1
|
Koban I, Holtfreter B, Hübner NO, Matthes R, Sietmann R, Kindel E, Weltmann KD, Welk A, Kramer A, Kocher T. Antimicrobial efficacy of non-thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro - proof of principle experiment. J Clin Periodontol 2011; 38:956-65. [PMID: 21762196 DOI: 10.1111/j.1600-051x.2011.01740.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM Dental biofilms play a major role in the pathogenesis of peri-implant mucositis. Biofilm reduction is a pre-requisite for a successful therapy of peri-implant mucosal lesions. In this study, we evaluated the effect of three different plasma devices on the reduction of Streptococcus mutans (S. mutans) and multispecies human saliva biofilms. MATERIAL AND METHODS We assessed the efficacy of three different non-thermal atmospheric pressure plasma devices against biofilms of S. mutans and saliva multispecies grown on titanium discs in vitro in comparison with a chlorhexidine digluconate (CHX) rinse. Efficacy of plasma treatment was determined by the number of colony forming units (CFU) and by scanning electron microscopy. The results were reported as reduction of CFU (CFU(untreated) -CFU(treated) ). RESULTS The application of plasma was much more effective than CHX against biofilms. The maximum reduction of CHX was 3.36 for S. mutans biofilm and 1.50 for saliva biofilm, whereas the colony forming units (CFU) reduction of the volume dielectric barrier discharge argon plasma was 5.38 for S. mutans biofilm and 5.67 for saliva biofilm. CONCLUSIONS Treatment of single- and multispecies dental biofilms on titanium discs with non-thermal atmospheric pressure plasma was more efficient than CHX application in vitro. Thus, the development of plasma devices for the treatment of peri-implant mucositis may be fruitful.
Collapse
|
Journal Article |
14 |
80 |
2
|
Maass S, Sievers S, Zühlke D, Kuzinski J, Sappa PK, Muntel J, Hessling B, Bernhardt J, Sietmann R, Völker U, Hecker M, Becher D. Efficient, global-scale quantification of absolute protein amounts by integration of targeted mass spectrometry and two-dimensional gel-based proteomics. Anal Chem 2011; 83:2677-84. [PMID: 21395229 DOI: 10.1021/ac1031836] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Knowledge on absolute protein concentrations is mandatory for the simulation of biological processes in the context of systems biology. A novel approach for the absolute quantification of proteins at a global scale has been developed and its applicability demonstrated using glucose starvation of the Gram-positive model bacterium Bacillus subtilis and the pathogen Staphylococcus aureus as proof-of-principle examples. Absolute intracellular protein concentrations were initially determined for a preselected set of anchor proteins by employing a targeted mass spectrometric method and isotopically labeled internal standard peptides. Known concentrations of these anchor proteins were then used to calibrate two-dimensional (2-D) gels allowing the calculation of absolute abundance of all detectable proteins on the 2-D gels. Using this approach, concentrations of the majority of metabolic enzymes were determined, and thus a quantification of the players of metabolism was achieved. This new strategy is fast, cost-effective, applicable to any cell type, and thus of value for a broad community of laboratories with experience in 2-D gel-based proteomics and interest in quantitative approaches. Particularly, this approach could also be utilized to quantify existing data sets with the aid of a few standard anchor proteins.
Collapse
|
Research Support, Non-U.S. Gov't |
14 |
77 |
3
|
Tam LT, Eymann C, Albrecht D, Sietmann R, Schauer F, Hecker M, Antelmann H. Differential gene expression in response to phenol and catechol reveals different metabolic activities for the degradation of aromatic compounds in Bacillus subtilis. Environ Microbiol 2006; 8:1408-27. [PMID: 16872404 DOI: 10.1111/j.1462-2920.2006.01034.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aromatic organic compounds that are present in the environment can have toxic effects or provide carbon sources for bacteria. We report here the global response of Bacillus subtilis 168 to phenol and catechol using proteome and transcriptome analyses. Phenol induced the HrcA, sigmaB and CtsR heat-shock regulons as well as the Spx disulfide stress regulon. Catechol caused the activation of the HrcA and CtsR heat-shock regulons and a thiol-specific oxidative stress response involving the Spx, PerR and FurR regulons but no induction of the sigmaB regulon. The most surprising result was that several catabolite-controlled genes are derepressed by catechol, even if glucose is taken up under these conditions. This derepression of the carbon catabolite control was dependent on the glucose concentration in the medium, as glucose excess increased the derepression of the CcpA-dependent lichenin utilization licBCAH operon and the ribose metabolism rbsRKDACB operon by catechol. Growth and viability experiments with catechol as sole carbon source suggested that B. subtilis is not able to utilize catechol as a carbon-energy source. In addition, the microarray results revealed the very strong induction of the yfiDE operon by catechol of which the yfiE gene shares similarities to glyoxalases/bleomycin resistance proteins/extradiol dioxygenases. Using recombinant His6-YfiE(Bs) we demonstrate that YfiE shows catechol-2,3-dioxygenase activity in the presence of catechol as the metabolite 2-hydroxymuconic semialdehyde was measured. Furthermore, both genes of the yfiDE operon are essential for the growth and viability of B. subtilis in the presence of catechol. Thus, our studies revealed that the catechol-2,3-dioxygenase YfiE is the key enzyme of a meta cleavage pathway in B. subtilis involved in the catabolism of catechol.
Collapse
|
|
19 |
74 |
4
|
Kunert KS, Blum M, Duncker GIW, Sietmann R, Heichel J. Surface quality of human corneal lenticules after femtosecond laser surgery for myopia comparing different laser parameters. Graefes Arch Clin Exp Ophthalmol 2011; 249:1417-24. [DOI: 10.1007/s00417-010-1578-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 11/09/2010] [Accepted: 11/15/2010] [Indexed: 11/25/2022] Open
|
|
14 |
49 |
5
|
Winter T, Winter J, Polak M, Kusch K, Mäder U, Sietmann R, Ehlbeck J, van Hijum S, Weltmann KD, Hecker M, Kusch H. Characterization of the global impact of low temperature gas plasma on vegetative microorganisms. Proteomics 2011; 11:3518-30. [DOI: 10.1002/pmic.201000637] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 04/29/2011] [Accepted: 06/08/2011] [Indexed: 01/19/2023]
|
|
14 |
36 |
6
|
Liu Y, Harnisch F, Fricke K, Sietmann R, Schröder U. Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure. Biosens Bioelectron 2008; 24:1018-25. [PMID: 18804995 PMCID: PMC7126046 DOI: 10.1016/j.bios.2008.08.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 11/21/2022]
Abstract
The increasing threats of viral diseases have gained worldwide attention in recent years. Quite a few infectious diseases are still lacking effective prevention or treatment. The pace of developing antiviral agents could be expedited by the availability of quick and efficient drug screening platforms. In this study, quantum dot (QD), an emerging probe for biological imaging and medical diagnostics, was employed to form complexes with virus and used as fluorescent imaging probes for exploring potential antiviral therapeutics. Inorganic CdSe/ZnS QDs synthesized in organic phase were encapsulated by amphiphilic alginate to attain biocompatible water-soluble QDs via phase transfer. Virus employed for this study was dengue virus which is a notorious one in tropical and subtropical regions of the world. To construct a QD–virus imaging modality capable of providing meaningful information, preservation of viral infectivity after tagging virus with QDs is of utmost importance. In order to form colloidal complexes of QD–virus, electrostatic repulsion force generated from both negatively charged virus and QDs was neutralized by various concentrations of cationic polybrene. Results showed that BHK-21 cells infected with dengue viruses incorporated with QDs exhibited bright fluorescence intracellularly within 30 min. To demonstrate the potency of QD–virus complexes as bioprobes for screening antiviral agents, BHK-21 cells were incubated for one hour with allophycocyanin purified from blue-green algae and then infected with QD–virus complexes. Based on the developed cell-based imaging assay, allophycocyanin with concentration of 125 μg/mL led to extremely weak intracellular fluorescence post-infection of QD–virus complexes for 30 min. That is, the efficacy of anti-dengue viral activity of the algae extract was clearly illustrated by the inorganic–organic hybrid platform constructed in current study.
Collapse
|
Research Support, Non-U.S. Gov't |
17 |
33 |
7
|
Heichel J, Blum M, Duncker GIW, Sietmann R, Kunert KS. Surface Quality of Porcine Corneal Lenticules after Femtosecond Lenticule Extraction. Ophthalmic Res 2011; 46:107-12. [PMID: 21311205 DOI: 10.1159/000323814] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 12/23/2010] [Indexed: 11/19/2022]
|
|
14 |
31 |
8
|
Sietmann R, Gesell M, Hammer E, Schauer F. Oxidative ring cleavage of low chlorinated biphenyl derivatives by fungi leads to the formation of chlorinated lactone derivatives. CHEMOSPHERE 2006; 64:672-85. [PMID: 16352329 DOI: 10.1016/j.chemosphere.2005.10.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 10/19/2005] [Accepted: 10/27/2005] [Indexed: 05/05/2023]
Abstract
The yeast Trichosporon mucoides and the filamentous fungus Paecilomyces lilacinus as biphenyl oxidizing organisms are able to oxidize chlorinated biphenyl derivatives. Initial oxidation of derivatives chlorinated at C4 position started at the non-halogenated ring and went on up to ring cleavage. The products formed were mono- and dihydroxylated 4-chlorobiphenyls, muconic acid derivatives 2-hydroxy-4-(4-chlorophenyl)-muconic acid and 2-hydroxy-5-(4-chlorophenyl)-muconic acid as well as the corresponding lactones 4-(4-chlorophenyl)-2-pyrone-6-carboxylic acid and 3-(4-chlorophenyl)-2-pyrone-6-carboxylic acid. Altogether T. mucoides formed 12 products and P. lilacinus accumulated five products. Whereas the rate of the first oxidation step at 4-chlorobiphenyl seems to be diminished by the decreased bioavailability of the compound, no considerable differences were observed between the degradation of 4-chloro-4'-hydroxybiphenyl and 4-hydroxybiphenyl. Twofold chlorinated biphenyl derivatives did not serve as substrates for oxidation by either organism with the exception of 2,2'-dichlorobiphenyl, transformed by the yeast Trichosporon mucoides to two monohydroxylated derivatives. The results show, that soil fungi may contribute to the aerobic degradation of low chlorinated biphenyls accumulating from anaerobic dehalogenation of PCB by bacteria.
Collapse
|
|
19 |
26 |
9
|
Sietmann R, Hammer E, Moody J, Cerniglia CE, Schauer F. Hydroxylation of biphenyl by the yeast Trichosporon mucoides. Arch Microbiol 2000; 174:353-61. [PMID: 11131026 DOI: 10.1007/s002030000219] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hydroxylation of biphenyl by the dibenzofuran-degrading yeast Trichosporon mucoides SBUG 801 was studied. Glucose-grown cells degraded 40% of the biphenyl added within the first 24 h of incubation. The first step in the biotransformation pathway was the monohydroxylation of the biaryl compound to produce 2-, 3-, and 4-hydroxybiphenyl. Further oxidation produced seven dihydroxylated intermediates; the second hydroxyl group was added either on the aromatic ring already hydroxylated or on the second ring. Of all metabolites, 2,5-dihydroxybiphenyl accumulated in the supernatant in the highest concentration. The initial hydroxylation favors the 4-position to produce 4-hydroxybiphenyl, which is subsequently hydroxylated to form 3,4-dihydroxybiphenyl. When biphenyl was replaced as a substrate by 4-hydroxybiphenyl, further hydroxylation of the intermediate 3,4-dihydroxybiphenyl resulted in 3,4,4'-trihydroxybiphenyl. Incubation of T. mucoides with biphenyl and 18O2 indicated a monooxygenase-catalyzed reaction in the oxidation of biphenyl. The hydroxylation was inhibited by 1-aminobenzotriazole and metyrapone, known cytochrome P450 inhibitors. These results are very similar to those observed in the biotransformation of biphenyl in mammals.
Collapse
|
|
25 |
21 |
10
|
Sietmann R, Hammer E, Specht M, Cerniglia CE, Schauer F. Novel ring cleavage products in the biotransformation of biphenyl by the yeast Trichosporon mucoides. Appl Environ Microbiol 2001; 67:4158-65. [PMID: 11526019 PMCID: PMC93143 DOI: 10.1128/aem.67.9.4158-4165.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Trichosporon mucoides, grown on either glucose or phenol, was able to transform biphenyl into a variety of mono-, di-, and trihydroxylated derivatives hydroxylated on one or both aromatic rings. While some of these products accumulated in the supernatant as dead end products, the ortho-substituted dihydroxylated biphenyls were substrates for further oxidation and ring fission. These ring fission products were identified by high-performance liquid chromatography, gas chromatography-mass spectrometry, and nuclear magnetic resonance analyses as phenyl derivatives of hydroxymuconic acids and the corresponding pyrones. Seven novel products out of eight resulted from the oxidation and ring fission of 3,4-dihydroxybiphenyl. Using this compound as a substrate, 2-hydroxy-4-phenylmuconic acid, (5-oxo-3-phenyl-2,5-dihydrofuran-2-yl)acetic acid, and 3-phenyl-2-pyrone-6-carboxylic acid were identified. Ring cleavage of 3,4,4'-trihydroxybiphenyl resulted in the formation of [5-oxo-3-(4'-hydroxyphenyl)-2,5-dihydrofuran-2-yl]acetic acid, 4-(4'-hydroxyphenyl)-2-pyrone-6-carboxylic acid, and 3-(4'-hydroxyphenyl)-2-pyrone-6-carboxylic acid. 2,3,4-trihydroxybiphenyl was oxidized to 2-hydroxy-5-phenylmuconic acid, and 4-phenyl-2-pyrone-6-carboxylic acid was the transformation product of 3,4,5-trihydroxybiphenyl. All these ring fission products were considerably less toxic than the hydroxylated derivatives.
Collapse
|
research-article |
24 |
19 |
11
|
Rändler C, Matthes R, McBain AJ, Giese B, Fraunholz M, Sietmann R, Kohlmann T, Hübner NO, Kramer A. A three-phase in-vitro system for studying Pseudomonas aeruginosa adhesion and biofilm formation upon hydrogel contact lenses. BMC Microbiol 2010; 10:282. [PMID: 21062489 PMCID: PMC2997771 DOI: 10.1186/1471-2180-10-282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 11/09/2010] [Indexed: 11/24/2022] Open
Abstract
Background Pseudomonas aeruginosa is commonly associated with contact lens (CL) -related eye infections, for which bacterial adhesion and biofilm formation upon hydrogel CLs is a specific risk factor. Whilst P. aeruginosa has been widely used as a model organism for initial biofilm formation on CLs, in-vitro models that closely reproduce in-vivo conditions have rarely been presented. Results In the current investigation, a novel in-vitro biofilm model for studying the adherence of P. aeruginosa to hydrogel CLs was established. Nutritional and interfacial conditions similar to those in the eye of a CL wearer were created through the involvement of a solid:liquid and a solid:air interface, shear forces and a complex artificial tear fluid. Bioburdens varied depending on the CL material and biofilm maturation occurred after 72 h incubation. Whilst a range of biofilm morphologies were visualised including dispersed and adherent bacterial cells, aggregates and colonies embedded in extracellular polymer substances (EPS), EPS fibres, mushroom-like formations, and crystalline structures, a compact and heterogeneous biofilm morphology predominated on all CL materials. Conclusions In order to better understand the process of biofilm formation on CLs and to test the efficacy of CL care solutions, representative in-vitro biofilm models are required. Here, we present a three-phase biofilm model that simulates the environment in the eye of a CL wearer and thus generates biofilms which resemble those commonly observed in-situ.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
16 |
12
|
Sietmann R, Hammer E, Schauer F. Biotransformation of biarylic compounds by yeasts of the genus trichosporon. Syst Appl Microbiol 2002; 25:332-9. [PMID: 12421071 DOI: 10.1078/0723-2020-00131] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The biotransformation of biphenyl, dibenzofuran, and diphenyl ether by 24 strains belonging to 18 species of the genus Trichosporon was investigated to assess the taxonomic relevance of this property at species and genus level. With the exceptions of T. brassicae and T. porosum CBS 2040, all other strains were able to transform the parent compounds to monohydroxylated intermediates. A second hydroxylation on the same aromatic ring was carried out by fewer strains and depended on the substrate. It appears that this step is the rate-limiting one in the biotransformation of the biarylic compounds tested. Ring fission of dihydroxylated derivatives of biphenyl was observed within 12 species. The aromatic ring system of dihydroxylated dibenzofuran was cleaved by strains of 5 species, while strains of 13 species were able to cleave the aromatic ring system of dihydroxylated diphenyl ether. Only 4 strains out of 18 species were able to cleave the aromatic ring system of all three parent compounds. These most active yeasts belong to the species T. coremiiforme, T. montevideense, T. mucoides, and T. sporotrichoides. In addition, strains of the species Cryptococcus curvatus and Cryptococcus humicola, closely related to the genus Trichosporon, were tested in parallel.
Collapse
|
|
23 |
15 |
13
|
Koban I, Matthes R, Hübner NO, Welk A, Sietmann R, Lademann J, Kramer A, Kocher T. XTT assay of ex vivo saliva biofilms to test antimicrobial influences. GMS KRANKENHAUSHYGIENE INTERDISZIPLINAR 2012; 7:Doc06. [PMID: 22558040 PMCID: PMC3334957 DOI: 10.3205/dgkh000190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Many dental diseases are attributable to biofilms. The screening of antimicrobial substances, in particular, requires a high sample throughput and a realistic model, the evaluation must be as quick and as simple as possible. For this purpose, a colorimetric assay of the tetrazolium salt XTT (sodium 3'-[1-[(phenylamino)-carbony]-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzene-sulfonic acid hydrate) converted by saliva biofilms is recommended. Cleavage of XTT by dehydrogenase enzymes of metabolically active cells in biofilms yields a highly colored formazan product which is measured photometrically. MATERIALS AND METHOD The suitability of the XTT assay for detecting the vitality of ex vivo saliva biofilms was tested to determine the efficacy of chlorhexidine and ozone versus saliva biofilms grown on titanium discs. RESULTS The XTT method lends itself to testing the vitality of microorganisms in saliva biofilms. The sensitivity of the arrays requires a specific minimum number of pathogens, this number being different for planktonic bacteria and those occurring in biofilms. The antibacterial effect after treatment with chlorhexidine or ozone was measured by XTT conversion that was significantly reduced. The antimicrobial efficacy of 60 s 0.5% and 0.1% chlorhexidine treatment was equal and comparable with 60 s ozone treatment. CONCLUSION The XTT assay is a suitable method to determine the vitality in saliva biofilms, permitting assessment of the efficacy of antimicrobial substances. Its quick and easy applicability renders it especially suitable for screening.
Collapse
|
Journal Article |
13 |
13 |
14
|
Sietmann R, Uebe R, Böer E, Bode R, Kunze G, Schauer F. Novel metabolic routes during the oxidation of hydroxylated aromatic acids by the yeast Arxula adeninivorans. J Appl Microbiol 2009; 108:789-799. [PMID: 19702859 DOI: 10.1111/j.1365-2672.2009.04474.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To complete our study on tannin degradation via gallic acid by the biotechnologically interesting yeast Arxula adeninivorans as well as to characterize new degradation pathways of hydroxylated aromatic acids. METHODS AND RESULTS With glucose-grown cells of A. adeninivorans, transformation experiments with hydroxylated derivatives of benzoic acid were carried out. The 12 metabolites were analysed and identified by high performance liquid chromatography and GC/MS. The yeast is able to transform the derivatives by oxidative and nonoxidative decarboxylation as well as by methoxylation. The products of nonoxidative decarboxylation of protocatechuate and gallic acid are substrates for further ring fission. CONCLUSION Whereas other organisms use only one route of transformation, A. adeninivorans is able to carry out three different pathways (oxidative, nonoxidative decarboxylation and methoxylation) on one hydroxylated aromatic acid. The determination of the KM-values for protocatechuate and gallic acid in crude extracts of cells of A. adeninivorans cultivated with protocatechuate and gallic acid, respectively, suggests that the decarboxylation of protocatechuate and gallic acid may be catalysed by the same enzyme. SIGNIFICANCE AND IMPACT OF THE STUDY This transformation pathway of protocatechuate and gallic acid via nonoxidative decarboxylation up to ring fission is novel and has not been described so far. This is also the first report of nonoxidative decarboxylation of gallic acid by a eukaryotic micro-organism.
Collapse
|
Journal Article |
16 |
11 |
15
|
Liebermann HEH, Sietmann R, Bange R, Wazel W, Riebe R. RiV Particles are Heat Stable. Eng Life Sci 2005. [DOI: 10.1002/elsc.200420070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
|
20 |
4 |
16
|
Wilhelm A, Sietmann R, Wilhelm U, Hammer T. [The influence of VEGF inhibitors on corneal endothelium after injection into the anterior chamber in a porcine eye model]. Ophthalmologe 2016; 112:346-52. [PMID: 25305043 DOI: 10.1007/s00347-014-3116-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The injection of antiangiogenic agents, such as ranibizumab (Lucentis®) and bevacizumab (Avastin®) into the anterior chamber of the eye represents a suitable alternative for treating neovascular glaucoma by reducing intraocular pressure. OBJECTIVES As the antiangiogenic substances are in direct contact with the sensitive corneal endothelium, the aim of this study was to show the effects of intracameral injection of ranibizumab and bevacizumab on this cell layer. METHODS Each injection consisted of 50 µl containing either ranibizumab (0.5 mg/0.05 ml), bevacizumab (1.25 mg/0.05 ml) or triamcinolone containing benzyl alcohol (2 mg/0.05 ml) which was used as the control group. These compounds were injected into the anterior chamber of pig eyes. Afterwards the corneas were dissected, fixed, examined by a scanning electron microscopy and evaluated according to a specified score. Assessment of the endothelium was carried out by evaluating the condition of microvilli, cell borders, cell surface and cell pattern. The findings were compared to untreated corneas and those injected with 50 µl of balanced salt solution (BSS). RESULTS The corneal endothelium exposed to the antiangiogenic substances showed only minor changes in comparison to the controls treated only with BSS. Also seen during this research was the irreversible cell damage in the control group using triamcinolone. CONCLUSION Ranibizumab and bevacizumab have no damaging effects on the corneal endothelium when used in the anterior chamber. They can be administered as an intracameral injection for the treatment of rubeotic secondary glaucoma. Triamcinolon containing benzyl alcohol causes severe damage to the endothelial cells of the cornea by direct contact.
Collapse
|
Journal Article |
9 |
3 |
17
|
|
News |
35 |
2 |
18
|
|
|
35 |
1 |
19
|
|
News |
34 |
1 |
20
|
|
|
34 |
1 |
21
|
|
|
34 |
1 |
22
|
|
|
34 |
1 |
23
|
Sietmann R. Greens Make Physicists See Red. Science 1990; 249:853. [PMID: 17773088 DOI: 10.1126/science.249.4971.853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
35 |
|
24
|
Heichel J, Hammer T, Sietmann R, Duncker GIW, Wilhelm F. Vergleich von lamellären Keratotomien nach mechanischer Flap-Präparation – eine Gegenüberstellung zweier linearer Mikrokeratomsysteme. Klin Monbl Augenheilkd 2009. [DOI: 10.1055/s-0029-1242936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
|
16 |
|
25
|
Sietmann R, Coles P. High Noon for Europe's Space Plans. Science 1991; 254:366. [PMID: 17742211 DOI: 10.1126/science.254.5030.366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
|
34 |
|