1
|
Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 2015; 126:1071-1107. [PMID: 25797650 PMCID: PMC6350257 DOI: 10.1016/j.clinph.2015.02.001] [Citation(s) in RCA: 1904] [Impact Index Per Article: 190.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 01/22/2015] [Accepted: 02/01/2015] [Indexed: 12/14/2022]
Abstract
These guidelines provide an up-date of previous IFCN report on “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application” (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 “Report”, was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain–behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments.
Collapse
|
Review |
10 |
1904 |
2
|
Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 1997; 48:1398-403. [PMID: 9153480 DOI: 10.1212/wnl.48.5.1398] [Citation(s) in RCA: 1444] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We studied the effects of low-frequency transcranial magnetic stimulation (TMS) on motor cortex excitability in humans. TMS at 0.1 Hz for 1 hour did not change cortical excitability. Stimulation at 0.9 Hz for 15 minutes (810 pulses), similar to the parameters used to induce long-term depression (LTD) in cortical slice preparations and in vivo animal studies, led to a mean decrease in motor evoked potential (MEP) amplitude of 19.5%. The decrease in cortical excitability lasted for at least 15 minutes after the end of the 0.9 Hz stimulation. The mechanism underlying this decrease in excitability may be similar to LTD. TMS-induced reduction of cortical excitability has potential clinical applications in diseases such as epilepsy and myoclonus. Spread of excitation, which may be a warning sign for seizures, occurred in one subject and was not accompanied by increased MEP amplitude, suggesting that spread of excitation and amplitude changes are different phenomena and also indicating the need for adequate monitoring even with stimulations at low frequencies.
Collapse
|
|
28 |
1444 |
3
|
Zhang L, Zhu F, Xie L, Wang C, Wang J, Chen R, Jia P, Guan HQ, Peng L, Chen Y, Peng P, Zhang P, Chu Q, Shen Q, Wang Y, Xu SY, Zhao JP, Zhou M. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China. Ann Oncol 2020; 31:894-901. [PMID: 32224151 PMCID: PMC7270947 DOI: 10.1016/j.annonc.2020.03.296] [Citation(s) in RCA: 1005] [Impact Index Per Article: 201.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background Cancer patients are regarded as a highly vulnerable group in the current Coronavirus Disease 2019 (COVID-19) pandemic. To date, the clinical characteristics of COVID-19-infected cancer patients remain largely unknown. Patients and methods In this retrospective cohort study, we included cancer patients with laboratory-confirmed COVID-19 from three designated hospitals in Wuhan, China. Clinical data were collected from medical records from 13 January 2020 to 26 February 2020. Univariate and multivariate analyses were carried out to assess the risk factors associated with severe events defined as a condition requiring admission to an intensive care unit, the use of mechanical ventilation, or death. Results A total of 28 COVID-19-infected cancer patients were included; 17 (60.7%) patients were male. Median (interquartile range) age was 65.0 (56.0–70.0) years. Lung cancer was the most frequent cancer type (n = 7; 25.0%). Eight (28.6%) patients were suspected to have hospital-associated transmission. The following clinical features were shown in our cohort: fever (n = 23, 82.1%), dry cough (n = 22, 81%), and dyspnoea (n = 14, 50.0%), along with lymphopaenia (n = 23, 82.1%), high level of high-sensitivity C-reactive protein (n = 23, 82.1%), anaemia (n = 21, 75.0%), and hypoproteinaemia (n = 25, 89.3%). The common chest computed tomography (CT) findings were ground-glass opacity (n = 21, 75.0%) and patchy consolidation (n = 13, 46.3%). A total of 15 (53.6%) patients had severe events and the mortality rate was 28.6%. If the last antitumour treatment was within 14 days, it significantly increased the risk of developing severe events [hazard ratio (HR) = 4.079, 95% confidence interval (CI) 1.086–15.322, P = 0.037]. Furthermore, patchy consolidation on CT on admission was associated with a higher risk of developing severe events (HR = 5.438, 95% CI 1.498–19.748, P = 0.010). Conclusions Cancer patients show deteriorating conditions and poor outcomes from the COVID-19 infection. It is recommended that cancer patients receiving antitumour treatments should have vigorous screening for COVID-19 infection and should avoid treatments causing immunosuppression or have their dosages decreased in case of COVID-19 coinfection.
Collapse
|
Research Support, Non-U.S. Gov't |
5 |
1005 |
4
|
Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, Han W, Lou F, Yang J, Zhang Q, Wang X, He C, Pan H. Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 2013; 4:e838. [PMID: 24113172 PMCID: PMC3824660 DOI: 10.1038/cddis.2013.350] [Citation(s) in RCA: 946] [Impact Index Per Article: 78.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/25/2013] [Accepted: 08/27/2013] [Indexed: 01/11/2023]
Abstract
Induction of cell death and inhibition of cell survival are the main principles of cancer therapy. Resistance to chemotherapeutic agents is a major problem in oncology, which limits the effectiveness of anticancer drugs. A variety of factors contribute to drug resistance, including host factors, specific genetic or epigenetic alterations in the cancer cells and so on. Although various mechanisms by which cancer cells become resistant to anticancer drugs in the microenvironment have been well elucidated, how to circumvent this resistance to improve anticancer efficacy remains to be defined. Autophagy, an important homeostatic cellular recycling mechanism, is now emerging as a crucial player in response to metabolic and therapeutic stresses, which attempts to maintain/restore metabolic homeostasis through the catabolic lysis of excessive or unnecessary proteins and injured or aged organelles. Recently, several studies have shown that autophagy constitutes a potential target for cancer therapy and the induction of autophagy in response to therapeutics can be viewed as having a prodeath or a prosurvival role, which contributes to the anticancer efficacy of these drugs as well as drug resistance. Thus, understanding the novel function of autophagy may allow us to develop a promising therapeutic strategy to enhance the effects of chemotherapy and improve clinical outcomes in the treatment of cancer patients.
Collapse
|
Review |
12 |
946 |
5
|
Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, Cohen LG, Dowthwaite G, Ellrich J, Flöel A, Fregni F, George MS, Hamilton R, Haueisen J, Herrmann CS, Hummel FC, Lefaucheur JP, Liebetanz D, Loo CK, McCaig CD, Miniussi C, Miranda PC, Moliadze V, Nitsche MA, Nowak R, Padberg F, Pascual-Leone A, Poppendieck W, Priori A, Rossi S, Rossini PM, Rothwell J, Rueger MA, Ruffini G, Schellhorn K, Siebner HR, Ugawa Y, Wexler A, Ziemann U, Hallett M, Paulus W. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol 2017; 128:1774-1809. [PMID: 28709880 PMCID: PMC5985830 DOI: 10.1016/j.clinph.2017.06.001] [Citation(s) in RCA: 744] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/29/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022]
Abstract
Low intensity transcranial electrical stimulation (TES) in humans, encompassing transcranial direct current (tDCS), transcutaneous spinal Direct Current Stimulation (tsDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation or their combinations, appears to be safe. No serious adverse events (SAEs) have been reported so far in over 18,000 sessions administered to healthy subjects, neurological and psychiatric patients, as summarized here. Moderate adverse events (AEs), as defined by the necessity to intervene, are rare, and include skin burns with tDCS due to suboptimal electrode-skin contact. Very rarely mania or hypomania was induced in patients with depression (11 documented cases), yet a causal relationship is difficult to prove because of the low incidence rate and limited numbers of subjects in controlled trials. Mild AEs (MAEs) include headache and fatigue following stimulation as well as prickling and burning sensations occurring during tDCS at peak-to-baseline intensities of 1-2mA and during tACS at higher peak-to-peak intensities above 2mA. The prevalence of published AEs is different in studies specifically assessing AEs vs. those not assessing them, being higher in the former. AEs are frequently reported by individuals receiving placebo stimulation. The profile of AEs in terms of frequency, magnitude and type is comparable in healthy and clinical populations, and this is also the case for more vulnerable populations, such as children, elderly persons, or pregnant women. Combined interventions (e.g., co-application of drugs, electrophysiological measurements, neuroimaging) were not associated with further safety issues. Safety is established for low-intensity 'conventional' TES defined as <4mA, up to 60min duration per day. Animal studies and modeling evidence indicate that brain injury could occur at predicted current densities in the brain of 6.3-13A/m2 that are over an order of magnitude above those produced by tDCS in humans. Using AC stimulation fewer AEs were reported compared to DC. In specific paradigms with amplitudes of up to 10mA, frequencies in the kHz range appear to be safe. In this paper we provide structured interviews and recommend their use in future controlled studies, in particular when trying to extend the parameters applied. We also discuss recent regulatory issues, reporting practices and ethical issues. These recommendations achieved consensus in a meeting, which took place in Göttingen, Germany, on September 6-7, 2016 and were refined thereafter by email correspondence.
Collapse
|
Review |
8 |
744 |
6
|
Pierpaoli C, Barnett A, Pajevic S, Chen R, Penix LR, Virta A, Basser P. Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage 2001; 13:1174-85. [PMID: 11352623 DOI: 10.1006/nimg.2001.0765] [Citation(s) in RCA: 711] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This study investigates water diffusion changes in Wallerian degeneration. We measured indices derived from the diffusion tensor (DT) and T2-weighted signal intensities in the descending motor pathways of patients with small chronic lacunar infarcts of the posterior limb of the internal capsule on one side. We compared these measurements in the healthy and lesioned sides at different levels in the brainstem caudal to the primary lesion. We found that secondary white matter degeneration is revealed by a large reduction in diffusion anisotropy only in regions where fibers are arranged in isolated bundles of parallel fibers, such as in the cerebral peduncle. In regions where the degenerated pathway crosses other tracts, such as in the rostral pons, paradoxically there is almost no change in diffusion anisotropy, but a significant change in the measured orientation of fibers. The trace of the diffusion tensor is moderately increased in all affected regions. This allows one to differentiate secondary and primary fiber loss where the increase in trace is considerably higher. We show that DT-MRI is more sensitive than T2-weighted MRI in detecting Wallerian degeneration. Significant diffusion abnormalities are observed over the entire trajectory of the affected pathway in each patient. This finding suggests that mapping degenerated pathways noninvasively with DT-MRI is feasible. However, the interpretation of water diffusion data is complex and requires a priori information about anatomy and architecture of the pathway under investigation. In particular, our study shows that in regions where fibers cross, existing DT-MRI-based fiber tractography algorithms may lead to erroneous conclusion about brain connectivity.
Collapse
|
Journal Article |
24 |
711 |
7
|
Chen R, Lewis KA, Perrin MH, Vale WW. Expression cloning of a human corticotropin-releasing-factor receptor. Proc Natl Acad Sci U S A 1993; 90:8967-71. [PMID: 7692441 PMCID: PMC47482 DOI: 10.1073/pnas.90.19.8967] [Citation(s) in RCA: 667] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Corticotropin-releasing factor (CRF) is the principal neuroregulator of the hypothalamic-pituitary-adrenocortical axis and plays an important role in coordinating the endocrine, autonomic, and behavioral responses to stress and immune challenge. We report here the cloning of a cDNA coding for a CRF receptor from a human corticotropic tumor library. The cloned cDNA encodes a 415-amino acid protein comprising seven putative membrane-spanning domains and is structurally related to the calcitonin/vasoactive intestinal peptide/growth hormone-releasing hormone subfamily of G protein-coupled receptors. The receptor expressed in COS cells binds rat/human CRF with high affinity (Kd = 3.3 +/- 0.45 nM) and specificity and is functionally coupled to adenylate cyclase. The CRF antagonist alpha-helCRF-(9-41) inhibits the CRF-stimulated increase in intracellular cAMP. Northern blot analysis reveals that the CRF receptor is expressed in the rat pituitary and brain as well as in the mouse AtT20 corticotropic cells. We also describe an alternatively spliced form of the receptor which includes an insert of 29 amino acids in the first intracellular loop.
Collapse
MESH Headings
- 1-Methyl-3-isobutylxanthine/pharmacology
- Adenoma/metabolism
- Amino Acid Sequence
- Animals
- Binding, Competitive
- Blotting, Northern
- Brain/metabolism
- Cell Line
- Cloning, Molecular
- Cyclic AMP/metabolism
- Gene Expression
- Gene Library
- Humans
- Kinetics
- Molecular Sequence Data
- Myocardium/metabolism
- Pituitary Gland/metabolism
- Poly A/biosynthesis
- Poly A/metabolism
- RNA/biosynthesis
- RNA/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/metabolism
- Radioligand Assay
- Receptors, Corticotropin-Releasing Hormone/biosynthesis
- Receptors, Corticotropin-Releasing Hormone/genetics
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Transfection
- Tumor Cells, Cultured
Collapse
|
research-article |
32 |
667 |
8
|
Lopez-Girona A, Mendy D, Ito T, Miller K, Gandhi AK, Kang J, Karasawa S, Carmel G, Jackson P, Abbasian M, Mahmoudi A, Cathers B, Rychak E, Gaidarova S, Chen R, Schafer PH, Handa H, Daniel TO, Evans JF, Chopra R. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia 2012; 26:2326-35. [PMID: 22552008 PMCID: PMC3496085 DOI: 10.1038/leu.2012.119] [Citation(s) in RCA: 629] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thalidomide and the immunomodulatory drug, lenalidomide, are therapeutically active in hematological malignancies. The ubiquitously expressed E3 ligase protein cereblon (CRBN) has been identified as the primary teratogenic target of thalidomide. Our studies demonstrate that thalidomide, lenalidomide and another immunomodulatory drug, pomalidomide, bound endogenous CRBN and recombinant CRBN–DNA damage binding protein-1 (DDB1) complexes. CRBN mediated antiproliferative activities of lenalidomide and pomalidomide in myeloma cells, as well as lenalidomide- and pomalidomide-induced cytokine production in T cells. Lenalidomide and pomalidomide inhibited autoubiquitination of CRBN in HEK293T cells expressing thalidomide-binding competent wild-type CRBN, but not thalidomide-binding defective CRBNYW/AA. Overexpression of CRBN wild-type protein, but not CRBNYW/AA mutant protein, in KMS12 myeloma cells, amplified pomalidomide-mediated reductions in c-myc and IRF4 expression and increases in p21WAF-1 expression. Long-term selection for lenalidomide resistance in H929 myeloma cell lines was accompanied by a reduction in CRBN, while in DF15R myeloma cells resistant to both pomalidomide and lenalidomide, CRBN protein was undetectable. Our biophysical, biochemical and gene silencing studies show that CRBN is a proximate, therapeutically important molecular target of lenalidomide and pomalidomide.
Collapse
|
Journal Article |
13 |
629 |
9
|
Smith GW, Aubry JM, Dellu F, Contarino A, Bilezikjian LM, Gold LH, Chen R, Marchuk Y, Hauser C, Bentley CA, Sawchenko PE, Koob GF, Vale W, Lee KF. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 1998; 20:1093-102. [PMID: 9655498 DOI: 10.1016/s0896-6273(00)80491-2] [Citation(s) in RCA: 606] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Corticotropin releasing factor (CRF) is a major integrator of adaptive responses to stress. Two biochemically and pharmacologically distinct CRF receptor subtypes (CRFR1 and CRFR2) have been described. We have generated mice null for the CRFR1 gene to elucidate the specific developmental and physiological roles of CRF receptor mediated pathways. Behavioral analyses revealed that mice lacking CRFR1 displayed markedly reduced anxiety. Mutant mice also failed to exhibit the characteristic hormonal response to stress due to a disruption of the hypothalamic-pituitary-adrenal (HPA) axis. Homozygous mutant mice derived from crossing heterozygotes displayed low plasma corticosterone concentrations resulting from a marked agenesis of the zona fasciculata region of the adrenal gland. The offspring from homozygote crosses died within 48 hr after birth due to a pronounced lung dysplasia. The adrenal agenesis in mutant animals was attributed to insufficient adrenocorticotropic hormone (ACTH) production during the neonatal period and was rescued by ACTH replacement. These results suggest that CRFR1 plays an important role both in the development of a functional HPA axis and in mediating behavioral changes associated with anxiety.
Collapse
|
|
27 |
606 |
10
|
Abstract
Contrary to the classical view of a pre-determined wiring pattern, there is considerable evidence that cortical representation of body parts is continuously modulated in response to activity, behavior and skill acquisition. Both animal and human studies showed that following injury of the peripheral nervous system such as nerve injury or amputation, the somatosensory cortex that responded to the deafferented body parts become responsive to neighboring body parts. Similarly, there is expansion of the motor representation of the stump area following amputation. Reorganization of the sensory and motor systems following peripheral injury occurs in multiple levels including the spinal cord, brainstem, thalamus and cortex. In early-blind subjects, the occipital cortex plays an important role in Braille reading, suggesting that there is cross-modal plasticity. Functional recovery frequently occurs following a CNS injury such as stroke. Motor recovery from stroke may be associated with the adjacent cortical areas taking over the function of the damaged areas or utilization of alternative motor pathways. The ipsilateral motor pathway may mediate motor recovery in patients who undergo hemispherectomy early in life and in children with hemiplegic cerebral palsy, but it remains to be determined if it plays a significant role in the recovery of adult stroke. One of the challenges in stroke recovery is to identify which of the many neuroimaging and neurophysiological changes demonstrated are important in mediating recovery. The mechanism of plasticity probably differs depending on the time frame. Rapid changes in motor representations within minutes are likely due to unmasking of latent synapses involving modulation of GABAergic inhibition. Changes over a longer time likely involve other additional mechanisms such as long-term potentiation, axonal regeneration and sprouting. While cross-modal plasticity appears to be useful in enhancing the perceptions of compensatory sensory modalities, the functional significance of motor reorganization following peripheral injury remains unclear and some forms of sensory reorganization may even be associated with deleterious consequences like phantom pain. An understanding of the mechanism of plasticity will help to develop treatment programs to improve functional outcome.
Collapse
|
Review |
23 |
458 |
11
|
Chen R, Romero G, Christiansen MG, Mohr A, Anikeeva P. Wireless magnetothermal deep brain stimulation. Science 2015; 347:1477-80. [DOI: 10.1126/science.1261821] [Citation(s) in RCA: 404] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
10 |
404 |
12
|
Sanger TD, Garg RR, Chen R. Interactions between two different inhibitory systems in the human motor cortex. J Physiol 2001; 530:307-17. [PMID: 11208978 PMCID: PMC2278414 DOI: 10.1111/j.1469-7793.2001.0307l.x] [Citation(s) in RCA: 400] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Intracortical inhibition in the human motor cortex has been previously demonstrated using paired-pulse transcranial magnetic stimulation (TMS) protocols at short intervals (1-6 ms; short interval intracortical inhibition, SICI) with a subthreshold conditioning pulse preceding a suprathreshold test pulse, and at long intervals (50-200 ms; long interval intracortical inhibition, LICI) with suprathreshold conditioning and test pulses. We investigated whether different circuits mediate these inhibitory phenomena and how they interact. In nine healthy volunteers, we applied TMS to the motor cortex and recorded motor evoked potentials from the first dorsal interosseous muscle. With increasing test pulse strength, LICI decreases but SICI tends to increase. There was no correlation between the degree of SICI and LICI. We tested the interactions between SICI and LICI. SICI was reduced or eliminated in the presence of LICI. Loss of SICI was seen even with a conditioning stimulus too weak to induce significant LICI. Our findings demonstrate that different cell populations mediate SICI and LICI. The results are consistent with the hypothesis that LICI inhibits SICI through presynaptic GABAB receptors. Testing of SICI in the presence of LICI may be a non-invasive way of evaluating inhibitory interactions in the human motor cortex.
Collapse
|
research-article |
24 |
400 |
13
|
Perrin M, Donaldson C, Chen R, Blount A, Berggren T, Bilezikjian L, Sawchenko P, Vale W. Identification of a second corticotropin-releasing factor receptor gene and characterization of a cDNA expressed in heart. Proc Natl Acad Sci U S A 1995; 92:2969-73. [PMID: 7708757 PMCID: PMC42340 DOI: 10.1073/pnas.92.7.2969] [Citation(s) in RCA: 394] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Corticotropin-releasing factor (CRF; corticoliberin) regulates the secretion of corticotropin (ACTH) and beta-endorphin and has a broad range of effects on the nervous, endocrine, reproductive, cardiovascular, gastrointestinal, and immune systems. Recently, human, rat, and mouse CRF receptors (CRF-R) have been cloned and functionally and anatomically characterized. We report here the cloning of a second CRF-R cDNA (CRF-RB), which encodes a protein of 431 amino acids, which is 16 amino acids longer and 68% similar to the previously cloned CRF-R, CRF-RA. When transiently expressed in COS-M6 cells, CRF-RB binds CRF with high affinity [Kd = 1.2 (0.57-2.5)nM] and transduces the CRF-stimulated signal of the accumulation of intracellular cAMP, which is inhibited by a CRF antagonist. Comparison of the amino acid sequences of CRF-RB and the previously cloned receptor reveals major differences in the N-terminal domain and in the extracellular loops, whereas the sequences of the intracellular loops are nearly identical. CRF-RB and related transcripts are expressed in the heart, as well as in other tissues, including the gastrointestinal tract, epididymis, and brain.
Collapse
|
research-article |
30 |
394 |
14
|
Potter E, Sutton S, Donaldson C, Chen R, Perrin M, Lewis K, Sawchenko PE, Vale W. Distribution of corticotropin-releasing factor receptor mRNA expression in the rat brain and pituitary. Proc Natl Acad Sci U S A 1994; 91:8777-81. [PMID: 8090722 PMCID: PMC44689 DOI: 10.1073/pnas.91.19.8777] [Citation(s) in RCA: 383] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Corticotropin-releasing factor (CRF) is a major hypophysiotropic peptide regulating pituitary-adrenal response to stress, and it is also widely expressed in the central nervous system. The recent cloning of cDNAs encoding the human and rat CRF receptors has enabled us to map the distribution of cells expressing CRF receptor mRNA in rat brain and pituitary by in situ hybridization. Receptor expression in the forebrain is dominated by widespread signal throughout all areas of the neo-, olfactory, and hippocampal cortices. Other prominent sites of CRF receptor mRNA expression include subcortical limbic structures in the septal region and amygdala. In the diencephalon, low levels of expression are seen in a few discrete ventral thalamic and medial hypothalamic nuclei. CRF receptor expression in hypothalamic neurosecretory structures, including the paraventricular nucleus and median eminence, is generally low. In the brainstem, certain relay nuclei associated with the somatic (including trigeminal), auditory, vestibular, and visceral sensory systems, constituted prominent sites of CRF receptor mRNA expression. In addition, high levels of this transcript are present in the cerebellar cortex and deep nuclei, along with many precerebellar nuclei. In the pituitary, moderate levels of CRF receptor mRNA expression were detected throughout the intermediate lobe and in a subset of cells in the anterior lobe identified as corticotropes by concurrent immunolabeling. Overall, the central distribution of CRF receptor mRNA expression is similar to, though more expansive than, that of regions reported to bind CRF, and it shows limited overlap with loci expressing CRF-binding protein. Interestingly, CRF receptor mRNA is low or undetectable in several cell groups implicated as central sites of CRF action.
Collapse
|
research-article |
31 |
383 |
15
|
Chen R, Tam A, Bütefisch C, Corwell B, Ziemann U, Rothwell JC, Cohen LG. Intracortical inhibition and facilitation in different representations of the human motor cortex. J Neurophysiol 1998; 80:2870-81. [PMID: 9862891 DOI: 10.1152/jn.1998.80.6.2870] [Citation(s) in RCA: 374] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intracortical inhibition and facilitation in different representations of the human motor cortex. J. Neurophysiol. 80: 2870-2881, 1998. Intracortical inhibition (ICI) and intracortical facilitation (ICF) of the human motor cortex can be studied with paired transcranial magnetic stimulation (TMS). Plastic changes and some neurological disorders in humans are associated with changes in ICI and ICF. Although well characterized in the hand representation, it is not known if ICI and ICF vary across different body part representations. Therefore we studied ICI and ICF in different motor representations of the human motor cortex. The target muscles were rectus abdominus (RA), biceps brachii (BB), abductor pollicis brevis (APB), quadriceps femoris (QF), and abductor hallucis (AH). For each muscle, we measured the rest and active motor thresholds (MTs), the motor-evoked potential (MEP) stimulus-response curve (MEP recruitment), ICI, and ICF. The effects of different interstimulus intervals (ISIs) were studied with a conditioning stimulus (CS) intensity of 80% active MT. The effects of different CS intensities were studied at ISI of 2 ms for ICI and ISI of 15 ms for ICF. MT was lowest for APB, followed by BB, AH, and QF, and was highest for RA. Except for BB, MEP recruitment was generally steeper for muscles with lower MT. ICI and ICF were present in all the motor representations tested. The stimulus intensity necessary to elicit ICI was consistently lower than that required to elicit ICF, suggesting that they are mediated by separate mechanisms. Despite wide differences in MT and MEP recruitment, the absolute CS intensities (expressed as percentage of the stimulator's output) required to elicit ICI and ICF appear unrelated to MT and MEP recruitment in the different muscles tested. These findings suggest that the intracortical mechanisms for inhibition and facilitation in different motor representations are not related to the strength of corticospinal projections.
Collapse
|
Clinical Trial |
27 |
374 |
16
|
Farrer M, Chan P, Chen R, Tan L, Lincoln S, Hernandez D, Forno L, Gwinn-Hardy K, Petrucelli L, Hussey J, Singleton A, Tanner C, Hardy J, Langston JW. Lewy bodies and parkinsonism in families with parkin mutations. Ann Neurol 2001; 50:293-300. [PMID: 11558785 DOI: 10.1002/ana.1132] [Citation(s) in RCA: 348] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous work has established that compound mutations and homozygous loss of function of the parkin gene cause early-onset, autosomal recessive parkinsonism. Classically, this disease has been associated with loss of dopaminergic neurons in the substantia nigra pars compacta and locus ceruleus, without Lewy body pathology. We have sequenced the parkin gene of 38 patients with early-onset Parkinson's disease (<41 years). Two probands with mutations were followed up. Clinical evaluation of their families was performed, blinded to both genetic and pathological findings. Chromosome 6q25.2-27 haplotype analysis was carried out independently of the trait; parkin gene expression was examined at both the RNA and protein levels. Haplotype analysis of these families revealed a common chromosome 6, with a novel 40 bp exon 3 deletion that cosegregated with disease. In the proband of the smaller kindred, an exon 7 R275W substitution was identified in addition to the exon 3 deletion; RNA analysis demonstrated that the mutations were on alternate transcripts. However, Lewy body pathology typical of idiopathic Parkinson's disease was found at autopsy in the proband from the smaller kindred. These data suggest that compound heterozygous parkin mutations and loss of parkin protein may lead to early-onset parkinsonism with Lewy body pathology, while a hemizygous mutation may confer increased susceptibility to typical Parkinson's disease.
Collapse
|
|
24 |
348 |
17
|
Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH. The arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci U S A 1998; 95:15112-7. [PMID: 9844024 PMCID: PMC24584 DOI: 10.1073/pnas.95.25.15112] [Citation(s) in RCA: 340] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/1998] [Accepted: 10/15/1998] [Indexed: 11/18/2022] Open
Abstract
Auxins are plant hormones that mediate many aspects of plant growth and development. In higher plants, auxins are polarly transported from sites of synthesis in the shoot apex to their sites of action in the basal regions of shoots and in roots. Polar auxin transport is an important aspect of auxin functions and is mediated by cellular influx and efflux carriers. Little is known about the molecular identity of its regulatory component, the efflux carrier [Estelle, M. (1996) Current Biol. 6, 1589-1591]. Here we show that mutations in the Arabidopsis thaliana AGRAVITROPIC 1 (AGR1) gene involved in root gravitropism confer increased root-growth sensitivity to auxin and decreased sensitivity to ethylene and an auxin transport inhibitor, and cause retention of exogenously added auxin in root tip cells. We used positional cloning to show that AGR1 encodes a putative transmembrane protein whose amino acid sequence shares homologies with bacterial transporters. When expressed in Saccharomyces cerevisiae, AGR1 promotes an increased efflux of radiolabeled IAA from the cells and confers increased resistance to fluoro-IAA, a toxic IAA-derived compound. AGR1 transcripts were localized to the root distal elongation zone, a region undergoing a curvature response upon gravistimulation. We have identified several AGR1-related genes in Arabidopsis, suggesting a global role of this gene family in the control of auxin-regulated growth and developmental processes.
Collapse
|
research-article |
27 |
340 |
18
|
Chen R, Kang R, Fan XG, Tang D. Release and activity of histone in diseases. Cell Death Dis 2014; 5:e1370. [PMID: 25118930 PMCID: PMC4454312 DOI: 10.1038/cddis.2014.337] [Citation(s) in RCA: 311] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 12/30/2022]
Abstract
Histones and their post-translational modifications have key roles in chromatin remodeling and gene transcription. Besides intranuclear functions, histones act as damage-associated molecular pattern molecules when they are released into the extracellular space. Administration of exogenous histones to animals leads to systemic inflammatory and toxic responses through activating Toll-like receptors and inflammasome pathways. Anti-histone treatment (e.g., neutralizing antibodies, activated protein C, recombinant thrombomodulin, and heparin) protect mice against lethal endotoxemia, sepsis, ischemia/reperfusion injury, trauma, pancreatitis, peritonitis, stroke, coagulation, and thrombosis. In addition, elevated serum histone and nucleosome levels have been implicated in multiple pathophysiological processes and progression of diseases including autoimmune diseases, inflammatory diseases, and cancer. Therefore, extracellular histones could serve as biomarkers and novel therapeutic targets in human diseases.
Collapse
|
Review |
11 |
311 |
19
|
Ziemann U, Chen R, Cohen LG, Hallett M. Dextromethorphan decreases the excitability of the human motor cortex. Neurology 1998; 51:1320-4. [PMID: 9818853 DOI: 10.1212/wnl.51.5.1320] [Citation(s) in RCA: 307] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the acute effects of dextromethorphan (DM) on human motor cortical excitability. BACKGROUND DM, a noncompetitive N-methyl-D-aspartate receptor antagonist, has recently attracted clinical interest for its potential as a neuroprotective agent in various models of excitotoxicity. We were interested in learning whether this drug can modulate the excitability of the motor cortex in healthy subjects. METHODS The effects of DM on the excitability of the normal human motor cortex were studied in eight healthy volunteers by means of focal transcranial magnetic stimulation before and 1.5, 4, 6.5, and 24 hours after a single oral dose of 150 mg DM. Motor evoked potentials (MEPs) were recorded from the relaxed abductor digiti minimi muscle. Measures of motor cortical excitability were motor threshold, MEP recruitment, duration of the cortical silent period, and intracortical inhibition and facilitation. In addition, the authors explored spinal and neuromuscular excitability by means of F waves, duration of the peripheral silent period, and maximum M wave. RESULTS Intracortical inhibition increased temporarily, intracortical facilitation decreased, and the cortical silent period lengthened slightly. Motor threshold, MEP recruitment, and spinal and peripheral motor excitability were not affected significantly. CONCLUSIONS Our findings suggest that DM can exert a significant suppression of the excitatory drive in the normal human cortex, which may be relevant for its potential therapeutic use in excitotoxicity-related neurologic disease. Furthermore, the noninvasive technique described may prove useful in preclinical studies to assess the effects on motor cortical excitability induced by new modulators of glutamatergic transmission currently under development.
Collapse
|
|
27 |
307 |
20
|
Chen R, Amoui M, Zhang Z, Mardon G. Dachshund and eyes absent proteins form a complex and function synergistically to induce ectopic eye development in Drosophila. Cell 1997; 91:893-903. [PMID: 9428513 DOI: 10.1016/s0092-8674(00)80481-x] [Citation(s) in RCA: 305] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The eyeless, dachshund, and eyes absent genes encode conserved, nuclear proteins that are essential for eye development in Drosophila. Misexpression of eyeless or dachshund is also sufficient to induce the formation of ectopic compound eyes. Here we show that the dachshund and eyes absent genes act synergistically to induce ectopic retinal development and positively regulate the expression of each other. Moreover, we show that the Dachshund and Eyes Absent proteins can physically interact through conserved domains, suggesting a molecular basis for the genetic synergy observed and that a similar complex may function in mammals. We propose that a conserved regulatory network, rather than a linear hierarchy, controls retinal specification and involves multiple protein complexes that function during distinct steps of eye development.
Collapse
|
|
28 |
305 |
21
|
Chen R, Yaseen Z, Cohen LG, Hallett M. Time course of corticospinal excitability in reaction time and self-paced movements. Ann Neurol 1998; 44:317-25. [PMID: 9749597 DOI: 10.1002/ana.410440306] [Citation(s) in RCA: 301] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We used transcranial magnetic stimulation (TMS) to study the time course of corticospinal excitability before and after brisk thumb abduction movements, either in a simple reaction time (RT) paradigm or self-paced. Premovement increase in corticospinal excitability began about 20 msec earlier for self-paced compared with simple RT movements. For both simple RT and self-paced movements after electromyographic (EMG) offset, there was a first period of increased excitability from 0 to 100 msec, followed by a second period from 100 to 160 msec. Corticospinal excitability was decreased from about 500 to 1,000 msec after EMG offset for both types of movements. Our results show that motor preparation that begins 1.5 to 2 seconds before self-paced movement is not associated with increased corticospinal excitability. The first phase of increased corticospinal excitability after EMG offset may be due to activity of motor cortex neuron subthreshold for activating spinal motor neurons, and the second phase may reflect a subthreshold second agonist burst. The period of decreased corticospinal excitability after movement corresponds to the onset of event-related synchronization (ERS) of electroencephalographic signals in the 20-Hz band, and supports the hypothesis that ERS may be related to an inactive, idling state of the motor cortex.
Collapse
|
|
27 |
301 |
22
|
Leung LK, Su Y, Chen R, Zhang Z, Huang Y, Chen ZY. Theaflavins in black tea and catechins in green tea are equally effective antioxidants. J Nutr 2001; 131:2248-51. [PMID: 11533262 DOI: 10.1093/jn/131.9.2248] [Citation(s) in RCA: 297] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Green tea catechins, including (-)-epicatechin (EC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin (EGC) and (-)-epigallocatechin gallate (EGCG), are oxidized and dimerized during the manufacture of black tea and oolong tea to form orange-red pigments, theaflavins (TF), a mixture of theaflavin (TF1), theaflavin-3-gallate (TF2A), theaflavin-3'-gallate (TF2B) and theaflavin-3,3'-digallate (TF3). The present study was designed to compare the antioxidant activities of individual TF with that of each catechin using human LDL oxidation as a model. All catechins and TF tested inhibited Cu(+2)-mediated LDL oxidation. Analysis of the thiobarbituric acid-reactive substances (TBARS) and conjugated dienes produced during LDL oxidation revealed that the antioxidant activity was in the order: TF3 > ECG > EGCG > or = TF2B > or = TF2A > TF1 > or = EC > EGC. Four TF derivatives also demonstrated a dose-dependent antioxidant activity in Cu(+2)-mediated LDL oxidation at concentrations of 5-40 micromol/L. These results demonstrate that the TF present in black tea possess at least the same antioxidant potency as catechins present in green tea, and that the conversion of catechins to TF during fermentation in making black tea does not alter significantly their free radical-scavenging activity.
Collapse
|
|
24 |
297 |
23
|
Chen R, Lozano AM, Ashby P. Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings. Exp Brain Res 1999; 128:539-42. [PMID: 10541749 DOI: 10.1007/s002210050878] [Citation(s) in RCA: 288] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We investigated the nature of the silent period (SP) following transcranial magnetic stimulation by recording corticospinal volleys in a patient with implanted cervical epidural electrodes. Single suprathreshold test stimuli and paired stimuli at interstimulus intervals (ISIs) of 50-200 ms were delivered while the subject maintained a constant background contraction. The silent period duration from a single test stimulus was 357+/-62 ms. The test motor-evoked potentials were markedly reduced at all the ISIs tested. The I (indirect) waves induced by the test stimulus were largely unchanged at an ISI of 50 ms, suggesting that there was little change in motor cortex excitability. However, the corticospinal volleys, especially the late I waves, were substantially reduced at ISIs of 100 ms, 150 ms, and 200 ms. Our findings suggest that the early part of the SP is mainly due to spinal mechanisms, while the late part of the SP is related to reduced motor cortex excitability.
Collapse
|
Case Reports |
26 |
288 |
24
|
Muller GW, Chen R, Huang SY, Corral LG, Wong LM, Patterson RT, Chen Y, Kaplan G, Stirling DI. Amino-substituted thalidomide analogs: potent inhibitors of TNF-alpha production. Bioorg Med Chem Lett 1999; 9:1625-30. [PMID: 10386948 DOI: 10.1016/s0960-894x(99)00250-4] [Citation(s) in RCA: 282] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Thalidomide, (1), is a known inhibitor of TNF-alpha release in LPS stimulated human PBMC. Herein we describe the TNF-alpha inhibitory activity of amino substituted analogs of thalidomide (1) and its isoindolin-1-one analog, EM-12 (2). The 4-amino substituted analogs were found to be potent inhibitors of TNF-alpha release in LPS stimulated human PBMC.
Collapse
|
|
26 |
282 |
25
|
Schatz IJ, Masaki K, Yano K, Chen R, Rodriguez BL, Curb JD. Cholesterol and all-cause mortality in elderly people from the Honolulu Heart Program: a cohort study. Lancet 2001; 358:351-5. [PMID: 11502313 DOI: 10.1016/s0140-6736(01)05553-2] [Citation(s) in RCA: 278] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND A generally held belief is that cholesterol concentrations should be kept low to lessen the risk of cardiovascular disease. However, studies of the relation between serum cholesterol and all-cause mortality in elderly people have shown contrasting results. To investigate these discrepancies, we did a longitudinal assessment of changes in both lipid and serum cholesterol concentrations over 20 years, and compared them with mortality. METHODS Lipid and serum cholesterol concentrations were measured in 3572 Japanese/American men (aged 71-93 years) as part of the Honolulu Heart Program. We compared changes in these concentrations over 20 years with all-cause mortality using three different Cox proportional hazards models. FINDINGS Mean cholesterol fell significantly with increasing age. Age-adjusted mortality rates were 68.3, 48.9, 41.1, and 43.3 for the first to fourth quartiles of cholesterol concentrations, respectively. Relative risks for mortality were 0.72 (95% CI 0.60-0.87), 0.60 (0.49-0.74), and 0.65 (0.53-0.80), in the second, third, and fourth quartiles, respectively, with quartile 1 as reference. A Cox proportional hazard model assessed changes in cholesterol concentrations between examinations three and four. Only the group with low cholesterol concentration at both examinations had a significant association with mortality (risk ratio 1.64, 95% CI 1.13-2.36). INTERPRETATION We have been unable to explain our results. These data cast doubt on the scientific justification for lowering cholesterol to very low concentrations (<4.65 mmol/L) in elderly people.
Collapse
|
|
24 |
278 |