1
|
van Eden W, Spiering R, Broere F, van der Zee R. A case of mistaken identity: HSPs are no DAMPs but DAMPERs. Cell Stress Chaperones 2012; 17:281-92. [PMID: 22139593 PMCID: PMC3312964 DOI: 10.1007/s12192-011-0311-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 11/15/2011] [Indexed: 01/19/2023] Open
Abstract
Until recently, the immune system was seen solely as a defense system with its primary task being the elimination of unwanted microbial invaders. Currently, however, the functional significance of the immune system has obtained a much wider perspective, to include among others the maintenance and restoration of homeostasis following tissue damage. In this latter aspect, there is a growing interest in the identification of molecules involved, such as the so-called danger or damage-associated molecular patterns (DAMPs), also called alarmins. Since heat shock proteins are archetypical molecules produced under stressful conditions, such as tissue damage or inflammation, they are frequently mentioned as prime examples of DAMPs (Bianchi, J Leukoc Biol 81:1-5, 2007; Kono and Rock, Nat Rev Immunol 8:279-289, 2008; Martin-Murphy et al., Toxicol Lett 192:387-394, 2010). See for instance also a recent review (Chen and Nunez, Science 298:1395-1401, 2010). Contrary to this description, we recently presented some of the arguments against a role of heat shock protein as DAMPs (Broere et al., Nat Rev Immunol 11:565-c1, 2011). With this perspective and reflection article, we hope to elaborate on this debate and provide additional thoughts to further ignite this discussion on this critical and evolving issue.
Collapse
|
research-article |
13 |
77 |
2
|
Wood MJ, Leckenby A, Reynolds G, Spiering R, Pratt AG, Rankin KS, Isaacs JD, Haniffa MA, Milling S, Hilkens CM. Macrophage proliferation distinguishes 2 subgroups of knee osteoarthritis patients. JCI Insight 2019; 4:125325. [PMID: 30674730 DOI: 10.1172/jci.insight.125325] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a leading cause of disability, globally. Despite an emerging role for synovial inflammation in OA pathogenesis, attempts to target inflammation therapeutically have had limited success. A better understanding of the cellular and molecular processes occurring in the OA synovium is needed to develop novel therapeutics. We investigated macrophage phenotype and gene expression in synovial tissue of OA and inflammatory-arthritis (IA) patients. Compared with IA, OA synovial tissue contained higher but variable proportions of macrophages (P < 0.001). These macrophages exhibited an activated phenotype, expressing folate receptor-2 and CD86, and displayed high phagocytic capacity. RNA sequencing of synovial macrophages revealed 2 OA subgroups. Inflammatory-like OA (iOA) macrophages are closely aligned to IA macrophages and are characterized by a cell proliferation signature. In contrast, classical OA (cOA) macrophages display cartilage remodeling features. Supporting these findings, when compared with cOA, iOA synovial tissue contained higher proportions of macrophages (P < 0.01), expressing higher levels of the proliferation marker Ki67 (P < 0.01). These data provide new insight into the heterogeneity of OA synovial tissue and suggest distinct roles of macrophages in pathogenesis. Our findings could lead to the stratification of OA patients for suitable disease-modifying treatments and the identification of novel therapeutic targets.
Collapse
|
Journal Article |
6 |
76 |
3
|
Wieten L, van der Zee R, Spiering R, Wagenaar-Hilbers J, van Kooten P, Broere F, van Eden W. A novel heat-shock protein coinducer boosts stress protein Hsp70 to activate T cell regulation of inflammation in autoimmune arthritis. ACTA ACUST UNITED AC 2010; 62:1026-35. [PMID: 20131272 DOI: 10.1002/art.27344] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Stress proteins, such as members of the heat-shock protein (HSP) family, are up-regulated by cells in inflamed tissue and can be viewed functionally as "biomarkers" for the immune system to monitor inflammation. Exogenous administration of stress proteins has induced immunoregulation in various models of inflammation and has also been shown to be effective in clinical trials in humans. This study was undertaken to test the hypothesis that boosting of endogenous HSP expression can restore effective immunoregulation through T cells specific for stress proteins. METHODS Stress protein expression was manipulated in vivo and in vitro with a food component (carvacrol), and immune recognition of stress proteins was studied. RESULTS Carvacrol, a major compound in the oil of many Origanum species, had a notable capacity to coinduce cellular Hsp70 expression in vitro and, upon intragastric administration, in Peyer's patches of mice in vivo. As a consequence, carvacrol specifically promoted T cell recognition of endogenous Hsp70, as demonstrated in vitro by the activation of an Hsp70-specific T cell hybridoma and in vivo by amplified T cell responses to Hsp70. Carvacrol administration also increased the number of CD4+CD25+FoxP3+ T cells, systemically in the spleen and locally in the joint, and almost completely suppressed proteoglycan-induced experimental arthritis. Furthermore, protection against arthritis could be transferred with T cells isolated from carvacrol-fed mice. CONCLUSION These findings illustrate that a food component can boost protective T cell responses to a self stress protein and down-regulate inflammatory disease, i.e., that the immune system can respond to diet.
Collapse
|
Research Support, Non-U.S. Gov't |
15 |
61 |
4
|
Fuchs A, Gliwiński M, Grageda N, Spiering R, Abbas AK, Appel S, Bacchetta R, Battaglia M, Berglund D, Blazar B, Bluestone JA, Bornhäuser M, Ten Brinke A, Brusko TM, Cools N, Cuturi MC, Geissler E, Giannoukakis N, Gołab K, Hafler DA, van Ham SM, Hester J, Hippen K, Di Ianni M, Ilic N, Isaacs J, Issa F, Iwaszkiewicz-Grześ D, Jaeckel E, Joosten I, Klatzmann D, Koenen H, van Kooten C, Korsgren O, Kretschmer K, Levings M, Marek-Trzonkowska NM, Martinez-Llordella M, Miljkovic D, Mills KHG, Miranda JP, Piccirillo CA, Putnam AL, Ritter T, Roncarolo MG, Sakaguchi S, Sánchez-Ramón S, Sawitzki B, Sofronic-Milosavljevic L, Sykes M, Tang Q, Vives-Pi M, Waldmann H, Witkowski P, Wood KJ, Gregori S, Hilkens CMU, Lombardi G, Lord P, Martinez-Caceres EM, Trzonkowski P. Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization. Front Immunol 2018; 8:1844. [PMID: 29379498 PMCID: PMC5775516 DOI: 10.3389/fimmu.2017.01844] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/06/2017] [Indexed: 12/13/2022] Open
Abstract
Cellular therapies with CD4+ T regulatory cells (Tregs) hold promise of efficacious treatment for the variety of autoimmune and allergic diseases as well as posttransplant complications. Nevertheless, current manufacturing of Tregs as a cellular medicinal product varies between different laboratories, which in turn hampers precise comparisons of the results between the studies performed. While the number of clinical trials testing Tregs is already substantial, it seems to be crucial to provide some standardized characteristics of Treg products in order to minimize the problem. We have previously developed reporting guidelines called minimum information about tolerogenic antigen-presenting cells, which allows the comparison between different preparations of tolerance-inducing antigen-presenting cells. Having this experience, here we describe another minimum information about Tregs (MITREG). It is important to note that MITREG does not dictate how investigators should generate or characterize Tregs, but it does require investigators to report their Treg data in a consistent and transparent manner. We hope this will, therefore, be a useful tool facilitating standardized reporting on the manufacturing of Tregs, either for research purposes or for clinical application. This way MITREG might also be an important step toward more standardized and reproducible testing of the Tregs preparations in clinical applications.
Collapse
|
Journal Article |
7 |
40 |
5
|
Spiering R, Margry B, Keijzer C, Petzold C, Hoek A, Wagenaar-Hilbers J, van der Zee R, van Eden W, Kretschmer K, Broere F. DEC205+ Dendritic Cell-Targeted Tolerogenic Vaccination Promotes Immune Tolerance in Experimental Autoimmune Arthritis. THE JOURNAL OF IMMUNOLOGY 2015; 194:4804-13. [PMID: 25862815 DOI: 10.4049/jimmunol.1400986] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 03/14/2015] [Indexed: 11/19/2022]
Abstract
Previous studies in mouse models of autoimmune diabetes and encephalomyelitis have indicated that the selective delivery of self-antigen to the endocytic receptor DEC205 on steady-state dendritic cells (DCs) may represent a suitable approach to induce Ag-specific immune tolerance. In this study, we aimed to examine whether DEC205(+) DC targeting of a single immunodominant peptide derived from human cartilage proteoglycan (PG) can promote immune tolerance in PG-induced arthritis (PGIA). Besides disease induction by immunization with whole PG protein with a high degree of antigenic complexity, PGIA substantially differs from previously studied autoimmune models not only in the target tissue of autoimmune destruction but also in the nature of pathogenic immune effector cells. Our results show that DEC205(+) DC targeting of the PG peptide 70-84 is sufficient to efficiently protect against PGIA development. Complementary mechanistic studies support a model in which DEC205(+) DC targeting leads to insufficient germinal center B cell support by PG-specific follicular helper T cells. Consequently, impaired germinal center formation results in lower Ab titers, severely compromising the development of PGIA. Overall, this study further corroborates the potential of prospective tolerogenic DEC205(+) DC vaccination to interfere with autoimmune diseases, such as rheumatoid arthritis.
Collapse
|
Research Support, Non-U.S. Gov't |
10 |
37 |
6
|
Lord P, Spiering R, Aguillon JC, Anderson AE, Appel S, Benitez-Ribas D, Ten Brinke A, Broere F, Cools N, Cuturi MC, Diboll J, Geissler EK, Giannoukakis N, Gregori S, van Ham SM, Lattimer S, Marshall L, Harry RA, Hutchinson JA, Isaacs JD, Joosten I, van Kooten C, Lopez Diaz de Cerio A, Nikolic T, Oral HB, Sofronic-Milosavljevic L, Ritter T, Riquelme P, Thomson AW, Trucco M, Vives-Pi M, Martinez-Caceres EM, Hilkens CMU. Minimum information about tolerogenic antigen-presenting cells (MITAP): a first step towards reproducibility and standardisation of cellular therapies. PeerJ 2016; 4:e2300. [PMID: 27635311 PMCID: PMC5012269 DOI: 10.7717/peerj.2300] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/06/2016] [Indexed: 11/21/2022] Open
Abstract
Cellular therapies with tolerogenic antigen-presenting cells (tolAPC) show great promise for the treatment of autoimmune diseases and for the prevention of destructive immune responses after transplantation. The methodologies for generating tolAPC vary greatly between different laboratories, making it difficult to compare data from different studies; thus constituting a major hurdle for the development of standardised tolAPC therapeutic products. Here we describe an initiative by members of the tolAPC field to generate a minimum information model for tolAPC (MITAP), providing a reporting framework that will make differences and similarities between tolAPC products transparent. In this way, MITAP constitutes a first but important step towards the production of standardised and reproducible tolAPC for clinical application.
Collapse
|
Journal Article |
9 |
35 |
7
|
Keijzer C, Spiering R, Silva AL, van Eden W, Jiskoot W, Vervelde L, Broere F. PLGA nanoparticles enhance the expression of retinaldehyde dehydrogenase enzymes in dendritic cells and induce FoxP3(+) T-cells in vitro. J Control Release 2013; 168:35-40. [PMID: 23500056 DOI: 10.1016/j.jconrel.2013.02.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 02/14/2013] [Accepted: 02/22/2013] [Indexed: 11/17/2022]
Abstract
Many autoimmune diseases and other chronic inflammatory disorders are characterized by defective FoxP3(+) regulatory T-cell (Treg) mediated suppression. A potential treatment option for these disorders is to increase the number and activity of Tregs locally. Both PLGA (poly-lactic-co-glycolic acid) and TMC-TPP (N-trimethyl chitosan tripolyphosphate) nanoparticles (NP) have been described to enhance T cell activation upon nasal application. Since, PLGA NP and TMC-TPP NP differentially affect CD4(+) T-cell differentiation, we investigated in vitro the capacity of both delivery systems to trigger retinoic acid (RA) production in dendritic cells (DCs) as a strategy to enhance the induction of FoxP3(+) T-cells. We generated ovalbumin (OVA)-encapsulated PLGA NP and TMC-TPP NP that were similar in size (400nm) but differed in their surface charge and other physico-chemical properties. We demonstrate that OVA-specific T-cells that are activated by cervical lymph node (CLN)-derived DCs treated with PLGA NP or TMC-TPP NP show more FoxP3 expression than T-cells that are activated by inguinal lymph node (ILN) cells. We demonstrate that only OVA-encapsulated PLGA NP enhance the induction of FoxP3 in activated T-cells via a TGF-β and RA dependent mechanism by enhancing retinaldehyde dehydrogenase enzyme (RALDH) expression in CLN-derived DCs that is required for RA production. Additionally, detailed analysis of the CD4(+) T-cell response reveals that PLGA NP induce both IL-10 and IFN-γ production, while TMC-TPP NP induce mainly Th17 production. Underlining that both APC origin and NP characteristics determine the expression level of FoxP3 in activated T-cells. In conclusion, our data suggest that PLGA NP enhance the induction of FoxP3(+) T-cells in the CLN through modulation of DC function and we suggest that they might be a suitable nasal delivery system to treat a wide variety of autoimmune diseases and other chronic inflammatory disorders.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
22 |
8
|
Jansen MAA, Spiering R, Ludwig IS, van Eden W, Hilkens CMU, Broere F. Matured Tolerogenic Dendritic Cells Effectively Inhibit Autoantigen Specific CD4 + T Cells in a Murine Arthritis Model. Front Immunol 2019; 10:2068. [PMID: 31555285 PMCID: PMC6724516 DOI: 10.3389/fimmu.2019.02068] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 08/15/2019] [Indexed: 11/13/2022] Open
Abstract
Tolerogenic dendritic cells (tolDCs) are a promising treatment modality for diseases caused by a breach in immune tolerance, such as rheumatoid arthritis. Current medication for these diseases is directed toward symptom suppression but no real cure is available yet. TolDC-based therapy aims to restore immune tolerance in an antigen-specific manner. Here we used a mouse model to address two major questions: (i) is a maturation stimulus needed for tolDC function in vitro and in vivo and is maturation required for functioning in experimental arthritis and (ii) can tolDCs modulate CD4+ T cell responses? To answer these questions, we compared matured and immature dexamethasone/vitamin D3-generated tolDCs in vitro. Subsequently, we co-transferred these tolDCs with naïve or effector CD4+ T cells to study the characteristics of transferred T cells after 3 days with flow cytometry and Luminex multiplex assays. In addition, we tested the suppressive capabilities of tolDCs in an experimental arthritis model. We found that tolDCs cannot only modulate naïve CD4+ T cell responses as shown by fewer proliferated and activated CD4+ T cells in vivo, but also effector CD4+ T cells. In addition, Treg (CD4+CD25+FoxP3+) expansions were seen in the proliferating cell population in the presence of tolDCs. Furthermore, we show that administered tolDCs are capable to inhibit arthritis in the proteoglycan-induced arthritis model. However, a maturation stimulus is needed for tolDCs to manifest this tolerizing function in an inflammatory environment. Our data will be instrumental for optimization of future tolDC therapies for autoimmune diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
21 |
9
|
Spiering R, van der Zee R, Wagenaar J, van Eden W, Broere F. Mycobacterial and mouse HSP70 have immuno-modulatory effects on dendritic cells. Cell Stress Chaperones 2013; 18:439-46. [PMID: 23269491 PMCID: PMC3682017 DOI: 10.1007/s12192-012-0397-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 01/07/2023] Open
Abstract
Previously, it has been shown that heat shock protein 70 (HSP70) can prevent inflammatory damage in experimental autoimmune disease models. Various possible underlying working mechanisms have been proposed. One possibility is that HSP70 induces a tolerogenic phenotype in dendritic cells (DCs) as a result of the direct interaction of the antigen with the DC. Tolerogenic DCs can induce antigen-specific regulatory T cells and dampen pathogenic T cell responses. We show that treatment of murine DCs with either mycobacterial (Mt) or mouse HSP70 and pulsed with the disease-inducing antigen induced suppression of proteoglycan-induced arthritis (PGIA), although mouse HSP70-treated DCs could ameliorate PGIA to a greater extent. In addition, while murine DCs treated with Mt- or mouse HSP70 had no significantly altered phenotype as compared to untreated DCs, HSP70-treated DCs pulsed with pOVA (ovalbumin peptide 323-339) induced a significantly increased production of IL-10 in pOVA-specific T cells. IL-10-producing T cells were earlier shown to be involved in Mt HSP70-induced suppression of PGIA. In conclusion, this study indicates that Mt- and mouse HSP70-treated BMDC can suppress PGIA via an IL-10-producing T cell-dependent manner.
Collapse
|
research-article |
12 |
18 |
10
|
Jansen MAA, Spiering R, Broere F, van Laar JM, Isaacs JD, van Eden W, Hilkens CMU. Targeting of tolerogenic dendritic cells towards heat-shock proteins: a novel therapeutic strategy for autoimmune diseases? Immunology 2017; 153:51-59. [PMID: 28804903 DOI: 10.1111/imm.12811] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 01/28/2023] Open
Abstract
Tolerogenic dendritic cells (tolDCs) are a promising therapeutic tool to restore immune tolerance in autoimmune diseases. The rationale of using tolDCs is that they can specifically target the pathogenic T-cell response while leaving other, protective, T-cell responses intact. Several ways of generating therapeutic tolDCs have been described, but whether these tolDCs should be loaded with autoantigen(s), and if so, with which autoantigen(s), remains unclear. Autoimmune diseases, such as rheumatoid arthritis, are not commonly defined by a single, universal, autoantigen. A possible solution is to use surrogate autoantigens for loading of tolDCs. We propose that heat-shock proteins may be a relevant surrogate antigen, as they are evolutionarily conserved between species, ubiquitously expressed in inflamed tissues and have been shown to induce regulatory T cells, ameliorating disease in various arthritis mouse models. In this review, we provide an overview on how immune tolerance may be restored by tolDCs, the problem of selecting relevant autoantigens for loading of tolDCs, and why heat-shock proteins could be used as surrogate autoantigens.
Collapse
|
Research Support, Non-U.S. Gov't |
8 |
16 |
11
|
Spiering R, Wagenaar-Hilbers J, Huijgen V, van der Zee R, van Kooten PJS, van Eden W, Broere F. Membrane-Bound Metallothionein 1 of Murine Dendritic Cells Promotes the Expansion of Regulatory T Cells In Vitro. Toxicol Sci 2013; 138:69-75. [DOI: 10.1093/toxsci/kft268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
|
12 |
16 |
12
|
Spiering R, van der Zee R, Wagenaar J, Kapetis D, Zolezzi F, van Eden W, Broere F. Tolerogenic dendritic cells that inhibit autoimmune arthritis can be induced by a combination of carvacrol and thermal stress. PLoS One 2012; 7:e46336. [PMID: 23050016 PMCID: PMC3457998 DOI: 10.1371/journal.pone.0046336] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 08/31/2012] [Indexed: 11/23/2022] Open
Abstract
Tolerogenic dendritic cells (DCs) can induce regulatory T cells and dampen pathogenic T cell responses. Therefore, they are possible therapeutic targets in autoimmune diseases. In this study we investigated whether mouse tolerogenic DCs are induced by the phytonutrient carvacrol, a molecule with known anti-inflammatory properties, in combination with a physiological stress. We show that treatment of DCs with carvacrol and thermal stress led to the mRNA expression of both pro- and anti-inflammatory mediators. Interestingly, treated DCs with this mixed gene expression profile had a reduced ability to activate pro-inflammatory T cells. Furthermore, these DCs increased the proportion of FoxP3+ regulatory T cells. In vivo, prophylactic injection of carvacrol-thermal stress treated DCs pulsed with the disease inducing antigen was able to suppress disease in a mouse model of arthritis. These findings suggest that treatment of mouse bone marrow derived DCs with carvacrol and thermal stress induce a functionally tolerogenic DC that can suppress autoimmune arthritis. Herewith carvacrol seems to offer novel opportunities for the development of a dietary based intervention in chronic inflammatory diseases.
Collapse
|
Research Support, Non-U.S. Gov't |
13 |
14 |
13
|
Spiering R, Jansen MAA, Wood MJ, Fath AA, Eltherington O, Anderson AE, Pratt AG, van Eden W, Isaacs JD, Broere F, Hilkens CMU. Targeting of tolerogenic dendritic cells to heat-shock proteins in inflammatory arthritis. J Transl Med 2019; 17:375. [PMID: 31727095 PMCID: PMC6857208 DOI: 10.1186/s12967-019-2128-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022] Open
Abstract
Background Autologous tolerogenic dendritic cells (tolDC) are a promising therapeutic strategy for inflammatory arthritis (IA) as they can regulate autoantigen-specific T cell responses. Here, we investigated two outstanding priorities for clinical development: (i) the suitability of using heat-shock proteins (HSP), abundant in inflamed synovia, as surrogate autoantigens to be presented by tolDC and (ii) identification of functional biomarkers that confirm tolDC regulatory activity. Methods Cell proliferation dye-labelled human peripheral blood mononuclear cells of IA (rheumatoid arthritis (RA) and psoriatic arthritis (PsA)) patients or healthy donors were cultured with HSP40-, HSP60- and HSP70-derived peptides or recall antigens (e.g. tuberculin purified protein derivative (PPD)) in the presence or absence of tolDC or control DC for 9 days. Functional characteristics of proliferated antigen-specific T-cells were measured using flow cytometry, gene expression profiling and cytokine secretion immunoassays. Repeated measures analysis of variance (ANOVA) with Bonferroni correction for comparisons between multiple groups and paired Student t test for comparisons between two groups were used to determine significance. Results All groups showed robust CD4+ T-cell responses towards one or more HSP-derived peptide(s) as assessed by a stimulation index > 2 (healthy donors: 78%, RA: 73%, PsA: 90%) and production of the cytokines IFNγ, IL-17A and GM-CSF. Addition of tolDC but not control DC induced a type 1 regulatory (Tr1) phenotype in the antigen-specific CD4+ T-cell population, as identified by high expression of LAG3, CD49b and secretion of IL-10. Furthermore, tolDC inhibited bystander natural killer (NK) cell activation in a TGFβ dependent manner. Conclusions HSP-specific CD4+ T-cells are detectable in the majority of RA and PsA patients and can be converted into Tr1 cells by tolDC. HSP-loaded tolDC may therefore be suitable for directing T regulatory responses to antigens in inflamed synovia of IA patients. Tr1 markers LAG3, CD49b and IL-10 are suitable biomarkers for future tolDC clinical trials.
Collapse
|
Research Support, Non-U.S. Gov't |
6 |
10 |
14
|
Jassies-van der Lee A, Rutten V, Spiering R, van Kooten P, Willemse T, Broere F. The immunostimulatory effect of CpG oligodeoxynucleotides on peripheral blood mononuclear cells of healthy dogs and dogs with atopic dermatitis. Vet J 2013; 200:103-8. [PMID: 24461202 DOI: 10.1016/j.tvjl.2013.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 12/02/2013] [Accepted: 12/14/2013] [Indexed: 11/28/2022]
Abstract
Synthetic oligodeoxynucleotides containing cytosine phosphatidyl guanine-rich DNA sequences (CpG ODN) can promote T-helper type 1 (Th1) responses, reduce T-helper type 2 (Th2) responses and/or favour regulatory T cell (Treg) responses in vitro and in vivo in humans and animals, by acting via Toll-like receptor 9 (TLR9). Since CpG ODN can be used as immune-modulators for canine atopic dermatitis (AD), the aim of the current study was to investigate their immunostimulatory potential on peripheral blood mononuclear cells (PBMC) and their subsets, from AD and healthy dogs. Expression of TLR9 and cytokine mRNA in CpG ODN-stimulated and unstimulated cells was assessed by real-time quantitative PCR. Stimulation of PBMC with CpG class C ODN upregulated mRNA expression of interleukin (IL)-6, interferon (IFN)-γ and IL-12p40 in AD dogs (P<0.05). It also stimulated IFN-γ protein secretion by PBMC of atopic and healthy dogs as measured by ELISA. In healthy dogs only, CpG class C ODN stimulated IFN-α mRNA production by CD21(+) cells, and IL-10, IL-13 and IFN-γ mRNA production by CD3(+) cells. Increased expression of TLR9 mRNA was only observed in CD3(+) cells from AD dogs. No significantly increased gene expression was found in the CD11c(+) subset upon stimulation, for those genes evaluated. The results indicate that PBMC of healthy and atopic dogs are sensitive to stimulation with CpG ODN class C, with a resulting Th1 cytokine response in AD dogs and a mixed Th1/Th2/Treg cytokine response in healthy dogs. From this study, little evidence was found to support the use of CpG ODN class C for therapeutic purposes in dogs affected with AD.
Collapse
|
Research Support, Non-U.S. Gov't |
12 |
3 |
15
|
Baudewijn M, Spiering R, Lambolez F, Cheroutre H. Dysregulated THEMIS results in the escape of pathogenic auto-reactive T cells. (LYM6P.719). THE JOURNAL OF IMMUNOLOGY 2015. [DOI: 10.4049/jimmunol.194.supp.135.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
THEMIS is required for setting the threshold for conventional selection of thymocytes by dampening TCR signals, resulting in the accumulation of “naïve” T cells in the periphery. In contrast, agonist selection, which is an alternative way to induce self tolerance, requires strong TCR signals and does not involve regulation by THEMIS. Using the OVA-specific monoclonal MHC class II restricted DO11.10 TCR transgenic system, we found that many DO11.10 thymocytes are selected along the agonist selection path and appear as co-receptor double negative (DN) TCRab cells in the intestine. Interesting, some DO11.10 cells also appear as conventional-like CD4 T cells in the spleen, suggesting they escaped agonist selection. Compared to the DN DO11.10 T cells or normal WT conventional selected T cells, these escaped DO11.10 CD4 T cells expressed much higher levels of THEMIS, suggesting that excessive levels of THEMIS might have diverted DO11.10 thymocytes to be selected along the conventional path, resulting in the accumulation of T cells with high affinity for self in the naïve pool. Although these aberrant selected THEMIShigh CD4 T cells remain quiescent at steady state, they caused severe intestinal pathology in RAG-/- recipient mice that were fed an OVA-diet. These data indicate that dysregulated THEMIS can lead to the accumulation of auto-reactive T cells with high potential to induce immune pathology when exposed to their cognate antigen in the periphery.
Collapse
|
|
10 |
|