, sarcoplasmic reticulum (SR), mitochondrial functions, and CK compartmentation were studied in situ using selective membrane permeabilization of left ventricular fibers with detergents (saponin for mitochondria and SR and Triton X-100 for myofibrils). Seven months after surgery, animals were in CHF. A decrease in total CK activity could be accounted for by a 4-fold decrease in activity and content (Western blots) of mitochondrial CK and a 30% decrease in M isoform of CK (MM-CK) activity. In myofibrils, maximal force, crossbridge kinetics, and alpha-myosin heavy-chain expression decreased, whereas calcium sensitivity of tension development remained unaltered. Myofibrillar CK efficacy was unchanged. Calcium uptake capacities of SR were estimated from the surface of caffeine-induced tension transient (SCa) after loading with different substrates. In CHF, SCa decreased by 23%, and phosphocreatine was 2 times less efficient in enhancing calcium uptake. Oxidative capacities of the failing myocardium measured as oxygen consumption per gram of fiber dry weight decreased by 28%. Moreover, the control of respiration by creatine, ADP, and AMP was severely impaired. Our observations provide evidence that alterations in CK compartmentation may contribute to alterations of energy fluxes and calcium homeostasis in CHF.
Collapse
|
|
26 |
110 |
7
|
Mettauer B, Zoll J, Sanchez H, Lampert E, Ribera F, Veksler V, Bigard X, Mateo P, Epailly E, Lonsdorfer J, Ventura-Clapier R. Oxidative capacity of skeletal muscle in heart failure patients versus sedentary or active control subjects. J Am Coll Cardiol 2001; 38:947-54. [PMID: 11583863 DOI: 10.1016/s0735-1097(01)01460-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES We investigated the in situ properties of muscle mitochondria using the skinned fiber technique in patients with chronic heart failure (CHF) and sedentary (SED) and more active (ACT) controls to determine: 1) whether respiration of muscle tissue in the SED and ACT groups correlates with peak oxygen consumption (pVO(2)), 2) whether it is altered in CHF, and 3) whether this results from deconditioning or CHF-specific myopathy. BACKGROUND Skeletal muscle oxidative capacity is thought to partly determine the exercise capacity in humans and its decrease to participate in exercise limitation in CHF. METHODS M. Vastus lateralis biopsies were obtained from 11 SED group members, 10 ACT group members and 15 patients with CHF at the time of transplantation, saponine-skinned and placed in an oxygraphic chamber to measure basal and maximal adenosine diphosphate (ADP)-stimulated (V(max)) respiration rates and to assess mitochondrial regulation by ADP. All patients received angiotensin-converting enzyme (ACE) inhibitors. RESULTS The pVO(2) differed in the order CHF < SED < ACT. Compared with SED, muscle alterations in CHF appeared as decreased citrate synthase, creatine kinase and lactate dehydrogenase, whereas the myosin heavy chain profile remained unchanged. However, muscle oxidative capacity (V(max), CHF: 3.53 +/- 0.38; SED: 3.17 +/- 0.48; ACT: 7.47 +/- 0.73, micromol O(2).min(-1).g(-1)dw, p < 0.001 vs. CHF and SED) and regulation were identical in patients in the CHF and SED groups, differing in the ACT group only. In patients with CHF, the correlation between pVO(2) and muscle oxidative capacity observed in controls was displaced toward lower pVO(2) values. CONCLUSIONS In these patients, the disease-specific muscle metabolic impairments derive mostly from extramitochondrial mechanisms that disrupt the normal symmorphosis relations. The possible roles of ACE inhibitors and level of activity are discussed.
Collapse
|
|
24 |
102 |
8
|
|
|
27 |
99 |
9
|
Saks VA, Ventura-Clapier R, Aliev MK. Metabolic control and metabolic capacity: two aspects of creatine kinase functioning in the cells. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1274:81-8. [PMID: 8664307 DOI: 10.1016/0005-2728(96)00011-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this short review, the merits and limits of three theoretical concepts explaining the functional role of the creatine kinase system in muscle and brain cells are analysed. In addition to the usual concept of an energy buffer system and the recently proposed metabolic capacity theory (Sweeney, H.L. (1994) Med. Sci. Sports Exerc. 26, 30-36), it is proposed that coupled creatine kinase systems are involved in effective metabolic regulation of energy fluxes and oxidative phosphorylation, beside their energy transfer function. This aspect of the system is considered on the basis of metabolic control analysis. It is shown by using the results of mathematical modelling that, due to amplification of ADP fluxes from the cytoplasm by the mechanism of metabolic channelling, coupled mitochondrial creatine kinase may exert a flux control coefficient significantly exceeding 1.
Collapse
|
Review |
29 |
99 |
10
|
Mekhfi H, Veksler V, Mateo P, Maupoil V, Rochette L, Ventura-Clapier R. Creatine kinase is the main target of reactive oxygen species in cardiac myofibrils. Circ Res 1996; 78:1016-27. [PMID: 8635232 DOI: 10.1161/01.res.78.6.1016] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Reactive oxygen species (ROS) have been reported to alter cardiac myofibrillar function as well as myofibrillar enzymes such as myosin ATPase and creatine kinase (CK). To understand their precise mode and site of action in myofibrils, the effects of the xanthine/xanthine oxidase (X/XO) system or of hydrogen peroxide (H2O2) have been studied in the presence and in the absence of phosphocreatine (PCr) in Triton X-100-treated cardiac fibers. We found that xanthine oxidase (XO), with or without xanthine, induced a decrease in maximal Ca(2+)-activated tension. We attributed this effect to the high contaminating proteolytic activity in commercial XO preparations, since it could be prevented a protease inhibitor, phenylmethylsulfonyl fluoride (PMSF), and it could be mimicked by trypsin. In further experiments, XO was pre-treated with 1 mmo1/L PMSF. Superoxide anion production by the X/XO system, characterized by electron paramagnetic resonance spin-trapping technique, was not altered by PMSF. A slight increase in maximal force was then observed either with X/XO (100 mumol/L per 30 mIU/mL) or H2O2. pMgATP-rigor tension relationships have been established in the presence and in the absence of PCr to separate the effects of ROS on myosin ATPase and myofibrillar-bound CK. In the absence of PCr, pMgATP50, the pMgATP necessary to induce half-maximal rigor tension, was reduced from 5.03 +/- 0.17 (n = 21) to 4.22 +/- 0.22 (n = 4) after 25 minutes of incubation in the presence one of 30 mIU/mL. XO and 100 mumol/L xanthine or to 4.04 +/- 0.1 (n = 11) after incubation in the presence of 2.5 mmol/L H2O2. The ROS effects were partially prevented or antagonized by 1 mmol/L dithiothreitol. No effect was observed on pMgATP50 when PCr was absent. pCa-tension relationships have been evaluated to assess the effects of ROS on active tension development. Incubations with H2O2 induced on increase in Ca2+ sensitivity and resting tension when MgATP was provided through myofibrillar CK (PCr and MgADP as substrates) but not when MgATP was added directly. These results suggest that myofibrillar CK was inhibited by ROS. Active stiffness and the time constant of tension changes after quick stretches applied to the fibers were dose-dependently increased by H2O2 only in the presence of PCr. In addition, myofibrillar CK but not myosin ATPase enzymatic activity was depressed after incubation with either ROS. These results suggest that ROS mainly alters CK in myofibrils, probably by the oxidation of its essential sulfhydryl groups. Such CK inactivation results in a decrease in the intramyofibrillar ATP-to-ADP ratio. The effects of ROS on cytosolic and bound CKs may take part in the overall process of myocardial stunning after cardiac ischemia and reperfusion.
Collapse
|
|
29 |
95 |
11
|
De Sousa E, Veksler V, Bigard X, Mateo P, Ventura-Clapier R. Heart failure affects mitochondrial but not myofibrillar intrinsic properties of skeletal muscle. Circulation 2000; 102:1847-53. [PMID: 11023942 DOI: 10.1161/01.cir.102.15.1847] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Congestive heart failure (CHF) induces abnormalities in skeletal muscle that are thought to in part explain exercise intolerance. The aim of the present study was to determine whether these changes actually result in contractile or metabolic functional alterations and whether they are muscle type specific. METHODS AND RESULTS With a rat model of CHF (induced by aortic banding), we studied mitochondrial function, mechanical properties, and creatine kinase (CK) compartmentation in situ in permeabilized fibers from soleus (SOL), an oxidative slow-twitch muscle, and white gastrocnemius (GAS), a glycolytic fast-twitch muscle. Animals were studied 7 months after surgery, and CHF was documented on the basis of anatomic data. Alterations in skeletal muscle phenotype were documented with an increased proportion of fast-type fiber and fast myosin heavy chain, decreased capillary-to-fiber ratio, and decreased citrate synthase activity. Despite a slow-to-fast phenotype transition in SOL, no change was observed in contractile capacity or calcium sensitivity. However, muscles from CHF rats exhibited a dramatic decrease in oxidative capacities (oxygen consumption per gram of fiber dry weight) of 35% for SOL and 45% for GAS (P:<0.001). Moreover, the regulation of respiration with ADP and mitochondrial CK and adenylate kinase was impaired in CHF SOL. Mitochondrial CK activity and content (Western blots) were dramatically decreased in both muscles. CONCLUSIONS CHF results in alterations in both mitochondrial function and phosphotransfer systems but unchanged myofibrillar function in skeletal muscles, which suggests a myopathy of metabolic origin in CHF.
Collapse
|
|
25 |
94 |
12
|
Ventura-Clapier R, Veksler V, Hoerter JA. Myofibrillar creatine kinase and cardiac contraction. Mol Cell Biochem 1994; 133-134:125-44. [PMID: 7808450 DOI: 10.1007/bf01267952] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This article is a review on the organization and function of myofibrillar creatine kinase in striated muscle. The first part describes myofibrillar creatine kinase as an integral structural part of the complex organization of myofibrils in striated muscle. The second part considers the intrinsic biochemical and mechanical properties of myofibrils and the functional coupling between myofibrillar CK and myosin ATPase. Skinned fiber studies have been developed to evidence this functional coupling and the consequences for cardiac contraction. The data show that creatine kinase in myofibrils is effective enough to sustain normal tension and relaxation, normal Ca sensitivity and kinetic characteristics. Moreover, the results suggest that myofibrillar creatine kinase is essential in maintaining adequate ATP/ADP ratio in the vicinity of myosin ATPase active site to prevent dysfunctioning of this enzyme. Implications for the physiology and physiopathology of cardiac muscle are discussed.
Collapse
|
Review |
31 |
82 |
13
|
Puceat M, Clement O, Lechene P, Pelosin JM, Ventura-Clapier R, Vassort G. Neurohormonal control of calcium sensitivity of myofilaments in rat single heart cells. Circ Res 1990; 67:517-24. [PMID: 2115824 DOI: 10.1161/01.res.67.2.517] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To investigate the changes in the properties of cardiac contractile proteins due to neurohormonal stimulation, different agonists were applied to single cells isolated from rat ventricle. Cells were then rapidly skinned by Triton X-100, and force was recorded after gluing the cells to a strain gauge. The skinned cells had mechanical properties very similar to those described for thin trabeculas. Tension-pCa relations were highly reproducible from one cell to another, with sarcomere length fixed at 2.1 microns. The application of alpha 1-adrenergic and muscarinic agonists, which increase the turnover of phosphatidylinositol, for 5 minutes before skinning the cells increased the sensitivity of the myofilaments to calcium, as indicated by a leftward shift of the tension-pCa relation, whereas beta-adrenergic stimulation induced a rightward shift. The increase in calcium sensitivity was also evoked by protein kinase C activators such as 1,2-dioctanoylglycerol and phorbol 12-myristate 13-acetate but not by protein kinase C itself or by purinergic agonists, although the latter also increased the turnover of phosphatidylinositol. Incubation of the skinned cells with phosphatase reversed the alterations in calcium sensitivity induced by previous agonist stimulation of the intact cells. In conclusion, this study demonstrates a potentially influential mechanism for the physiological regulation of cardiac muscle contractility.
Collapse
|
|
35 |
81 |
14
|
Ventura-Clapier R, Mekhfi H, Vassort G. Role of creatine kinase in force development in chemically skinned rat cardiac muscle. J Gen Physiol 1987; 89:815-37. [PMID: 3496424 PMCID: PMC2215919 DOI: 10.1085/jgp.89.5.815] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The influence of phosphocreatine in the presence or absence of MgATP and MgADP was studied in Triton X-100-treated thin papillary muscles and ventricular strips of the rat heart. The pCa/tension relationships, the pMgATP/tension relationships, and the tension responses to quick length changes were analyzed. The results show three major consequences of the reduction of the phosphocreatine concentration in the presence of millimolar concentrations of the MgATP. (a) The resting tension and the maximal Ca2+-activated tension were increased, and the pCa/tension relationship was shifted toward higher pCa values and its steepness was decreased; these effects were enhanced by the inclusion of MgADP. (b) The time constant of tension recoveries after quick stretches applied during maximal activation was increased, while the extent of these recoveries was decreased. (c) The study of pMgATP/tension relationships in low Ca concentrations showed that the decrease in phosphocreatine induced a shift toward higher MgATP values with no changes in maximal rigor tension or the slope coefficient; these effects were increased by the increase in MgADP and were independent of the preparation diameter. Thus, modifications of the apparent Ca sensitivity and resting and maximal tension when phosphocreatine is decreased seem to be due to an increasing participation of rigor-like or slowly cycling cross-bridges spending more time in the attached state. These results suggest that endogenous creatine kinase is able to ensure maximal efficiency of myosin ATPase by producing a local high MgATP/MgADP ratio.
Collapse
|
research-article |
38 |
74 |
15
|
Saks VA, Ventura-Clapier R, Huchua ZA, Preobrazhensky AN, Emelin IV. Creatine kinase in regulation of heart function and metabolism. I. Further evidence for compartmentation of adenine nucleotides in cardiac myofibrillar and sarcolemmal coupled ATPase-creatine kinase systems. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 803:254-64. [PMID: 6231056 DOI: 10.1016/0167-4889(84)90115-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In isolated and purified cardiac myofibrillar and sarcolemmal preparations, the route of movement of ADP produced in the Mg2+-ATPase reactions was studied by investigating the efficiency of competition between the endogenous creatine kinase and exogenous pyruvate kinase reactions. In the homogeneous control system composed of hexokinase and glucose as ATPase, soluble creatine kinase rapidly rephosphorylated ADP produced in the presence of 1 mM ATP, but the addition of pyruvate kinase in an increasing amount inhibited the reaction of creatine release from phosphocreatine and symmetrically increased the rate of pyruvate production from phosphoenol pyruvate. At a pyruvate-kinase/creatine-kinase activity ratio (PK/CK) of 50, all ADP was used by the pyruvate kinase. In myofibrillar and sarcolemmal preparations containing particulate creatine kinase, the creatine kinase reaction was much less efficiently suppressed by pyruvate kinase, and at PK/CK = 50 half-maximal release of creatine was still observed. The rate of immediate myofibrillar MgADP rephosphorylation in the endogenous creatine-kinase reaction was observed to be governed by the concentration of phosphocreatine in accordance with the kinetics of this enzyme. The physiological significance of these findings is discussed.
Collapse
|
|
41 |
72 |
16
|
Ponsot E, Zoll J, N'guessan B, Ribera F, Lampert E, Richard R, Veksler V, Ventura-Clapier R, Mettauer B. Mitochondrial tissue specificity of substrates utilization in rat cardiac and skeletal muscles. J Cell Physiol 2005; 203:479-86. [PMID: 15521069 DOI: 10.1002/jcp.20245] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As energetic metabolism is crucial for muscles, they develop different adaptations to respond to fluctuating demand among muscle types. Whereas quantitative characteristics are known, no study described simultaneously quantitative and qualitative differences among muscle types in terms of substrates utilization patterns. This study thus defined the pattern of substrates preferential utilization by mitochondria from glycolytic gastrocnemius (GAS) and oxidative soleus (SOL) skeletal muscles and from heart left ventrical (LV) in rats. We measured in situ, ADP (2 mM)-stimulated, mitochondrial respiration rates from skinned fibers in presence of increasing concentrations of pyruvate (Pyr) + malate (Mal), palmitoyl-carnitine (Palm-C) + Mal, glutamate (Glut) + Mal, glycerol-3-phosphate (G3-P), lactate (Lact) + Mal. Because the fibers oxygen uptake (Vs) followed Michaelis-Menten kinetics in function of substrates level we determined the Vs and Km, representing maximal oxidative capacity and the mitochondrial sensibility for each substrate, respectively. Vs were in the order GAS < SOL < LV for Pyr, Glu, and Palm-C substrates, whereas in the order SOL = LV < GAS with G3-P. Moreover, the relative capacity to oxidize Palm-C is extremely higher in LV than in SOL. Vs was not stimulated by the Lact substrate. The Km was equal for Pyr among muscles, but much lower for G3-P in GAS and lower for Palm-C in LV. These results demonstrate qualitative mitochondrial tissue specificity for metabolic pathways. Mitochondria of glycolytic muscle fibers are well adapted to play a central role for maintaining a satisfactory cytosolic redox state in these fibers, whereas mitochondria of LV developed important capacities to use fatty acids.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
63 |
17
|
Tavernier B, Mebazaa A, Mateo P, Sys S, Ventura-Clapier R, Veksler V. Phosphorylation-dependent alteration in myofilament ca2+ sensitivity but normal mitochondrial function in septic heart. Am J Respir Crit Care Med 2001; 163:362-7. [PMID: 11179107 DOI: 10.1164/ajrccm.163.2.2002128] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The subcellular mechanisms responsible for myocardial depression during sepsis remain unclear. Recent data suggest a role for impaired energy generation and utilization, resulting in altered contractile function. Here, we studied the energetic and mechanical properties of skinned fibers isolated from rabbit ventricle in a nonlethal but hypotensive model of endotoxemia. Thirty-six hours after lipopolysaccharide (LPS) injection (in the presence of altered myocardial contractility), mitochondrial respiration, coupling between oxidation and phosphorylation, and creatine kinase function were similar in preparations from endotoxemic (LPS) and control animals. The maximal Ca2+-activated force was similar in LPS and control preparations. However, the Ca2+ concentration corresponding to half-maximal force (pCa50, where pCa = -log10[Ca2+]) was 5.55 +/- 0.01 (n = 11) in LPS fibers versus 5.61 +/- 0.01 (n = 10) in control fibers (p < 0.01). Both protein kinase A (PKA) and alkaline phosphatase treatment led to the disappearance in the difference between control and LPS pCa50 values. Incubation of control fibers with the nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP) did not change the Ca2+ sensitivity after subsequent skinning, whereas isoproterenol decreased pCa50 from 5.62 +/- 0.01 to 5.55 +/- 0.01 (p < 0.01). These data suggest that during sepsis, cardiac mitochondrial and creatine kinase systems remain unaltered, whereas protein phosphorylation decreases myofibrillar Ca2+ sensitivity and may contribute to the depression of cardiac contractility.
Collapse
|
|
24 |
62 |
18
|
Minajeva A, Ventura-Clapier R, Veksler V. Ca2+ uptake by cardiac sarcoplasmic reticulum ATPase in situ strongly depends on bound creatine kinase. Pflugers Arch 1996; 432:904-12. [PMID: 8772142 DOI: 10.1007/s004240050214] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The role of creatine kinase (CK) bound to sarcoplasmic reticulum (SR), in the energy supply of SR ATPase in situ, was studied in saponin-permeabilised rat ventricular fibres by loading SR at pCa 6. 5 for different times and under different energy supply conditions. Release of Ca2+ was induced by 5 mM caffeine and the peak of relative tension (T/Tmax) and the area under isometric tension curves, ST, were measured. Taking advantage of close localisation of myofibrils and SR, free [Ca2+] in the fibres during the release was estimated using steady state [Ca2+]/tension relationship. Peak [Ca2+] and integral of free Ca2+ transients (S[Ca2+]f) were then calculated. At all times, loading with 0.25 mM adenosine diphosphate, Mg2+ salt (MgADP) and 12 mM phosphocreatine (PCr) [when adenosine triphosphate (ATP) was generated via bound CK] was as efficient as loading with both 3.16 mM MgATP and 12 mM PCr (control conditions). However, when loading was supported by MgATP alone (3.16 mM), T/Tmax was only 40% and S[Ca2+]f 31% of control (P < 0.001). Under these conditions, addition of a soluble ATP-regenerating system (pyruvate kinase and phosphoenolpyruvate), did not increase loading substantially. Both ST and S[Ca2+]f were more sensitive to the loading conditions than T/Tmax and peak [Ca2+]. The data suggest that Ca2+ uptake by the SR in situ depends on local ATP/ADP ratio which is effectively controlled by bound CK.
Collapse
|
|
29 |
60 |
19
|
Ventura-Clapier R, Saks VA, Vassort G, Lauer C, Elizarova GV. Reversible MM-creatine kinase binding to cardiac myofibrils. THE AMERICAN JOURNAL OF PHYSIOLOGY 1987; 253:C444-55. [PMID: 3307451 DOI: 10.1152/ajpcell.1987.253.3.c444] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Skinned rat papillary muscles and purified preparations of rat cardiac myofibrils were used to study the nature of the interaction of creatine kinase with cardiac myofibrils. High activity of creatine kinase (2 IU/mg protein in fibers and 0.9 IU/mg in purified myofibrils) was due mostly to reversibly bound enzyme. This activity could be removed and rebound. The process of creatine kinase rebinding was characterized by apparent Km value of 0.14 mg/ml (approximately equal to 2 X 10(6) M). Rebinding of creatine kinase to cardiac myofibrils restored the phenomenon of functional compartmentation of adenine nucleotides in myofibrillar space and restored the ability of phosphocreatine to decrease the rigor tension in the presence of MgADP. The physiological experiments with quick length changes showed that rebinding of creatine kinase to skinned papillary muscle also restored Ca sensitivity, increased maximal tension development, decreased stiffness, and restored the tension recovery after quick length changes in muscle under condition of inhibition of endogenous creatine kinase by 1-fluoro-2,4-dinitrobenzene. It is concluded that creatine kinase reversibly bound to cardiac myofibrils is involved in the energy supply for cardiac contraction.
Collapse
|
|
38 |
59 |
20
|
Bigard AX, Boehm E, Veksler V, Mateo P, Anflous K, Ventura-Clapier R. Muscle unloading induces slow to fast transitions in myofibrillar but not mitochondrial properties. Relevance to skeletal muscle abnormalities in heart failure. J Mol Cell Cardiol 1998; 30:2391-401. [PMID: 9925374 DOI: 10.1006/jmcc.1998.0798] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle deconditioning is a common observation in patients with congestive heart failure (CHF), chronic obstructive pulmonary disease, neuromuscular diseases or prolonged bed rest. To gain further insight into metabolic and mechanical properties of deconditioned slow-twitch (soleus) or fast-twitch (EDL) skeletal muscles, we induced experimental muscle deconditioning by hindlimb suspension (HS) in rats for 3 weeks. Cardiac muscle was also studied. Besides profound muscle atrophy, increased proportion of fast type II fibers as well as fast myosin isoenzymes, we found decreased calcium sensitivity of Triton X-100 skinned fiber bundles of soleus muscle directed towards the fast muscle phenotype. Glycolytic enzymes such as hexokinase and pyruvate kinase were increased, and the LDH isoenzyme pattern was clearly shifted from an oxidative to an anaerobic profile. Creatine kinase (CK) and myokinase activities were increased in HS soleus towards EDL values. Moreover, the M-CK mRNA level was greatly increased in soleus, with no change in EDL. However, oxygen consumption rate assessed in situ in saponin skinned fibers (12.5 +/- 0.8 in C and 15.1 +/- 0.9 micromol O2/min/g dw in HS soleus compared to 7.3 +/- 1.3 micromol O2/min/g dw in control EDL), as well as mitochondrial CK (mi-CK) and citrate synthase activities, were preserved in HS soleus. Following deconditioning no change in Km for ADP of mitochondrial respiration, either in the absence (511 +/- 92 in C and 511 +/- 111 microM in HS soleus compared to 9 +/- 4 microM in control EDL) or presence of creatine (88 +/- 10 in C and 95 +/- 16 microM in HS soleus compared to 32 +/- 9 microM in control EDL), was found. The results show that muscle deconditioning induces a biochemical and functional slow to fast phenotype transition in myofibrillar and cytosolic compartments of postural muscle, but not in the mitochondrial compartment, suggesting that these compartments are differently regulated under conditions of decreased activity.
Collapse
|
|
27 |
58 |
21
|
Ventura-Clapier R, Kuznetsov AV, d'Albis A, van Deursen J, Wieringa B, Veksler VI. Muscle creatine kinase-deficient mice. I. Alterations in myofibrillar function. J Biol Chem 1995; 270:19914-20. [PMID: 7650006 DOI: 10.1074/jbc.270.34.19914] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The regulation of contractile activity in mice bearing a null mutation of the M-isoform of creatine kinase gene, has been investigated in tissue extracts and Triton X-100-treated preparations of ventricular, soleus, and gastrocnemius muscles of control and transgenic mice. Skinned fiber experiments did not evidence any statistical difference in the maximal force or the calcium sensitivity of either muscle type. Rigor tension development at a low MgATP concentration was greatly influenced by phosphocreatine in control but not in transgenic mice as should be expected. In calcium-activated ventricular preparations, although the force developed by each cross-bridge was the same in control and transgenic animals, the rate constant of tension changes appeared to be markedly slowed in transgenic animals. As the ventricular isomyosin pattern was not altered, we suggested that, in transgenic animals, cross-bridge cycling was hindered by a local decrease in the MgATP to MgADP ratio, due to lack of a local MgATP regenerating system. Myokinase activity was not significantly changed while activities of pyruvate kinase or glyceraldehyde-3-phosphate dehydrogenase were found to be increased in transgenic animals. These results show that no fundamental remodelling occurs in myofibrils of transgenic animals but that important adaptations modify the bioenergetic pathways including glycolytic metabolism.
Collapse
|
|
30 |
57 |
22
|
Bahi L, Garnier A, Fortin D, Serrurier B, Veksler V, Bigard AX, Ventura-Clapier R. Differential effects of thyroid hormones on energy metabolism of rat slow- and fast-twitch muscles. J Cell Physiol 2005; 203:589-98. [PMID: 15605382 DOI: 10.1002/jcp.20273] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Thyroid hormone (TH) is an important regulator of mitochondrial content and activity. As mitochondrial content and properties differ depending on muscle-type, we compared mitochondrial regulation and biogenesis by T3 in slow-twitch oxidative (soleus) and fast-twitch mixed muscle (plantaris). Male Wistar rats were treated for 21 to 27 days with T3 (200 microg/kg/day). Oxidative capacity, regulation of mitochondrial respiration by substrates and phosphate acceptors, and transcription factors were studied. In soleus, T3 treatment increased maximal oxygen consumption (Vmax) and the activities of citrate synthase (CS) and cytochrome oxidase (COX) by 100%, 45%, and 71%, respectively (P < 0.001), whereas in plantaris only Vmax increased, by 39% (P < 0.01). ADP-independent respiration rate was increased in soleus muscle by 216% suggesting mitochondrial uncoupling. Mitochondrial substrate utilization in soleus was also influenced by T3, as were mitochondrial enzymes. Lactate dehydrogenase (LDH) activity was elevated in soleus and plantaris by 63% and 11%, respectively (P < 0.01), and soleus creatine kinase was increased by 48% (P < 0.001). T3 increased the mRNA content of the transcriptional co-activator of mitochondrial genes, PGC-1alpha, and the I and IV COX subunits in soleus. The muscle specific response to thyroid hormones could be explained by a lower content of TH receptors in plantaris than soleus. Moreover, TRalpha mRNA level decreased further after T3 treatment. These results demonstrate that TH has a major effect on mitochondrial content, regulation and coupling in slow oxidative muscle, but to a lesser extent in fast muscle, due to the high expression of TH receptors and PGC-1alpha transcription factor.
Collapse
|
Research Support, Non-U.S. Gov't |
20 |
53 |
23
|
Mayoux E, Ventura-Clapier R, Timsit J, Béhar-Cohen F, Hoffmann C, Mercadier JJ. Mechanical properties of rat cardiac skinned fibers are altered by chronic growth hormone hypersecretion. Circ Res 1993; 72:57-64. [PMID: 8417847 DOI: 10.1161/01.res.72.1.57] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chronic growth hormone (GH) hypersecretion in rats leads to increased isometric force without affecting the unloaded shortening velocity of isolated cardiac papillary muscles, despite a marked isomyosin shift toward V3. To determine if alterations occurred at the level of the contractile proteins in rats bearing a GH-secreting tumor (GH rats), we examined the mechanical properties of skinned fibers to eliminate the early steps of the excitation-contraction coupling mechanism. We found that maximal active tension and stiffness at saturating calcium concentrations (pCa 4.5) were markedly higher in GH rats than in control rats (tension, 52.9 +/- 5.2 versus 38.1 +/- 4.6 mN.mm-2, p < 0.05; stiffness, 1,105 +/- 120 versus 685 +/- 88 mN.mm-2.microns-1, p < 0.01), whereas values at low calcium concentrations (pCa 9) were unchanged. In addition, the calcium sensitivity of the contractile proteins was slightly but significantly higher in GH rats than in control rats (delta pCa 0.04, p < 0.001). The crossbridge cycling rate, reflected by the response to quick length changes, was lower in GH rats than in control rats (62.0 +/- 2.6 versus 77.4 +/- 6.6 sec-1, p < 0.05), in good agreement with a decrease in the proportion of alpha-myosin heavy chains in the corresponding papillary muscles (45.5 +/- 2.0% versus 94.6 +/- 2.4%, p < 0.001). The changes in myosin heavy chain protein phenotype were paralleled by similar changes of the corresponding mRNAs, indicating that the latter occurred mainly at a pretranslational level. These results demonstrate that during chronic GH hypersecretion in rats, alterations at the myofibrillar level contribute to the increase in myocardial contractility observed in intact muscle.
Collapse
|
Comparative Study |
32 |
53 |
24
|
Ventura-Clapier R, Veksler V. Myocardial ischemic contracture. Metabolites affect rigor tension development and stiffness. Circ Res 1994; 74:920-9. [PMID: 8156639 DOI: 10.1161/01.res.74.5.920] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Myocardial ischemia is characterized by a decrease in phosphocreatine (PCr) and Mg(2+)-ATP contents as well as an accumulation of myosin ATPase reaction products (inorganic phosphate [P(i)], protons, and Mg(2+)-ADP). The possibility that these metabolites play a role in rigor tension development was checked in rat ventricular Triton X-100-skinned fibers. Rigor tension was induced by stepwise decreasing [Mg(2+)-ATP] in the presence or in the absence of 12 mmol/L PCr. To mimic the diastolic ionic environment of the myofibrils, [free Ca2+] was set at 100 nmol/L (pCa 7); [free Mg2+], at 1 mmol/L; and ionic strength, at 160 mmol/L. In control conditions (pH 7.1, with no added P(i) or Mg(2+)-ADP), the pMg(2+)-ATP for half-maximal rigor tension (pMg(2+)-ATP50) was 5.07 +/- 0.03 in the presence of PCr. After withdrawal of PCr, the pMg2+)-ATP50 value was shifted toward higher Mg(2+)-ATP values (3.57 +/- 0.03). Addition of 20 mmol/L P(i) shifted the pMg(2+)-ATP50 to 3.71 +/- 0.04 (P < .05) in the absence of PCr and in the opposite direction to 4.98 +/- 0.02 (P < .01) in the presence of PCr. Acidic pH (6.6) strongly increased pMg(2+)-ATP50 in both the absence (3.90 +/- 0.03, P < .001) and presence (5.44 +/- 0.02, P < .001) of PCr. Conversely, Mg(2+)-ADP (250 mumol/L) decreased pMg(2+)-ATP50 to 3.26 +/- 0.06 (P < .001) in the absence of PCr; at pMg(2+)-ATP 4, no rigor tension was observed until PCr concentration was decreased to < 2 mmol/L. At acidic pH, maximal rigor tension was lower by 29% compared with control conditions, whereas in the presence of Mg(2+)-ADP, maximal rigor tension developed to 143% of the control value; P(i) had no effect. The tension-to-stiffness (measured by the quick length-change technique) ratio was lower in rigor (no PCr and pMg(2+)-ATP 6) than during Ca2+ activation in the presence of both PCr and ATP. Compared with control rigor conditions, this parameter was unchanged by Mg(2+)-ADP and decreased by acidic pH, suggesting a proton-induced decrease in the amount of force per crossbridge. In addition to their known effects on active tension, Mg(2+)-ADP and protons affect rigor tension and influence ischemic contracture development. It is concluded that ischemic contracture and increased myocardial stiffness may be mediated by a decreased PCr and local Mg(2+)-ADP accumulation. This emphasizes the importance of myofibrillar creatine kinase activity in preventing ischemic contracture.
Collapse
|
|
31 |
47 |
25
|
Ovide-Bordeaux S, Ventura-Clapier R, Veksler V. Do modulators of the mitochondrial K(ATP) channel change the function of mitochondria in situ? J Biol Chem 2000; 275:37291-5. [PMID: 10970894 DOI: 10.1074/jbc.m005772200] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pharmacological opening of mitochondrial cardiac ATP-sensitive potassium (K(ATP)) channels has the chance to be a promising but still controversial cardioprotective mechanism. Physiological roles of mitochondrial K(ATP) channels in the myocardium remain unclear. We studied the effects of diazoxide, a specific opener of these channels, on the function of rat mitochondria in situ in saponin-permeabilized fibers using an ionic medium that mimics the cytosol. In the presence of NADH-producing substrates (malate + glutamate), neither 100 microm diazoxide nor 100 microm glibenclamide (a K(ATP) channel blocker) changed the mitochondrial respiration in the absence or presence of ADP. Because the K(ATP) channel function could be modified by changes in adenine nucleotide concentrations near the mitochondria, we studied the effects of diazoxide and glibenclamide on the functional activity of mitochondrial kinases. Both diazoxide and glibenclamide did not change the in situ ADP sensitivity in the presence or absence of creatine (apparent K(m) values for ADP were, respectively, 59 +/- 9 and 379 +/- 45 microm). Similarly, stimulation of the mitochondrial respiration with AMP in the presence of ATP due to adenylate kinase activity was not affected by the modulators of K(ATP) channels. However, when succinate was used as substrate, diazoxide significantly inhibited basal respiration by 22% and maximal respiration by 24%. Thus, at a cardioprotective dose, the main functional effect of diazoxide depends on respiratory substrates and seems not to be related to K(ATP) channel activity.
Collapse
|
|
25 |
47 |