1
|
Kanis JA, Cooper C, Rizzoli R, Reginster JY. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 2019; 30:3-44. [PMID: 30324412 PMCID: PMC7026233 DOI: 10.1007/s00198-018-4704-5] [Citation(s) in RCA: 1004] [Impact Index Per Article: 167.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/12/2018] [Indexed: 12/25/2022]
Abstract
Guidance is provided in a European setting on the assessment and treatment of postmenopausal women at risk from fractures due to osteoporosis. INTRODUCTION The International Osteoporosis Foundation and European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis published guidance for the diagnosis and management of osteoporosis in 2013. This manuscript updates these in a European setting. METHODS Systematic reviews were updated. RESULTS The following areas are reviewed: the role of bone mineral density measurement for the diagnosis of osteoporosis and assessment of fracture risk; general and pharmacological management of osteoporosis; monitoring of treatment; assessment of fracture risk; case-finding strategies; investigation of patients; health economics of treatment. The update includes new information on the evaluation of bone microstructure evaluation in facture risk assessment, the role of FRAX® and Fracture Liaison Services in secondary fracture prevention, long-term effects on fracture risk of dietary intakes, and increased fracture risk on stopping drug treatment. CONCLUSIONS A platform is provided on which specific guidelines can be developed for national use.
Collapse
|
Practice Guideline |
6 |
1004 |
2
|
Kanis JA, McCloskey EV, Johansson H, Cooper C, Rizzoli R, Reginster JY. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 2013; 24:23-57. [PMID: 23079689 PMCID: PMC3587294 DOI: 10.1007/s00198-012-2074-y] [Citation(s) in RCA: 907] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 06/25/2012] [Indexed: 12/12/2022]
Abstract
UNLABELLED Guidance is provided in a European setting on the assessment and treatment of postmenopausal women at risk of fractures due to osteoporosis. INTRODUCTION The International Osteoporosis Foundation and European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis published guidance for the diagnosis and management of osteoporosis in 2008. This manuscript updates these in a European setting. METHODS Systematic literature reviews. RESULTS The following areas are reviewed: the role of bone mineral density measurement for the diagnosis of osteoporosis and assessment of fracture risk, general and pharmacological management of osteoporosis, monitoring of treatment, assessment of fracture risk, case finding strategies, investigation of patients and health economics of treatment. CONCLUSIONS A platform is provided on which specific guidelines can be developed for national use.
Collapse
|
Practice Guideline |
12 |
907 |
3
|
Kanis JA, Burlet N, Cooper C, Delmas PD, Reginster JY, Borgstrom F, Rizzoli R. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 2008; 19:399-428. [PMID: 18266020 PMCID: PMC2613968 DOI: 10.1007/s00198-008-0560-z] [Citation(s) in RCA: 621] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 11/20/2007] [Indexed: 02/06/2023]
Abstract
UNLABELLED Guidance is provided in a European setting on the assessment and treatment of postmenopausal women with or at risk from osteoporosis. INTRODUCTION The European Foundation for Osteoporosis and Bone disease (subsequently the International Osteoporosis Foundation) published guidelines for the diagnosis and management of osteoporosis in 1997. This manuscript updates these in a European setting. METHODS The following areas are reviewed: the role of bone mineral density measurement for the diagnosis of osteoporosis and assessment of fracture risk; general and pharmacological management of osteoporosis; monitoring of treatment; assessment of fracture risk; case finding strategies; investigation of patients; health economics of treatment. RESULTS AND CONCLUSIONS A platform is provided on which specific guidelines can be developed for national use.
Collapse
|
Practice Guideline |
17 |
621 |
4
|
Bonjour JP, Theintz G, Buchs B, Slosman D, Rizzoli R. Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. J Clin Endocrinol Metab 1991; 73:555-63. [PMID: 1874933 DOI: 10.1210/jcem-73-3-555] [Citation(s) in RCA: 613] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Maximizing peak bone mass is advocated as a way to prevent osteoporosis. As a prerequisite to the elaboration of any preventive program aimed at maximizing peak bone mass, it is important to determine how the rate of skeletal growth at clinically relevant sites, such as lumbar spine and femoral neck, proceeds in relation to age and pubertal stages in both sexes. Bone mass was assessed in 207 healthy caucasian boys and girls, aged 9-18 yr. Bone mineral density (BMD; grams per cm2) and content (BMC; grams) were determined in lumbar spine (L2-L4), femoral neck (FN), and midfemoral shaft (FS), using dual energy x-ray absorptiometry. Bone variables were correlated with both chronological age and pubertal stage, and compared with young adult (20-35 yr) reference values. The main results are: 1) in males, compared to females, there was a marked age-related delay in L2-L4 BMD or BMC increase, but no delay was observed in relation to pubertal stages; 2) at the end of the rapid growth spurt, trends for higher mean values in males were observed for L2-L4 BMC, FN BMD, and particularly FS BMD, but no sex difference was observed for L2-L4 BMD; 3) in females, but not in males, a dramatic reduction in bone mass growth was observed after 15 yr of age, particularly for L2-L4 BMD/BMC and FN BMD. This sharp reduction occurred between the second and fourth years after menarche. In the 14- to 15-yr-old female group, BMD in L2-L4, FN, and FS corresponded to 99.2%, 105.1%, and 94.1%, respectively, and BMC in L2-L4 to 97.6% of the mean values recorded in 20- to 35-yr-old women. In conclusion, this cross-sectional study indicates that during pubertal development, major differences are observed in bone mass growth according to sex and skeletal site. Whereas in males bone mass at different skeletal sites continues to increase substantially between 15-18 yr, skeletal mass growth appears to dramatically slow down at the levels of both lumbar spine and FN at 15-16 yr of age in female adolescents. This suggests that the generally accepted notion that in both males and females bone mass continues to substantially accumulate at all skeletal sites until the fourth decade may not be a constant in human physiology.
Collapse
|
Comparative Study |
34 |
613 |
5
|
Abstract
Osteoporosis is a disease defined by decreased bone mass and alteration of microarchitecture which results in increased bone fragility and increased risk of fracture. The major complication of osteoporosis, i.e., fracture, is due to a lower bone strength. Thus, any treatment of osteoporosis implies an improvement in bone strength. Bone strength is determined by bone geometry, cortical thickness and porosity, trabecular bone morphology, and intrinsic properties of bony tissue. Bone strength is indirectly estimated by bone mineral density (BMD) using dual-energy X-ray absorptiometry (DXA). Since DXA-measured BMD accounts for 60-70% of the variation in bone strength, some important factors are not captured by DXA in the progression of osteoporosis and the effects of antiosteoporotic treatment. Geometry and trabecular microarchitecture have also to be taken into account. Thus, the assessment of intrinsic mechanical quality of bony tissue should provide a better understanding of the role of tissue quality in determining bone strength. The careful investigation of all the determinants of bone strength (bone tissue included) should be considered in the pathophysiology of osteoporosis and in the mechanisms of action of antiosteoporotic drugs.
Collapse
|
Review |
22 |
458 |
6
|
Aapro M, Abrahamsson PA, Body JJ, Coleman RE, Colomer R, Costa L, Crinò L, Dirix L, Gnant M, Gralow J, Hadji P, Hortobagyi GN, Jonat W, Lipton A, Monnier A, Paterson AHG, Rizzoli R, Saad F, Thürlimann B. Guidance on the use of bisphosphonates in solid tumours: recommendations of an international expert panel. Ann Oncol 2008; 19:420-32. [PMID: 17906299 DOI: 10.1093/annonc/mdm442] [Citation(s) in RCA: 383] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bisphosphonates (BP) prevent, reduce, and delay cancer-related skeletal complications in patients, and have substantially decreased the prevalence of such events since their introduction. Today, a broad range of BP with differences in potency, efficacy, dosing, and administration as well as approved indications is available. In addition, results of clinical trials investigating the efficacy of BP in cancer treatment-induced bone loss (CTIBL) have been recently published. The purpose of this paper is to review the current evidence on the use of BP in solid tumours and provide clinical recommendations. An interdisciplinary expert panel of clinical oncologists and of specialists in metabolic bone diseases assessed the widespread evidence and information on the efficacy of BP in the metastatic and nonmetastatic setting, as well as ongoing research on the adjuvant use of BP. Based on available evidence, the panel recommends amino-bisphosphonates for patients with metastatic bone disease from breast cancer and zoledronic acid for patients with other solid tumours as primary disease. Dosing of BP should follow approved indications with adjustments if necessary. While i.v. administration is most often preferable, oral administration (clodronate, IBA) may be considered for breast cancer patients who cannot or do not need to attend regular hospital care. Early-stage cancer patients at risk of developing CTIBL should be considered for preventative BP treatment. The strongest evidence in this setting is now available for ZOL. Overall, BP are well-tolerated, and most common adverse events are influenza-like syndrome, arthralgia, and when used orally, gastrointestinal symptoms. The dose of BP may need to be adapted to renal function and initial creatinine clearance calculation is mandatory according to the panel for use of any BP. Subsequent monitoring is recommended for ZOL and PAM, as described by the regulatory authority guidelines. Patients scheduled to receive BP (mainly every 3-4 weeks i.v.) should have a dental examination and be advised on appropriate measures for reducing the risk of jaw osteonecrosis. BP are well established as supportive therapy to reduce the frequency and severity of skeletal complications in patients with bone metastases from different cancers.
Collapse
|
|
17 |
383 |
7
|
Schürch MA, Rizzoli R, Slosman D, Vadas L, Vergnaud P, Bonjour JP. Protein supplements increase serum insulin-like growth factor-I levels and attenuate proximal femur bone loss in patients with recent hip fracture. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 1998; 128:801-9. [PMID: 9599191 DOI: 10.7326/0003-4819-128-10-199805150-00002] [Citation(s) in RCA: 364] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Elderly persons who have osteoporotic hip fracture are often undernourished, particularly with respect to protein. Protein malnutrition may contribute to the occurrence and outcome of hip fracture. OBJECTIVE To investigate whether oral protein supplements benefit bone metabolism in patients with recent hip fracture. DESIGN 6-month, randomized, double-blind, placebo-controlled trial with a 6-month post-treatment follow-up. SETTING University orthopedic ward. PATIENTS 82 patients (mean age, 80.7 +/- 7.4 years) with recent osteoporotic hip fracture. Patients received calcium supplementation, 550 mg/d, and one dose of vitamin D, 200,000 IU (at baseline). INTERVENTION Protein supplementation, 20 g/d, or isocaloric placebo (among controls). MEASUREMENTS Bone mineral density, biochemical markers of bone remodeling, calciotropic hormone levels, biochemically evaluated nutritional and immunologic status, and muscle strength were measured every 6 months. RESULTS Compared with controls, patients who received protein supplements had significantly greater increases in serum levels of insulin-like growth factor-I (85.6% +/- 14.8% and 34.1% +/- 7.2% at 6 months; difference, 51.5 percentage points [95% CI, 18.6 to 84.4 percentage points]; P = 0.003) and an attenuation of the decrease in proximal femur bone mineral density (-2.29% +/- 0.75% and -4.71% +/- 0.77% at 12 months; difference, 2.42 percentage points [CI, 0.26 to 4.59 percentage points]; P = 0.029). Seven and 13 new vertebral deformities were found among patients who received protein supplements and controls, respectively (P > 0.2). Median stay in rehabilitation wards was shorter for patients who received protein supplements than for controls (33 days [CI, 29 to 56 days] and 54 days [CI, 44 to 62 days]; difference, 21 days [CI, 4 to 25 days]; P = 0.018). CONCLUSION Protein repletion after hip fracture was associated with increased serum levels of insulin-like growth factor-I, attenuation of proximal femur bone loss, and shorter stay in rehabilitation hospitals.
Collapse
|
Clinical Trial |
27 |
364 |
8
|
Beaudart C, Dawson A, Shaw SC, Harvey NC, Kanis JA, Binkley N, Reginster JY, Chapurlat R, Chan DC, Bruyère O, Rizzoli R, Cooper C, Dennison EM. Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteoporos Int 2017; 28:1817-1833. [PMID: 28251287 PMCID: PMC5457808 DOI: 10.1007/s00198-017-3980-9] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/31/2017] [Indexed: 01/06/2023]
Abstract
UNLABELLED This systematic review summarizes the effect of combined exercise and nutrition intervention on muscle mass and muscle function. A total of 37 RCTs were identified. Results indicate that physical exercise has a positive impact on muscle mass and muscle function in subjects aged 65 years and older. However, any interactive effect of dietary supplementation appears to be limited. INTRODUCTION In 2013, Denison et al. conducted a systematic review including 17 randomized controlled trials (RCTs) to explore the effect of combined exercise and nutrition intervention to improve muscle mass, muscle strength, or physical performance in older people. They concluded that further studies were needed to provide evidence upon which public health and clinical recommendations could be based. The purpose of the present work was to update the prior systematic review and include studies published up to October 2015. METHODS Using the electronic databases MEDLINE and EMBASE, we identified RCTs which assessed the combined effect of exercise training and nutritional supplementation on muscle strength, muscle mass, or physical performance in subjects aged 60 years and over. Study selection and data extraction were performed by two independent reviewers. RESULTS The search strategy identified 21 additional RCTs giving a total of 37 RCTs. Studies were heterogeneous in terms of protocols for physical exercise and dietary supplementation (proteins, essential amino acids, creatine, β-hydroxy-β-methylbuthyrate, vitamin D, multi-nutrients, or other). In 79% of the studies (27/34 RCTs), muscle mass increased with exercise but an additional effect of nutrition was only found in 8 RCTs (23.5%). Muscle strength increased in 82.8% of the studies (29/35 RCTs) following exercise intervention, and dietary supplementation showed additional benefits in only a small number of studies (8/35 RCTS, 22.8%). Finally, the majority of studies showed an increase of physical performance following exercise intervention (26/28 RCTs, 92.8%) but interaction with nutrition supplementation was only found in 14.3% of these studies (4/28 RCTs). CONCLUSION Physical exercise has a positive impact on muscle mass and muscle function in healthy subjects aged 60 years and older. The biggest effect of exercise intervention, of any type, has been seen on physical performance (gait speed, chair rising test, balance, SPPB test, etc.). We observed huge variations in regard to the dietary supplementation protocols. Based on the included studies, mainly performed on well-nourished subjects, the interactive effect of dietary supplementation on muscle function appears limited.
Collapse
|
Review |
8 |
353 |
9
|
Kanis JA, Hans D, Cooper C, Baim S, Bilezikian JP, Binkley N, Cauley JA, Compston JE, Dawson-Hughes B, El-Hajj Fuleihan G, Johansson H, Leslie WD, Lewiecki EM, Luckey M, Oden A, Papapoulos SE, Poiana C, Rizzoli R, Wahl DA, McCloskey EV. Interpretation and use of FRAX in clinical practice. Osteoporos Int 2011; 22:2395-411. [PMID: 21779818 DOI: 10.1007/s00198-011-1713-z] [Citation(s) in RCA: 352] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 06/07/2011] [Indexed: 02/07/2023]
Abstract
UNLABELLED The introduction of the WHO FRAX® algorithms has facilitated the assessment of fracture risk on the basis of fracture probability. Its use in fracture risk prediction has strengths, but also limitations of which the clinician should be aware and are the focus of this review INTRODUCTION The International Osteoporosis Foundation (IOF) and the International Society for Clinical Densitometry (ISCD) appointed a joint Task Force to develop resource documents in order to make recommendations on how to improve FRAX and better inform clinicians who use FRAX. The Task Force met in November 2010 for 3 days to discuss these topics which form the focus of this review. METHODS This study reviews the resource documents and joint position statements of ISCD and IOF. RESULTS Details on the clinical risk factors currently used in FRAX are provided, and the reasons for the exclusion of others are provided. Recommendations are made for the development of surrogate models where country-specific FRAX models are not available. CONCLUSIONS The wish list of clinicians for the modulation of FRAX is large, but in many instances, these wishes cannot presently be fulfilled; however, an explanation and understanding of the reasons may be helpful in translating the information provided by FRAX into clinical practice.
Collapse
|
Review |
14 |
352 |
10
|
Bonjour JP, Carrie AL, Ferrari S, Clavien H, Slosman D, Theintz G, Rizzoli R. Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Invest 1997; 99:1287-94. [PMID: 9077538 PMCID: PMC507944 DOI: 10.1172/jci119287] [Citation(s) in RCA: 329] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
High calcium intake during childhood has been suggested to increase bone mass accrual, potentially resulting in a greater peak bone mass. Whether the effects of calcium supplementation on bone mass accrual vary from one skeletal region to another, and to what extent the level of spontaneous calcium intake may affect the magnitude of the response has, however, not yet been clearly established. In a double-blind, placebo-controlled study, 149 healthy prepubertal girls aged 7.9+/-0.1 yr (mean+/-SEM) were either allocated two food products containing 850 mg of calcium (Ca-suppl.) or not (placebo) on a daily basis for 1 yr. Areal bone mineral density (BMD), bone mineral content (BMC), and bone size were determined at six sites by dual-energy x-ray absorptiometry. The difference in BMD gain between calcium-supplemented (Ca-suppl.) and placebo was greater at radial (metaphysis and diaphysis) and femoral (neck, trochanter, and diaphyses) sites (7-12 mg/cm2 per yr) than in the lumbar spine (2 mg/cm2 per yr). The difference in BMD gains between Ca-suppl. and placebo was greatest in girls with a spontaneous calcium intake below the median of 880 mg/d. The increase in mean BMD of the 6 sites in the low-calcium consumers was accompanied by increased gains in mean BMC, bone size, and statural height. These results suggest a possible positive effect of calcium supplementation on skeletal growth at that age. In conclusion, calcium-enriched foods significantly increased bone mass accrual in prepubertal girls, with a preferential effect in the appendicular skeleton, and greater benefit at lower spontaneous calcium intake.
Collapse
|
research-article |
28 |
329 |
11
|
Harvey NC, Glüer CC, Binkley N, McCloskey EV, Brandi ML, Cooper C, Kendler D, Lamy O, Laslop A, Camargos BM, Reginster JY, Rizzoli R, Kanis JA. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 2015; 78:216-24. [PMID: 25988660 PMCID: PMC4538791 DOI: 10.1016/j.bone.2015.05.016] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022]
Abstract
Trabecular bone score (TBS) is a recently-developed analytical tool that performs novel grey-level texture measurements on lumbar spine dual X-ray absorptiometry (DXA) images, and thereby captures information relating to trabecular microarchitecture. In order for TBS to usefully add to bone mineral density (BMD) and clinical risk factors in osteoporosis risk stratification, it must be independently associated with fracture risk, readily obtainable, and ideally, present a risk which is amenable to osteoporosis treatment. This paper summarizes a review of the scientific literature performed by a Working Group of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis. Low TBS is consistently associated with an increase in both prevalent and incident fractures that is partly independent of both clinical risk factors and areal BMD (aBMD) at the lumbar spine and proximal femur. More recently, TBS has been shown to have predictive value for fracture independent of fracture probabilities using the FRAX® algorithm. Although TBS changes with osteoporosis treatment, the magnitude is less than that of aBMD of the spine, and it is not clear how change in TBS relates to fracture risk reduction. TBS may also have a role in the assessment of fracture risk in some causes of secondary osteoporosis (e.g., diabetes, hyperparathyroidism and glucocorticoid-induced osteoporosis). In conclusion, there is a role for TBS in fracture risk assessment in combination with both aBMD and FRAX.
Collapse
|
Review |
10 |
319 |
12
|
Khan AA, Hanley DA, Rizzoli R, Bollerslev J, Young JEM, Rejnmark L, Thakker R, D'Amour P, Paul T, Van Uum S, Shrayyef MZ, Goltzman D, Kaiser S, Cusano NE, Bouillon R, Mosekilde L, Kung AW, Rao SD, Bhadada SK, Clarke BL, Liu J, Duh Q, Lewiecki EM, Bandeira F, Eastell R, Marcocci C, Silverberg SJ, Udelsman R, Davison KS, Potts JT, Brandi ML, Bilezikian JP. Primary hyperparathyroidism: review and recommendations on evaluation, diagnosis, and management. A Canadian and international consensus. Osteoporos Int 2017; 28:1-19. [PMID: 27613721 PMCID: PMC5206263 DOI: 10.1007/s00198-016-3716-2] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/20/2016] [Indexed: 01/02/2023]
Abstract
The purpose of this review is to assess the most recent evidence in the management of primary hyperparathyroidism (PHPT) and provide updated recommendations for its evaluation, diagnosis and treatment. A Medline search of "Hyperparathyroidism. Primary" was conducted and the literature with the highest levels of evidence were reviewed and used to formulate recommendations. PHPT is a common endocrine disorder usually discovered by routine biochemical screening. PHPT is defined as hypercalcemia with increased or inappropriately normal plasma parathyroid hormone (PTH). It is most commonly seen after the age of 50 years, with women predominating by three to fourfold. In countries with routine multichannel screening, PHPT is identified earlier and may be asymptomatic. Where biochemical testing is not routine, PHPT is more likely to present with skeletal complications, or nephrolithiasis. Parathyroidectomy (PTx) is indicated for those with symptomatic disease. For asymptomatic patients, recent guidelines have recommended criteria for surgery, however PTx can also be considered in those who do not meet criteria, and prefer surgery. Non-surgical therapies are available when surgery is not appropriate. This review presents the current state of the art in the diagnosis and management of PHPT and updates the Canadian Position paper on PHPT. An overview of the impact of PHPT on the skeleton and other target organs is presented with international consensus. Differences in the international presentation of this condition are also summarized.
Collapse
|
Review |
8 |
286 |
13
|
Balk EM, Adam GP, Langberg VN, Earley A, Clark P, Ebeling PR, Mithal A, Rizzoli R, Zerbini CAF, Pierroz DD, Dawson-Hughes B. Global dietary calcium intake among adults: a systematic review. Osteoporos Int 2017; 28:3315-3324. [PMID: 29026938 PMCID: PMC5684325 DOI: 10.1007/s00198-017-4230-x] [Citation(s) in RCA: 234] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/17/2017] [Indexed: 11/06/2022]
Abstract
Low calcium intake may adversely affect bone health in adults. Recognizing the presence of low calcium intake is necessary to develop national strategies to optimize intake. To highlight regions where calcium intake should be improved, we systematically searched for the most representative national dietary calcium intake data in adults from the general population in all countries. We searched 13 electronic databases and requested data from domain experts. Studies were double-screened for eligibility. Data were extracted into a standard form. We developed an interactive global map, categorizing countries based on average calcium intake and summarized differences in intake based on sex, age, and socioeconomic status. Searches yielded 9780 abstracts. Across the 74 countries with data, average national dietary calcium intake ranges from 175 to 1233 mg/day. Many countries in Asia have average dietary calcium intake less than 500 mg/day. Countries in Africa and South America mostly have low calcium intake between about 400 and 700 mg/day. Only Northern European countries have national calcium intake greater than 1000 mg/day. Survey data for three quarters of available countries were not nationally representative. Average calcium intake is generally lower in women than men, but there are no clear patterns across countries regarding relative calcium intake by age, sex, or socioeconomic status. The global calcium map reveals that many countries have low average calcium intake. But recent, nationally representative data are mostly lacking. This review draws attention to regions where measures to increase calcium intake are likely to have skeletal benefits.
Collapse
|
Review |
8 |
234 |
14
|
Chevalley T, Rizzoli R, Nydegger V, Slosman D, Rapin CH, Michel JP, Vasey H, Bonjour JP. Effects of calcium supplements on femoral bone mineral density and vertebral fracture rate in vitamin-D-replete elderly patients. Osteoporos Int 1994; 4:245-52. [PMID: 7812072 DOI: 10.1007/bf01623348] [Citation(s) in RCA: 227] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The efficacy of calcium (Ca) in reducing bone loss is debated. In a randomized placebo-controlled double-masked study, we investigated the effects of oral Ca supplements on femoral shaft (FS), femoral neck (FN) and lumbar spine (LS) bone mineral density (BMD), and on the incidence of vertebral fracture in vitamin-D-replete elderly. Ninety-three healthy subjects (72.1 +/- 0.6 years) were randomly allocated to three groups receiving 800 mg/day Ca in two different forms or a placebo for 18 months. Sixty-three patients (78.4 +/- 1.0 years) with a recent hip fracture were allocated to two groups receiving the two forms of Ca without placebo. FS BMD changes in Ca-supplemented non-fractured women were significantly different from those in the placebo group (+0.6 +/- 0.5% v -1.2 +/- 0.7%, p < 0.05). There was no difference in effect between the two forms of Ca. The changes of +0.7 +/- 0.8% v -1.7 +/- 1.6% in FN BMD of Ca-supplemented women and the placebo group did not reach statistical significance. In fractured patients, FS, FN and LS BMD changes were -1.3 +/- 0.8, +0.3 +/- 1.6 and +3.1 +/- 1.2% (p < 0.05 for the last). The rate of new vertebral fractures was 74.3 and 106.2 fractures per 1000 patient-years in Ca-supplemented non-fractured subjects and in the placebo group, respectively, and 144.0 in Ca-supplemented fractured patients. Thus, oral Ca supplements prevented a femoral BMD decrease and lowered vertebral fracture rate in the elderly.
Collapse
|
Clinical Trial |
31 |
227 |
15
|
Cooper C, Dere W, Evans W, Kanis JA, Rizzoli R, Sayer AA, Sieber CC, Kaufman JM, Abellan van Kan G, Boonen S, Adachi J, Mitlak B, Tsouderos Y, Rolland Y, Reginster JYL. Frailty and sarcopenia: definitions and outcome parameters. Osteoporos Int 2012; 23:1839-48. [PMID: 22290243 DOI: 10.1007/s00198-012-1913-1] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 12/13/2011] [Indexed: 12/15/2022]
Abstract
An operational definition of musculoskeletal decline in older people is needed to allow development of interventions for prevention or treatment, as was developed for the treatment of osteoporosis. Frailty and sarcopenia are linked, but distinct, correlates of musculoskeletal aging that have many causes, including age-related changes in body composition, inflammation, and hormonal imbalance. With the emergence of a number of exciting candidate therapies to retard the loss of muscle mass with aging, the derivation of a consensual definition of sarcopenia and physical frailty becomes an urgent priority. Although several consensual definitions have been proposed, these require clinical validation. An operational definition, which might provide a threshold for treatment/trial inclusion, should incorporate a loss of muscle mass as well as evidence of a decrease in muscle strength and/or physical activity. Evidence is required for a link between improvements in the measures of muscle strength and/or physical activity and clinical outcomes to allow development of interventions to improve clinical outcomes in frail older patients.
Collapse
|
Review |
13 |
222 |
16
|
Kanis JA, Harvey NC, McCloskey E, Bruyère O, Veronese N, Lorentzon M, Cooper C, Rizzoli R, Adib G, Al-Daghri N, Campusano C, Chandran M, Dawson-Hughes B, Javaid K, Jiwa F, Johansson H, Lee JK, Liu E, Messina D, Mkinsi O, Pinto D, Prieto-Alhambra D, Saag K, Xia W, Zakraoui L, Reginster JY. Algorithm for the management of patients at low, high and very high risk of osteoporotic fractures. Osteoporos Int 2020; 31:1-12. [PMID: 31720707 PMCID: PMC7018677 DOI: 10.1007/s00198-019-05176-3] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/18/2019] [Indexed: 01/26/2023]
Abstract
Guidance is provided in an international setting on the assessment and specific treatment of postmenopausal women at low, high and very high risk of fragility fractures. INTRODUCTION The International Osteoporosis Foundation and European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis published guidance for the diagnosis and management of osteoporosis in 2019. This manuscript seeks to apply this in an international setting, taking additional account of further categorisation of increased risk of fracture, which may inform choice of therapeutic approach. METHODS Clinical perspective and updated literature search. RESULTS The following areas are reviewed: categorisation of fracture risk and general pharmacological management of osteoporosis. CONCLUSIONS A platform is provided on which specific guidelines can be developed for national use to characterise fracture risk and direct interventions.
Collapse
|
research-article |
5 |
217 |
17
|
Kanis JA, Black D, Cooper C, Dargent P, Dawson-Hughes B, De Laet C, Delmas P, Eisman J, Johnell O, Jonsson B, Melton L, Oden A, Papapoulos S, Pols H, Rizzoli R, Silman A, Tenenhouse A. A new approach to the development of assessment guidelines for osteoporosis. Osteoporos Int 2002; 13:527-36. [PMID: 12111012 DOI: 10.1007/s001980200069] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
|
23 |
217 |
18
|
Lotz M, Martel-Pelletier J, Christiansen C, Brandi ML, Bruyère O, Chapurlat R, Collette J, Cooper C, Giacovelli G, Kanis JA, Karsdal MA, Kraus V, Lems WF, Meulenbelt I, Pelletier JP, Raynauld JP, Reiter-Niesert S, Rizzoli R, Sandell LJ, Van Spil WE, Reginster JY. Value of biomarkers in osteoarthritis: current status and perspectives. Ann Rheum Dis 2013; 72:1756-63. [PMID: 23897772 PMCID: PMC3812859 DOI: 10.1136/annrheumdis-2013-203726] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/24/2013] [Accepted: 06/28/2013] [Indexed: 12/17/2022]
Abstract
Osteoarthritis affects the whole joint structure with progressive changes in cartilage, menisci, ligaments and subchondral bone, and synovial inflammation. Biomarkers are being developed to quantify joint remodelling and disease progression. This article was prepared following a working meeting of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis convened to discuss the value of biochemical markers of matrix metabolism in drug development in osteoarthritis. The best candidates are generally molecules or molecular fragments present in cartilage, bone or synovium and may be specific to one type of joint tissue or common to them all. Many currently investigated biomarkers are associated with collagen metabolism in cartilage or bone, or aggrecan metabolism in cartilage. Other biomarkers are related to non-collagenous proteins, inflammation and/or fibrosis. Biomarkers in osteoarthritis can be categorised using the burden of disease, investigative, prognostic, efficacy of intervention, diagnostic and safety classification. There are a number of promising candidates, notably urinary C-terminal telopeptide of collagen type II and serum cartilage oligomeric protein, although none is sufficiently discriminating to differentiate between individual patients and controls (diagnostic) or between patients with different disease severities (burden of disease), predict prognosis in individuals with or without osteoarthritis (prognostic) or perform so consistently that it could function as a surrogate outcome in clinical trials (efficacy of intervention). Future avenues for research include exploration of underlying mechanisms of disease and development of new biomarkers; technological development; the 'omics' (genomics, metabolomics, proteomics and lipidomics); design of aggregate scores combining a panel of biomarkers and/or imaging markers into single diagnostic algorithms; and investigation into the relationship between biomarkers and prognosis.
Collapse
|
Consensus Development Conference |
12 |
210 |
19
|
Ammann P, Rizzoli R, Bonjour JP, Bourrin S, Meyer JM, Vassalli P, Garcia I. Transgenic mice expressing soluble tumor necrosis factor-receptor are protected against bone loss caused by estrogen deficiency. J Clin Invest 1997; 99:1699-703. [PMID: 9120014 PMCID: PMC507990 DOI: 10.1172/jci119333] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To evaluate the role of tumor necrosis factor (TNF alpha) in bone loss resulting from estrogen deficiency, the effects of ovariectomy were explored in six-month-old transgenic mice expressing high blood levels of a soluble TNF receptor type I (sTNFR1)-FcIgG3 fusion protein, which neutralizes TNF alpha, and in their nontransgenic littermates used as controls. These transgenic mice were identical to control mice in bone mass (evaluated by bone mineral density and content) and strength. 12 weeks after ovariectomy, the decrease in bone mass and increase in osteocalcin (marker of bone turnover) found in control mice were not observed in transgenic mice, which were not different from sham-operated mice, transgenic or not. This observation suggests a critical role for TNF alpha in the pathogenesis of bone loss induced by estrogen deficiency, a common cause of morbidity in postmenopausal women.
Collapse
|
research-article |
28 |
208 |
20
|
Bischoff-Ferrari HA, Orav JE, Kanis JA, Rizzoli R, Schlögl M, Staehelin HB, Willett WC, Dawson-Hughes B. Comparative performance of current definitions of sarcopenia against the prospective incidence of falls among community-dwelling seniors age 65 and older. Osteoporos Int 2015; 26:2793-802. [PMID: 26068298 DOI: 10.1007/s00198-015-3194-y] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/27/2015] [Indexed: 01/13/2023]
Abstract
UNLABELLED In this study, we compare the extent to which seven available definitions of sarcopenia and two related definitions predict the rate of falling. Our results suggest that the definitions of Baumgartner and Cruz-Jentoft best predict the rate of falls among sarcopenic versus non-sarcopenic community-dwelling seniors. INTRODUCTION The purpose of the study is to compare the extent to which seven available definitions of sarcopenia and two related definitions predict the prospective rate of falling. METHODS We studied a cohort of 445 seniors (mean age 71 years, 45 % men) living in the community who were followed with a detailed fall assessment for 3 years. For comparing the rate of falls in sarcopenic versus non-sarcopenic individuals, we used multivariate Poisson regression analyses adjusting for gender and treatment (original intervention tested vitamin D plus calcium against placebo). Of the seven available definitions, three were based on low lean mass alone (Baumgartner, Delmonico 1 and 2) and four required both low muscle mass and decreased performance in a functional test (Fielding, Cruz-Jentoft, Morley, Muscaritoli). The two related definitions were based on low lean mass alone (Studenski 1) and low lean mass contributing to weakness (Studenski 2). RESULTS Among 445 participants, 231 fell, sustaining 514 falls over the 3-year follow-up. The prospective rate of falls in sarcopenic versus non-sarcopenic individuals was best predicted by the Baumgartner definition based on low lean mass alone (RR = 1.54; 95 % CI 1.09-2.18) with 11 % prevalence of sarcopenia and the Cruz-Jentoft definition based on low lean mass plus decreased functional performance (RR = 1.82; 95 % CI 1.24-2.69) with 7.1 % prevalence of sarcopenia. Consistently, fall rate was non-significantly higher in sarcopenic versus non-sarcopenic individuals based on the definitions of Delmonico 1, Fielding, and Morley. CONCLUSION Among the definitions investigated, the Baumgartner definition and the Cruz-Jentoft definition had the highest validity for predicting the rate of falls.
Collapse
|
Comparative Study |
10 |
201 |
21
|
Rizzoli R, Boonen S, Brandi ML, Bruyère O, Cooper C, Kanis JA, Kaufman JM, Ringe JD, Weryha G, Reginster JY. Vitamin D supplementation in elderly or postmenopausal women: a 2013 update of the 2008 recommendations from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Curr Med Res Opin 2013; 29:305-13. [PMID: 23320612 DOI: 10.1185/03007995.2013.766162] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Vitamin D insufficiency has deleterious consequences on health outcomes. In elderly or postmenopausal women, it may exacerbate osteoporosis. SCOPE There is currently no clear consensus on definitions of vitamin D insufficiency or minimal targets for vitamin D concentrations and proposed targets vary with the population. In view of the potential confusion for practitioners on when to treat and what to achieve, the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) convened a meeting to provide recommendations for clinical practice, to ensure the optimal management of elderly and postmenopausal women with regard to vitamin D supplementation. FINDINGS Vitamin D has both skeletal and extra-skeletal benefits. Patients with serum 25-hydroxyvitamin D (25-(OH)D) levels <50 nmol/L have increased bone turnover, bone loss, and possibly mineralization defects compared with patients with levels >50 nmol/L. Similar relationships have been reported for frailty, nonvertebral and hip fracture, and all-cause mortality, with poorer outcomes at <50 nmol/L. CONCLUSION The ESCEO recommends that 50 nmol/L (i.e. 20 ng/mL) should be the minimal serum 25-(OH)D concentration at the population level and in patients with osteoporosis to ensure optimal bone health. Below this threshold, supplementation is recommended at 800 to 1000 IU/day. Vitamin D supplementation is safe up to 10,000 IU/day (upper limit of safety) resulting in an upper limit of adequacy of 125 nmol/L 25-(OH)D. Daily consumption of calcium- and vitamin-D-fortified food products (e.g. yoghurt or milk) can help improve vitamin D intake. Above the threshold of 50 nmol/L, there is no clear evidence for additional benefits of supplementation. On the other hand, in fragile elderly subjects who are at elevated risk for falls and fracture, the ESCEO recommends a minimal serum 25-(OH)D level of 75 nmol/L (i.e. 30 ng/mL), for the greatest impact on fracture.
Collapse
|
Consensus Development Conference |
12 |
199 |
22
|
Ferrari S, Rizzoli R, Chevalley T, Slosman D, Eisman JA, Bonjour JP. Vitamin-D-receptor-gene polymorphisms and change in lumbar-spine bone mineral density. Lancet 1995; 345:423-4. [PMID: 7853953 DOI: 10.1016/s0140-6736(95)90404-2] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Common vitamin-D-receptor (VDR) gene allelic variants predict bone mineral density. We analysed VDR alleles and rate of change of lumbar-spine bone mineral density over 18 months in 72 elderly subjects. 9 BB homozygotes lost bone mineral density but 26 homozygotes for the alternative genotype (bb) did not (mean change -2.3 [SE 1.0] vs 0.9 [0.7]% per year, p < 0.05), irrespective of calcium intake. Among 37 heterozygotes (Bb), however, change in bone mineral density correlated with calcium intake (r = 0.35, p < 0.03). This association between a genetic marker and rate of bone loss in the elderly suggests that the effect of calcium intake on maintenance of bone mass could relate to VDR gene polymorphisms.
Collapse
|
|
30 |
194 |
23
|
Mithal A, Bonjour JP, Boonen S, Burckhardt P, Degens H, El Hajj Fuleihan G, Josse R, Lips P, Morales Torres J, Rizzoli R, Yoshimura N, Wahl DA, Cooper C, Dawson-Hughes B. Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporos Int 2013; 24:1555-66. [PMID: 23247327 DOI: 10.1007/s00198-012-2236-y] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 09/20/2012] [Indexed: 12/25/2022]
Abstract
Muscle strength plays an important role in determining risk for falls, which result in fractures and other injuries. While bone loss has long been recognized as an inevitable consequence of aging, sarcopenia-the gradual loss of skeletal muscle mass and strength that occurs with advancing age-has recently received increased attention. A review of the literature was undertaken to identify nutritional factors that contribute to loss of muscle mass. The role of protein, acid-base balance, vitamin D/calcium, and other minor nutrients like B vitamins was reviewed. Muscle wasting is a multifactorial process involving intrinsic and extrinsic alterations. A loss of fast twitch fibers, glycation of proteins, and insulin resistance may play an important role in the loss of muscle strength and development of sarcopenia. Protein intake plays an integral part in muscle health and an intake of 1.0-1.2 g/kg of body weight per day is probably optimal for older adults. There is a moderate [corrected] relationship between vitamin D status and muscle strength. Chronic ingestion of acid-producing diets appears to have a negative impact on muscle performance, and decreases in vitamin B12 and folic acid intake may also impair muscle function through their action on homocysteine. An adequate nutritional intake and an optimal dietary acid-base balance are important elements of any strategy to preserve muscle mass and strength during aging.
Collapse
|
Review |
12 |
191 |
24
|
Abstract
Peak bone mass, which can be defined as the amount of bony tissue present at the end of the skeletal maturation, is an important determinant of osteoporotic fracture risk. Measurement of bone mass development. The bone mass of a given part of the skeleton is directly dependent upon both its volume or size and the density of the mineralized tissue contained within the periosteal envelope. The techniques of single-1 and dural-energy photon or X-ray absorptiometry measure the so-called 'areal' or 'surface' bone mineral density (BMD), a variable which has been shown to be directly related to bone strength. Bone mass gain during puberty. During puberty the gender difference in bone mass becomes expressed. This difference appears to be essentially due to a more prolonged bone maturation period in males than in females, with a larger increase in bone size and cortical thickness. Puberty affects bone size much more than the volumetric mineral density. There is no significant sex difference in the volumetric trabecular density at the end of pubertal maturation. During puberty, the accumulation rate in areal BMD at both the lumbar spine and femoral neck levels increases to four- to sixfold over a 3- and 4-year period in females and males, respectively. Change in bone mass accumulation rate is less marked in long bone diaphyses. There is an asynchrony between the gain in statural height and bone mass growth. This phenomenon may be responsible for the occurrence of a transient period of a relative increase in bone fragility that may account for the pattern of fracture incidence during adolescence.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
Review |
31 |
179 |
25
|
Giustina A, Adler RA, Binkley N, Bollerslev J, Bouillon R, Dawson-Hughes B, Ebeling PR, Feldman D, Formenti AM, Lazaretti-Castro M, Marcocci C, Rizzoli R, Sempos CT, Bilezikian JP. Consensus statement from 2 nd International Conference on Controversies in Vitamin D. Rev Endocr Metab Disord 2020; 21:89-116. [PMID: 32180081 PMCID: PMC7113202 DOI: 10.1007/s11154-019-09532-w] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The 2nd International Conference on Controversies in Vitamin D was held in Monteriggioni (Siena), Italy, September 11-14, 2018. The aim of this meeting was to address ongoing controversies and timely topics in vitamin D research, to review available data related to these topics and controversies, to promote discussion to help resolve lingering issues and ultimately to suggest a research agenda to clarify areas of uncertainty. Several issues from the first conference, held in 2017, were revisited, such as assays used to determine serum 25-hydroxyvitamin D [25(OH)D] concentration, which remains a critical and controversial issue for defining vitamin D status. Definitions of vitamin D nutritional status (i.e. sufficiency, insufficiency and deficiency) were also revisited. New areas were reviewed, including vitamin D threshold values and how they should be defined in the context of specific diseases, sources of vitamin D and risk factors associated with vitamin D deficiency. Non-skeletal aspects related to vitamin D were also discussed, including the reproductive system, neurology, chronic kidney disease and falls. The therapeutic role of vitamin D and findings from recent clinical trials were also addressed. The topics were considered by 3 focus groups and divided into three main areas: 1) "Laboratory": assays and threshold values to define vitamin D status; 2) "Clinical": sources of vitamin D and risk factors and role of vitamin D in non-skeletal disease and 3) "Therapeutics": controversial issues on observational studies and recent randomized controlled trials. In this report, we present a summary of our findings.
Collapse
|
Consensus Development Conference |
5 |
173 |