1
|
Navon Elkan P, Pierce SB, Segel R, Walsh T, Barash J, Padeh S, Zlotogorski A, Berkun Y, Press JJ, Mukamel M, Voth I, Hashkes PJ, Harel L, Hoffer V, Ling E, Yalcinkaya F, Kasapcopur O, Lee MK, Klevit RE, Renbaum P, Weinberg-Shukron A, Sener EF, Schormair B, Zeligson S, Marek-Yagel D, Strom TM, Shohat M, Singer A, Rubinow A, Pras E, Winkelmann J, Tekin M, Anikster Y, King MC, Levy-Lahad E. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. N Engl J Med 2014; 370:921-31. [PMID: 24552285 DOI: 10.1056/nejmoa1307362] [Citation(s) in RCA: 456] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Polyarteritis nodosa is a systemic necrotizing vasculitis with a pathogenesis that is poorly understood. We identified six families with multiple cases of systemic and cutaneous polyarteritis nodosa, consistent with autosomal recessive inheritance. In most cases, onset of the disease occurred during childhood. METHODS We carried out exome sequencing in persons from multiply affected families of Georgian Jewish or German ancestry. We performed targeted sequencing in additional family members and in unrelated affected persons, 3 of Georgian Jewish ancestry and 14 of Turkish ancestry. Mutations were assessed by testing their effect on enzymatic activity in serum specimens from patients, analysis of protein structure, expression in mammalian cells, and biophysical analysis of purified protein. RESULTS In all the families, vasculitis was caused by recessive mutations in CECR1, the gene encoding adenosine deaminase 2 (ADA2). All the Georgian Jewish patients were homozygous for a mutation encoding a Gly47Arg substitution, the German patients were compound heterozygous for Arg169Gln and Pro251Leu mutations, and one Turkish patient was compound heterozygous for Gly47Val and Trp264Ser mutations. In the endogamous Georgian Jewish population, the Gly47Arg carrier frequency was 0.102, which is consistent with the high prevalence of disease. The other mutations either were found in only one family member or patient or were extremely rare. ADA2 activity was significantly reduced in serum specimens from patients. Expression in human embryonic kidney 293T cells revealed low amounts of mutant secreted protein. CONCLUSIONS Recessive loss-of-function mutations of ADA2, a growth factor that is the major extracellular adenosine deaminase, can cause polyarteritis nodosa vasculopathy with highly varied clinical expression. (Funded by the Shaare Zedek Medical Center and others.).
Collapse
|
|
11 |
456 |
2
|
Wenzel DM, Lissounov A, Brzovic PS, Klevit RE. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 2011; 474:105-8. [PMID: 21532592 PMCID: PMC3444301 DOI: 10.1038/nature09966] [Citation(s) in RCA: 425] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 02/23/2011] [Indexed: 12/24/2022]
Abstract
Although the functional interaction between ubiquitin conjugating enzymes (E2s) and ubiquitin ligases (E3s) is essential in ubiquitin (Ub) signaling, the criteria that define an active E2–E3 pair are not well-established. The human E2 UbcH7 (Ube2L3) shows broad specificity for HECT-type E3s1, but often fails to function with RING E3s in vitro despite forming specific complexes2–4. Structural comparisons of inactive UbcH7/RING complexes with active UbcH5/RING complexes reveal no defining differences3,4, highlighting a gap in our understanding of Ub transfer. We show that, unlike many E2s that transfer Ub with RINGs, UbcH7 lacks intrinsic, E3-independent reactivity with lysine, explaining its preference for HECTs. Despite lacking lysine reactivity, UbcH7 exhibits activity with the RING-In Between-RING (RBR) family of E3s that includes Parkin and human homologue of ariadne (HHARI)5,6. Found in all eukaryotes7, RBRs regulate processes such as translation8 and immune signaling9. RBRs contain a canonical C3HC4-type RING, followed by two conserved Cys/His-rich Zn2+-binding domains, In-Between-RING (IBR) and RING2 domains, which together define this E3 family7. Here we show that RBRs function like RING/HECT hybrids: they bind E2s via a RING domain, but transfer Ub through an obligate thioester-linked Ub (denoted ‘~Ub’), requiring a conserved cysteine residue in RING2. Our results define the functional cadre of E3s for UbcH7, an E2 involved in cell proliferation10 and immune function11, and suggest a novel mechanism for an entire class of E3s.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
14 |
425 |
3
|
Bader MW, Sanowar S, Daley ME, Schneider AR, Cho U, Xu W, Klevit RE, Le Moual H, Miller SI. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 2005; 122:461-72. [PMID: 16096064 DOI: 10.1016/j.cell.2005.05.030] [Citation(s) in RCA: 414] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 04/08/2005] [Accepted: 05/27/2005] [Indexed: 11/21/2022]
Abstract
PhoQ is a membrane bound sensor kinase important for the pathogenesis of a number of Gram-negative bacterial species. PhoQ and its cognate response regulator PhoP constitute a signal-transduction cascade that controls inducible resistance to host antimicrobial peptides. We show that enzymatic activity of Salmonella typhimurium PhoQ is directly activated by antimicrobial peptides. A highly acidic surface of the PhoQ sensor domain participates in both divalent-cation and antimicrobial-peptide binding as a first step in signal transduction across the bacterial membrane. Identification of PhoQ signaling mutants, binding studies with the PhoQ sensor domain, and structural analysis of this domain can be incorporated into a model in which antimicrobial peptides displace divalent cations from PhoQ metal binding sites to initiate signal transduction. Our findings reveal a molecular mechanism by which bacteria sense small innate immune molecules to initiate a transcriptional program that promotes bacterial virulence.
Collapse
|
Research Support, U.S. Gov't, P.H.S. |
20 |
414 |
4
|
Correia BE, Bates JT, Loomis RJ, Baneyx G, Carrico C, Jardine JG, Rupert P, Correnti C, Kalyuzhniy O, Vittal V, Connell MJ, Stevens E, Schroeter A, Chen M, Macpherson S, Serra AM, Adachi Y, Holmes MA, Li Y, Klevit RE, Graham BS, Wyatt RT, Baker D, Strong RK, Crowe JE, Johnson PR, Schief WR. Proof of principle for epitope-focused vaccine design. Nature 2014; 507:201-6. [PMID: 24499818 PMCID: PMC4260937 DOI: 10.1038/nature12966] [Citation(s) in RCA: 403] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 12/19/2013] [Indexed: 12/12/2022]
Abstract
Vaccines prevent infectious disease largely by inducing protective neutralizing antibodies against vulnerable epitopes. Multiple major pathogens have resisted traditional vaccine development, although vulnerable epitopes targeted by neutralizing antibodies have been identified for several such cases. Hence, new vaccine design methods to induce epitope-specific neutralizing antibodies are needed. Here we show, with a neutralization epitope from respiratory syncytial virus (RSV), that computational protein design can generate small, thermally and conformationally stable protein scaffolds that accurately mimic the viral epitope structure and induce potent neutralizing antibodies. These scaffolds represent promising leads for research and development of a human RSV vaccine needed to protect infants, young children and the elderly. More generally, the results provide proof of principle for epitope-focused and scaffold-based vaccine design, and encourage the evaluation and further development of these strategies for a variety of other vaccine targets including antigenically highly variable pathogens such as HIV and influenza.
Collapse
|
Research Support, Non-U.S. Gov't |
11 |
403 |
5
|
Brzovic PS, Rajagopal P, Hoyt DW, King MC, Klevit RE. Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. NATURE STRUCTURAL BIOLOGY 2001; 8:833-7. [PMID: 11573085 DOI: 10.1038/nsb1001-833] [Citation(s) in RCA: 390] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The RING domain of the breast and ovarian cancer tumor suppressor BRCA1 interacts with multiple cognate proteins, including the RING protein BARD1. Proper function of the BRCA1 RING domain is critical, as evidenced by the many cancer-predisposing mutations found within this domain. We present the solution structure of the heterodimer formed between the RING domains of BRCA1 and BARD1. Comparison with the RING homodimer of the V(D)J recombination-activating protein RAG1 reveals the structural diversity of complexes formed by interactions between different RING domains. The BRCA1-BARD1 structure provides a model for its ubiquitin ligase activity, illustrates how the BRCA1 RING domain can be involved in associations with multiple protein partners and provides a framework for understanding cancer-causing mutations at the molecular level.
Collapse
|
|
24 |
390 |
6
|
Christensen DE, Brzovic PS, Klevit RE. E2-BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nat Struct Mol Biol 2007; 14:941-8. [PMID: 17873885 DOI: 10.1038/nsmb1295] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 07/26/2007] [Indexed: 11/09/2022]
Abstract
An E3 ubiquitin ligase mediates the transfer of activated ubiquitin from an E2 ubiquitin-conjugating enzyme to its substrate lysine residues. Using a structure-based, yeast two-hybrid strategy, we discovered six previously unidentified interactions between the human heterodimeric RING E3 BRCA1-BARD1 and the human E2s UbcH6, Ube2e2, UbcM2, Ubc13, Ube2k and Ube2w. All six E2s bind directly to the BRCA1 RING motif and are active with BRCA1-BARD1 for autoubiquitination in vitro. Four of the E2s direct monoubiquitination of BRCA1. Ubc13-Mms2 and Ube2k direct the synthesis of Lys63- or Lys48-linked ubiquitin chains on BRCA1 and require an acceptor ubiquitin attached to BRCA1. Differences between the mono- and polyubiquitination activities of the BRCA1-interacting E2s correlate with their ability to bind ubiquitin noncovalently at a site distal to the active site. Thus, BRCA1 has the ability to direct the synthesis of specific polyubiquitin chain linkages, depending on the E2 bound to its RING.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
18 |
275 |
7
|
Párraga G, Horvath SJ, Eisen A, Taylor WE, Hood L, Young ET, Klevit RE. Zinc-dependent structure of a single-finger domain of yeast ADR1. Science 1988; 241:1489-92. [PMID: 3047872 DOI: 10.1126/science.3047872] [Citation(s) in RCA: 256] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the proposed "zinc finger" DNA-binding motif, each repeat unit binds a zinc metal ion through invariant Cys and His residues and this drives the folding of each 30-residue unit into an independent nucleic acid-binding domain. To obtain structural information, we synthesized single and double zinc finger peptides from the yeast transcription activator ADR1, and assessed the metal-binding and DNA-binding properties of these peptides, as well as the solution structure of the metal-stabilized domains, with the use of a variety of spectroscopic techniques. A single zinc finger can exist as an independent structure sufficient for zinc-dependent DNA binding. An experimentally determined model of the single finger is proposed that is consistent with circular dichroism, one- and two-dimensional nuclear magnetic resonance, and visual spectroscopy of the single-finger peptide reconstituted in the presence of zinc.
Collapse
|
|
37 |
256 |
8
|
Brzovic PS, Lissounov A, Christensen DE, Hoyt DW, Klevit RE. A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. Mol Cell 2006; 21:873-80. [PMID: 16543155 DOI: 10.1016/j.molcel.2006.02.008] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 11/04/2005] [Accepted: 02/03/2006] [Indexed: 11/16/2022]
Abstract
Protein ubiquitination is a powerful regulatory modification that influences nearly every aspect of eukaryotic cell biology. The general pathway for ubiquitin (Ub) modification requires the sequential activities of a Ub-activating enzyme (E1), a Ub transfer enzyme (E2), and a Ub ligase (E3). The E2 must recognize both the E1 and a cognate E3 in addition to carrying activated Ub. These central functions are performed by a topologically conserved alpha/beta-fold core domain of approximately 150 residues shared by all E2s. However, as presented herein, the UbcH5 family of E2s can also bind Ub noncovalently on a surface well removed from the E2 active site. We present the solution structure of the UbcH5c/Ub noncovalent complex and demonstrate that this noncovalent interaction permits self-assembly of activated UbcH5c approximately Ub molecules. Self-assembly has profound consequences for the processive formation of polyubiquitin (poly-Ub) chains in ubiquitination reactions directed by the breast and ovarian cancer tumor susceptibility protein BRCA1.
Collapse
|
Research Support, N.I.H., Extramural |
19 |
250 |
9
|
Jehle S, Rajagopal P, Bardiaux B, Markovic S, Kühne R, Stout JR, Higman VA, Klevit RE, van Rossum BJ, Oschkinat H. Solid-state NMR and SAXS studies provide a structural basis for the activation of alphaB-crystallin oligomers. Nat Struct Mol Biol 2010; 17:1037-42. [PMID: 20802487 DOI: 10.1038/nsmb.1891] [Citation(s) in RCA: 238] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 07/12/2010] [Indexed: 12/31/2022]
Abstract
The small heat shock protein alphaB-crystallin (alphaB) contributes to cellular protection against stress. For decades, high-resolution structural studies on oligomeric alphaB have been confounded by its polydisperse nature. Here, we present a structural basis of oligomer assembly and activation of the chaperone using solid-state NMR and small-angle X-ray scattering (SAXS). The basic building block is a curved dimer, with an angle of approximately 121 degrees between the planes of the beta-sandwich formed by alpha-crystallin domains. The highly conserved IXI motif covers a substrate binding site at pH 7.5. We observe a pH-dependent modulation of the interaction of the IXI motif with beta4 and beta8, consistent with a pH-dependent regulation of the chaperone function. N-terminal region residues Ser59-Trp60-Phe61 are involved in intermolecular interaction with beta3. Intermolecular restraints from NMR and volumetric restraints from SAXS were combined to calculate a model of a 24-subunit alphaB oligomer with tetrahedral symmetry.
Collapse
|
Research Support, U.S. Gov't, Non-P.H.S. |
15 |
238 |
10
|
Prost LR, Daley ME, Le Sage V, Bader MW, Le Moual H, Klevit RE, Miller SI. Activation of the Bacterial Sensor Kinase PhoQ by Acidic pH. Mol Cell 2007; 26:165-74. [PMID: 17466620 DOI: 10.1016/j.molcel.2007.03.008] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 01/25/2007] [Accepted: 03/05/2007] [Indexed: 10/23/2022]
Abstract
The Salmonellae PhoQ sensor kinase senses the mammalian phagosome environment to activate a transcriptional program essential for virulence. The PhoQ periplasmic domain binds divalent cations, forming bridges with inner membrane phospholipids to maintain PhoQ repression. PhoQ also binds and is activated by cationic antimicrobial peptides. In this work, PhoQ is directly activated by exposure of the sensor domain to pH 5.5. NMR spectroscopy indicates that at acidic pH, the PhoQ periplasmic domain adopts a conformation different from that in the presence of divalent cations or antimicrobial peptides. The conformation is partially simulated by mutation of histidine 157, which is part of an interaction network that distinguishes the repressed conformation. The effects of antimicrobial peptides and pH on PhoQ activity are additive. We propose a model of activation by antimicrobial peptides via disruption of the cation bridges and/or by acidification of the periplasm through destabilization of the interaction network.
Collapse
|
|
18 |
211 |
11
|
Pierce SB, Walsh T, Chisholm KM, Lee MK, Thornton AM, Fiumara A, Opitz JM, Levy-Lahad E, Klevit RE, King MC. Mutations in the DBP-deficiency protein HSD17B4 cause ovarian dysgenesis, hearing loss, and ataxia of Perrault Syndrome. Am J Hum Genet 2010; 87:282-8. [PMID: 20673864 DOI: 10.1016/j.ajhg.2010.07.007] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 02/09/2023] Open
Abstract
Perrault syndrome is a recessive disorder characterized by ovarian dysgenesis in females, sensorineural deafness in both males and females, and in some patients, neurological manifestations. No genes for Perrault syndrome have heretofore been identified. A small family of mixed European ancestry includes two sisters with well-characterized Perrault syndrome. Whole-exome sequencing of genomic DNA from one of these sisters revealed exactly one gene with two rare functional variants: HSD17B4, which encodes 17beta-hydroxysteroid dehydrogenase type 4 (HSD17B4), also known as D-bifunctional protein (DBP). HSD17B4/DBP is a multifunctional peroxisomal enzyme involved in fatty acid beta-oxidation and steroid metabolism. Both sisters are compound heterozygotes for HSD17B4 c.650A>G (p.Y217C) (maternal allele) and HSB17B4 c.1704T>A (p.Y568X) (paternal allele). The missense mutation is predicted by structural analysis to destabilize the HSD17B4 dehydrogenase domain. The nonsense mutation leads to very low levels of HSD17B4 transcript. Expression of mutant HSD17B4 protein in a compound heterozygote was severely reduced. Mutations in HSD17B4 are known to cause DBP deficiency, an autosomal-recessive disorder of peroxisomal fatty acid beta-oxidation that is generally fatal within the first two years of life. No females with DBP deficiency surviving past puberty have been reported, and ovarian dysgenesis has not previously been associated with this illness. Six other families with Perrault syndrome have wild-type sequences of HSD17B4. These results indicate that Perrault syndrome and DBP deficiency overlap clinically; that Perrault syndrome is genetically heterogeneous; that DBP deficiency may be underdiagnosed; and that whole-exome sequencing can reveal critical genes in small, nonconsanguineous families.
Collapse
|
Research Support, N.I.H., Extramural |
15 |
190 |
12
|
Makley LN, McMenimen KA, DeVree BT, Goldman JW, McGlasson BN, Rajagopal P, Dunyak BM, McQuade TJ, Thompson AD, Sunahara R, Klevit RE, Andley UP, Gestwicki JE. Pharmacological chaperone for α-crystallin partially restores transparency in cataract models. Science 2015; 350:674-7. [PMID: 26542570 DOI: 10.1126/science.aac9145] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cataracts reduce vision in 50% of individuals over 70 years of age and are a common form of blindness worldwide. Cataracts are caused when damage to the major lens crystallin proteins causes their misfolding and aggregation into insoluble amyloids. Using a thermal stability assay, we identified a class of molecules that bind α-crystallins (cryAA and cryAB) and reversed their aggregation in vitro. The most promising compound improved lens transparency in the R49C cryAA and R120G cryAB mouse models of hereditary cataract. It also partially restored protein solubility in the lenses of aged mice in vivo and in human lenses ex vivo. These findings suggest an approach to treating cataracts by stabilizing α-crystallins.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
182 |
13
|
Nishikawa H, Ooka S, Sato K, Arima K, Okamoto J, Klevit RE, Fukuda M, Ohta T. Mass spectrometric and mutational analyses reveal Lys-6-linked polyubiquitin chains catalyzed by BRCA1-BARD1 ubiquitin ligase. J Biol Chem 2003; 279:3916-24. [PMID: 14638690 DOI: 10.1074/jbc.m308540200] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The breast and ovarian cancer suppressor BRCA1 acquires significant ubiquitin ligase activity when bound to BARD1 as a RING heterodimer. Although the activity may well be important for the role of BRCA1 as a tumor suppressor, the biochemical consequence of the activity is not yet known. Here we report that BRCA1-BARD1 catalyzes Lys-6-linked polyubiquitin chain formation. K6R mutation of ubiquitin dramatically reduces the polyubiquitin products mediated by BRCA1-BARD1 in vitro. BRCA1-BARD1 preferentially utilizes ubiquitin with a single Lys residue at Lys-6 or Lys-29 to mediate autoubiquitination of BRCA1 in vivo. Furthermore, mass spectrometry analysis identified the Lys-6-linked branched ubiquitin fragment from the polyubiquitin chain produced by BRCA1-BARD1 using wild type ubiquitin. The BRCA1-BARD1-mediated Lys-6-linked polyubiquitin chains are deubiquitinated by 26 S proteasome in vitro, whereas autoubiquitinated CUL1 through Lys-48-linked polyubiquitin chains is degraded. Proteasome inhibitors do not alter the steady state level of the autoubiquitinated BRCA1 in vivo. Hence, the results indicate that BRCA1-BARD1 mediates novel polyubiquitin chains that may be distinctly edited by 26 S proteasome from conventional Lys-48-linked polyubiquitin chains.
Collapse
|
Research Support, Non-U.S. Gov't |
22 |
178 |
14
|
Juang YC, Landry MC, Sanches M, Vittal V, Leung CCY, Ceccarelli DF, Mateo ARF, Pruneda JN, Mao DYL, Szilard RK, Orlicky S, Munro M, Brzovic PS, Klevit RE, Sicheri F, Durocher D. OTUB1 co-opts Lys48-linked ubiquitin recognition to suppress E2 enzyme function. Mol Cell 2012; 45:384-97. [PMID: 22325355 DOI: 10.1016/j.molcel.2012.01.011] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/19/2012] [Accepted: 01/20/2012] [Indexed: 12/16/2022]
Abstract
Ubiquitylation entails the concerted action of E1, E2, and E3 enzymes. We recently reported that OTUB1, a deubiquitylase, inhibits the DNA damage response independently of its isopeptidase activity. OTUB1 does so by blocking ubiquitin transfer by UBC13, the cognate E2 enzyme for RNF168. OTUB1 also inhibits E2s of the UBE2D and UBE2E families. Here we elucidate the structural mechanism by which OTUB1 binds E2s to inhibit ubiquitin transfer. OTUB1 recognizes ubiquitin-charged E2s through contacts with both donor ubiquitin and the E2 enzyme. Surprisingly, free ubiquitin associates with the canonical distal ubiquitin-binding site on OTUB1 to promote formation of the inhibited E2 complex. Lys48 of donor ubiquitin lies near the OTUB1 catalytic site and the C terminus of free ubiquitin, a configuration that mimics the products of Lys48-linked ubiquitin chain cleavage. OTUB1 therefore co-opts Lys48-linked ubiquitin chain recognition to suppress ubiquitin conjugation and the DNA damage response.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
168 |
15
|
DaRosa PA, Wang Z, Jiang X, Pruneda JN, Cong F, Klevit RE, Xu W. Allosteric activation of the RNF146 ubiquitin ligase by a poly(ADP-ribosyl)ation signal. Nature 2015; 517:223-6. [PMID: 25327252 PMCID: PMC4289021 DOI: 10.1038/nature13826] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 09/01/2014] [Indexed: 01/07/2023]
Abstract
Protein poly(ADP-ribosyl)ation (PARylation) has a role in diverse cellular processes such as DNA repair, transcription, Wnt signalling, and cell death. Recent studies have shown that PARylation can serve as a signal for the polyubiquitination and degradation of several crucial regulatory proteins, including Axin and 3BP2 (refs 7, 8, 9). The RING-type E3 ubiquitin ligase RNF146 (also known as Iduna) is responsible for PARylation-dependent ubiquitination (PARdU). Here we provide a structural basis for RNF146-catalysed PARdU and how PARdU specificity is achieved. First, we show that iso-ADP-ribose (iso-ADPr), the smallest internal poly(ADP-ribose) (PAR) structural unit, binds between the WWE and RING domains of RNF146 and functions as an allosteric signal that switches the RING domain from a catalytically inactive state to an active one. In the absence of PAR, the RING domain is unable to bind and activate a ubiquitin-conjugating enzyme (E2) efficiently. Binding of PAR or iso-ADPr induces a major conformational change that creates a functional RING structure. Thus, RNF146 represents a new mechanistic class of RING E3 ligases, the activities of which are regulated by non-covalent ligand binding, and that may provide a template for designing inducible protein-degradation systems. Second, we find that RNF146 directly interacts with the PAR polymerase tankyrase (TNKS). Disruption of the RNF146-TNKS interaction inhibits turnover of the substrate Axin in cells. Thus, both substrate PARylation and PARdU are catalysed by enzymes within the same protein complex, and PARdU substrate specificity may be primarily determined by the substrate-TNKS interaction. We propose that the maintenance of unliganded RNF146 in an inactive state may serve to maintain the stability of the RNF146-TNKS complex, which in turn regulates the homeostasis of PARdU activity in the cell.
Collapse
|
research-article |
10 |
166 |
16
|
Brzovic PS, Heikaus CC, Kisselev L, Vernon R, Herbig E, Pacheco D, Warfield L, Littlefield P, Baker D, Klevit RE, Hahn S. The acidic transcription activator Gcn4 binds the mediator subunit Gal11/Med15 using a simple protein interface forming a fuzzy complex. Mol Cell 2012; 44:942-53. [PMID: 22195967 DOI: 10.1016/j.molcel.2011.11.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/19/2011] [Accepted: 10/07/2011] [Indexed: 10/14/2022]
Abstract
The structural basis for binding of the acidic transcription activator Gcn4 and one activator-binding domain of the Mediator subunit Gal11/Med15 was examined by NMR. Gal11 activator-binding domain 1 has a four-helix fold with a small shallow hydrophobic cleft at its center. In the bound complex, eight residues of Gcn4 adopt a helical conformation, allowing three Gcn4 aromatic/aliphatic residues to insert into the Gal11 cleft. The protein-protein interface is dynamic and surprisingly simple, involving only hydrophobic interactions. This allows Gcn4 to bind Gal11 in multiple conformations and orientations, an example of a "fuzzy" complex, where the Gcn4-Gal11 interface cannot be described by a single conformation. Gcn4 uses a similar mechanism to bind two other unrelated activator-binding domains. Functional studies in yeast show the importance of residues at the protein interface, define the minimal requirements for a functional activator, and suggest a mechanism by which activators bind to multiple unrelated targets.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
143 |
17
|
Eakin CM, MacCoss MJ, Finney GL, Klevit RE. Estrogen receptor alpha is a putative substrate for the BRCA1 ubiquitin ligase. Proc Natl Acad Sci U S A 2007; 104:5794-9. [PMID: 17392432 PMCID: PMC1851571 DOI: 10.1073/pnas.0610887104] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The breast cancer suppressor protein, BRCA1, is a ubiquitin ligase expressed in a wide range of tissues. However, inheritance of a single BRCA1 mutation significantly increases a woman's lifetime chance of developing tissue-specific cancers in the breast and ovaries. Recently, studies have suggested this tissue specificity may be linked to inhibition of estrogen receptor alpha (ERalpha) transcriptional activation by BRCA1. Here, we show that ERalpha is a putative substrate for the BRCA1/BARD1 ubiquitin ligase, suggesting a possible mechanism for regulation of ERalpha activity by BRCA1. Our results show ERalpha is predominantly monoubiquitinated in a reaction that involves interactions with both BRCA1 and BARD1. The regions of BRCA1/BARD1 necessary for ERalpha ubiquitination include the RING domains and at least 241 and 170 residues of BRCA1 and BARD1, respectively. Cancer-predisposing mutations in BRCA1 are observed to abrogate ERalpha ubiquitination. The identification of ERalpha as a putative BRCA1/BARD1 ubiquitination substrate reveals a potential link between the loss of BRCA1/BARD1 ligase activity and tissue-specific carcinoma.
Collapse
|
Research Support, Non-U.S. Gov't |
18 |
140 |
18
|
Delbecq SP, Klevit RE. One size does not fit all: the oligomeric states of αB crystallin. FEBS Lett 2013; 587:1073-80. [PMID: 23340341 DOI: 10.1016/j.febslet.2013.01.021] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 11/25/2022]
Abstract
Small Heat Shock Proteins (sHSPs) are a diverse family of molecular chaperones that delay protein aggregation through interactions with non-native and aggregate-prone protein states. This function has been shown to be important to cellular viability and sHSP function/dysfunction is implicated in many diseases, including Alzheimer's and Alexander disease. Though their gene products are small, many sHSPs assemble into a distribution of large oligomeric states that undergo dynamic subunit exchange. These inherent properties present significant experimental challenges for characterizing sHSP oligomers. Of the human sHSPs, αB crystallin is a paradigm example of sHSP oligomeric properties. Advances in our understanding of sHSP structure, oligomeric distribution, and dynamics have prompted the proposal of several models for the oligomeric states of αB. The aim of this review is to highlight characteristics of αB crystallin (αB) that are key to understanding its structure and function. The current state of knowledge, existing models, and outstanding questions that remain to be addressed are presented.
Collapse
|
Review |
12 |
126 |
19
|
Klevit RE, Wemmer DE, Reid BR. 1H NMR studies on the interaction between distamycin A and a symmetrical DNA dodecamer. Biochemistry 1986; 25:3296-303. [PMID: 3730362 DOI: 10.1021/bi00359a032] [Citation(s) in RCA: 124] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
High-resolution NMR techniques have been used to examine the structural and dynamical features of the interaction between distamycin A and the self-complementary DNA dodecamer duplex d-(CGCGAATTCGCG)2. The proton resonances of d(CGCGAATTCGCG)2 have been completely assigned by previous two-dimensional NMR studies [Hare, D. R., Wemmer, D. E., Chou, S. H., Drobny, G., & Reid, B. R. (1983) J. Mol. Biol. 171, 319-336]. Addition of the asymmetric drug molecule to the symmetric dodecamer leads to the formation of an asymmetric complex as evidenced by a doubling of DNA resonances over much of the spectrum. In two-dimensional exchange experiments, strong cross-peaks were observed between uncomplexed DNA and drug-bound DNA resonances, permitting direct assignment of many drug-bound DNA resonances from previously assigned free DNA resonances. Weaker exchange cross-peaks between formerly symmetry related DNA resonances indicate that the drug molecule flips head-to-tail on one duplex with half the frequency at which it leaves the DNA molecule completely. In experiments performed in H2O, nuclear Overhauser effects (NOEs) were observed from each drug amide proton to an adenine C2H and a pyrrole H3 ring proton. In two-dimensional nuclear Overhauser experiments performed on D2O solutions, strong intermolecular NOEs were observed between each of the three pyrrole H3 resonances of the drug and an adenine C2H resonance, with weaker NOEs observed between the drug H3 resonances and C1'H resonances. The combined NOE data allow us to position the distamycin A unambiguously on the DNA dodecamer, with the drug spanning the central AATT segment in the minor groove.
Collapse
|
|
39 |
124 |
20
|
Carra S, Alberti S, Arrigo PA, Benesch JL, Benjamin IJ, Boelens W, Bartelt-Kirbach B, Brundel BJJM, Buchner J, Bukau B, Carver JA, Ecroyd H, Emanuelsson C, Finet S, Golenhofen N, Goloubinoff P, Gusev N, Haslbeck M, Hightower LE, Kampinga HH, Klevit RE, Liberek K, Mchaourab HS, McMenimen KA, Poletti A, Quinlan R, Strelkov SV, Toth ME, Vierling E, Tanguay RM. The growing world of small heat shock proteins: from structure to functions. Cell Stress Chaperones 2017; 22:601-611. [PMID: 28364346 PMCID: PMC5465036 DOI: 10.1007/s12192-017-0787-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2017] [Indexed: 12/21/2022] Open
Abstract
Small heat shock proteins (sHSPs) are present in all kingdoms of life and play fundamental roles in cell biology. sHSPs are key components of the cellular protein quality control system, acting as the first line of defense against conditions that affect protein homeostasis and proteome stability, from bacteria to plants to humans. sHSPs have the ability to bind to a large subset of substrates and to maintain them in a state competent for refolding or clearance with the assistance of the HSP70 machinery. sHSPs participate in a number of biological processes, from the cell cycle, to cell differentiation, from adaptation to stressful conditions, to apoptosis, and, even, to the transformation of a cell into a malignant state. As a consequence, sHSP malfunction has been implicated in abnormal placental development and preterm deliveries, in the prognosis of several types of cancer, and in the development of neurological diseases. Moreover, mutations in the genes encoding several mammalian sHSPs result in neurological, muscular, or cardiac age-related diseases in humans. Loss of protein homeostasis due to protein aggregation is typical of many age-related neurodegenerative and neuromuscular diseases. In light of the role of sHSPs in the clearance of un/misfolded aggregation-prone substrates, pharmacological modulation of sHSP expression or function and rescue of defective sHSPs represent possible routes to alleviate or cure protein conformation diseases. Here, we report the latest news and views on sHSPs discussed by many of the world's experts in the sHSP field during a dedicated workshop organized in Italy (Bertinoro, CEUB, October 12-15, 2016).
Collapse
|
Review |
8 |
118 |
21
|
Klevit RE, Blumenthal DK, Wemmer DE, Krebs EG. Interaction of calmodulin and a calmodulin-binding peptide from myosin light chain kinase: major spectral changes in both occur as the result of complex formation. Biochemistry 1985; 24:8152-7. [PMID: 3841496 DOI: 10.1021/bi00348a047] [Citation(s) in RCA: 114] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Many different enzymes are activated by direct interaction with calmodulin; this interaction is thought to occur through a distinct calmodulin-binding domain in each of these enzymes. We have recently reported the sequence of a 27-residue peptide (denoted M13), derived from skeletal muscle myosin light chain kinase (MLCK), that exhibits the properties expected of a calmodulin-binding domain [Blumenthal, D. K., Takio, K., Edelman, A. M., Charbonneau, H., Titani, K., Walsh, K. A., & Krebs, E. G. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 3187-3191]. The interaction between chemically synthesized M13 peptide and calmodulin has been studied by circular dichroism (CD) and proton nuclear magnetic resonance (NMR) spectroscopy. In the presence of Ca2+, the observed ellipticity of an equimolar mixture of M13 and calmodulin is much greater than the sum of the ellipticities of the two isolated proteins. In the absence of Ca2+, the measured ellipticity of the mixture is approximately the sum of the two components. Addition of the peptide to calmodulin causes dramatic changes in the proton NMR spectrum; at a 1:1 molar ratio, no evidence of either free peptide or free calmodulin is observed. Moreover, these data demonstrate that a unique species of the M13-calmodulin complex is formed, indicating that the peptide binds to calmodulin in only one way. The many resonances affected by M13 binding include residues in both halves of the calmodulin molecule. The observed CD and NMR effects suggest that secondary and tertiary conformational changes occur both in M13 and in calmodulin upon complex formation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
|
40 |
114 |
22
|
Pruneda JN, Stoll KE, Bolton LJ, Brzovic PS, Klevit RE. Ubiquitin in motion: structural studies of the ubiquitin-conjugating enzyme∼ubiquitin conjugate. Biochemistry 2011; 50:1624-33. [PMID: 21226485 DOI: 10.1021/bi101913m] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ubiquitination of proteins provides a powerful and versatile post-translational signal in the eukaryotic cell. The formation of a thioester bond between ubiquitin (Ub) and the active site of a ubiquitin-conjugating enzyme (E2) is critical for the transfer of Ub to substrates. Assembly of a functional ubiquitin ligase (E3) complex poised for Ub transfer involves recognition and binding of an E2∼Ub conjugate. Therefore, full characterization of the structure and dynamics of E2∼Ub conjugates is required for further mechanistic understanding of Ub transfer reactions. Here we present characterization of the dynamic behavior of E2∼Ub conjugates of two human enzymes, UbcH5c∼Ub and Ubc13∼Ub, in solution as determined by nuclear magnetic resonance and small-angle X-ray scattering. Within each conjugate, Ub retains great flexibility with respect to the E2, indicative of highly dynamic species that adopt manifold orientations. The population distribution of Ub conformations is dictated by the identity of the E2: the UbcH5c∼Ub conjugate populates an array of extended conformations, and the population of Ubc13∼Ub conjugates favors a closed conformation in which the hydrophobic surface of Ub faces helix 2 of Ubc13. We propose that the varied conformations adopted by Ub represent available binding modes of the E2∼Ub species and thus provide insight into the diverse E2∼Ub protein interactome, particularly with regard to interaction with Ub ligases.
Collapse
|
Research Support, N.I.H., Extramural |
14 |
114 |
23
|
Jones BE, Dossonnet V, Küster E, Hillen W, Deutscher J, Klevit RE. Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr. J Biol Chem 1997; 272:26530-5. [PMID: 9334231 DOI: 10.1074/jbc.272.42.26530] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Catabolite repression of a number of catabolic operons in bacilli is mediated by the catabolite control protein CcpA, the phosphocarrier protein HPr from the phosphoenolpyruvate-dependent sugar transport system (PTS), and a cis-acting DNA sequence termed the catabolite-responsive element (cre). We present evidence that CcpA interacts with HPr that is phosphorylated at Ser46 (Ser(P) HPr) and that these proteins form a specific ternary complex with cre DNA. Titration experiments following the circular dichroism signal of the cre DNA indicate that this complex consists of two molecules of Ser(P) HPr, a CcpA dimer, and the cre sequence. Limited proteolysis experiments indicate that the domain structure of CcpA is similar to other members of the LacI/GalR family of helix-turn-helix proteins, comprised of a helix-turn-helix DNA domain and a C-terminal effector domain. NMR titration of Ser(P) HPr demonstrates that the isolated C-terminal domain of CcpA forms a specific complex with Ser(P) HPr but not with unphosphorylated HPr. Based upon perturbations to the NMR spectrum, we propose that the binding site of the C-terminal domain of CcpA on Ser(P) HPr forms a contiguous surface that encompasses both Ser(P)46 and His15, the site of phosphorylation by enzyme I of the PTS. This allows CcpA to recognize the phosphorylation state of HPr, effectively linking the process of sugar import via the PTS to catabolite repression in bacilli.
Collapse
|
|
28 |
110 |
24
|
|
|
34 |
110 |
25
|
Abstract
The "zinc finger" is a 30-residue repeating motif that has been identified in a variety of eukaryotic transcription factors. Each domain is capable of binding a Zn2+ ion through invariant Cys and His residues. We have determined the three-dimensional structure of a synthetic peptide that corresponds to one of the two zinc finger domains in the yeast transcription factor ADR1, using two-dimensional nuclear magnetic resonance spectroscopy. The Zn2(+)-bound structure of the peptide consists of a loop containing the two Cys residues, a "fingertip," a 12- to 13-residue alpha-helix containing the two His residues, and a C-terminal tail. A majority of the interresidue contacts observed involve the seven conserved residues of the prototypic zinc finger (i.e., the four zinc ligands and the three hydrophobic residues), indicating that these residues are largely responsible for the three-dimensional structure of the domain and that all the zinc finger domains of the TFIIIA class will have similar structures. Potential DNA-binding residues are found throughout the structure, with the highest concentration of such residues on the external face of the alpha-helix.
Collapse
|
|
35 |
107 |